
Simplifying Architecture Search for Graph Neural Network
Huan Zhaoa, Lanning Weib and Quanming Yaoc

a4Paradigm Inc. Shenzhen
bInstitute of Computing Technology Chinese Academy of Sciences
cHong Kong

Abstract
Recent years have witnessed the popularity of Graph Neural Networks (GNN) in various scenarios. To obtain optimal data-
specific GNN architectures, researchers turn to neural architecture search (NAS) methods, which have made impressive
progress in discovering effective architectures in convolutional neural networks. Two preliminary works, GraphNAS
and Auto-GNN, have made first attempt to apply NAS methods to GNN. Despite the promising results, there are several
drawbacks in expressive capability and search efficiency of GraphNAS and Auto-GNN due to the designed search space.
To overcome these drawbacks, we propose the SNAG framework (Simplified Neural Architecture search for Graph neural
networks), consisting of a novel search space and a reinforcement learning based search algorithm. Extensive experiments
on real-world datasets demonstrate the effectiveness of the SNAG framework compared to human-designed GNNs and NAS
methods, including GraphNAS and Auto-GNN.1

1. Introduction
In recent years, Graph Neural Networks (GNN) [1, 2]
have been a hot topic due to their promising results on
various graph-based tasks, e.g., recommendation [3, 4, 5],
fraud detection [6], chemistry [7]. In the literature,
various GNN models [8, 9, 10, 11, 12, 13, 6, 5] have been
designed for graph-based tasks. Despite the success of
these GNN models, there are two challenges facing them.
The first one is that there is no optimal architecture
which can always behave well in different scenarios. For
example, in our experiments (Table 3 and 4), we can
see that the best GNN architectures vary on different
datasets and tasks. It means that we have to spend
huge computational and expertise resources designing
and tuning a well-behaved GNN architecture given a
specific task, which limits the application of GNN models.
Secondly, existing GNN models do not make full use of
the best architecture design practices in other established
areas, e.g., computer vision (CV). For example, existing
multi-layer GNN models tend to stack multiple layers
with the same aggregator (see bottom left of Figure 1),
which aggregates hidden features of multi-hop neighbors.
However it remains to be seen whether combinations of
different aggregators in a multi-layer GNN model can
further improve the performance. These challenges lead
to a straightforward question: can we obtain well-behaved
data-specific GNN architectures?

To address the above question, researchers turn
to neural architecture search (NAS) [14, 15, 16, 17]
approaches, which have shown promising results in
automatically designing architectures for convolutional

Proceedings of the CIKM 2020 Workshops, October 19-20, Galway,
Ireland.

© 2020 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

neural networks (CNN) and recurrent neural networks
(RNN). In very recent time, there are two preliminary
works, GraphNAS [18] and Auto-GNN [19], making the
first attempt to apply NAS to GNN architecture design.
Though GraphNAS and Auto-GNN show some promising
results, there are some drawbacks in expressive capability
and search efficiency of GraphNAS and Auto-GNN due to
the designed search space. In the NAS literature [14, 15,
16, 17], a good search space should be both expressive and
compact. That is the search space should be large enough
to subsume existing human-design architectures, thus
the performance of a search method can be guaranteed.
However, it will be extremely costly if the search space
is too general, which is impractical for any searching
method. The search spaces of GraphNAS and Auto-
GNN are the same, both of which do not well satisfy
the requirement of a good search space. On one hand,
they fail to include several latest GNN models, e.g.,
the GeniePath [6], for which we give a more detailed
analysis in Section 3.1 (Table 1). On the other hand, the
search space includes too many choices, making it too
complicated to search efficiently.

In this work, to overcome the drawbacks of GraphNAS
and Auto-GNN and push forward the research of NAS
approaches for GNN, we propose the SNAG framework
(Simplified Neural Architecture search for Graph neural
networks), consisting of a simpler yet more expressive
search space and a RL-based search algorithm. By
revisiting extensive existing works, we unify state-of-
the-art GNN models in a message passing framework [7],
based on which a much more expressive yet simpler
search space is designed. The simplified search space can
not only emulate a series of existing GNN models, but
also be very flexible to use the weight sharing mechanism,
which is a widely used technique to accelerate the
search algorithm in the NAS literature. We conduct

https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Figure 1: The whole framework of the propsed SNAG (Best view in color). (a) Upper Left: an example graph with five nodes.
The gray rectangle represent the input features attached to each node; (b) Bottom Left: a typical 2-layer GNN architecture
following the message passing neighborhood aggregation schema, which computes the embeddings of node “2”; (c) Upper
Right: the reinforcement learning pipeline for NAS; d) Bottom Right: an illustration of a search space of the proposed SNAG
using 2-layer GNN as backbone, which includes two key components of existing GNN models: node and layer aggregators.

extensive experiments to demonstrate the effectiveness
of the SNAG framework comparing to various baselines
including GraphNAS and Auto-GNN. To summarize, the
contributions of this work are in the following:
• In this work, to automatically obtain well-behaved

data-specific GNN architectures, we propose the
SNAG framework, which can overcome the drawbacks
of existing NAS approaches, i.e., GraphNAS and Auto-
GNN. To better utilize the NAS techniques, we design
a novel and effective search space, which can emulate
more existing GNN architectures than previous works.

• We design a RL-based search algorithm and its variant
by adopting the weight sharing mechanism (SNAG-
WS). By comparing the performance of these two
variants, we show that the weight sharing mechanism
is not empirically useful as we imagined, which aligns
with the latest research in NAS literature [20].

• Extensive experiments on real-world datasets are
conducted to evaluate the proposed SNAG frame-
work, comparing to human-designed GNNs and NAS
methods. The experimental results demonstrate the
superiority of SNAG in terms of effectiveness and
efficiency compared extensive baseline models.

2. Related Works

2.1. Graph Neural Network (GNN)
GNN is first proposed in [1] and in the past five years
many different variants [8, 9, 10, 11, 12, 13, 6] have been
designed, all of which are relying on a neighborhood
aggregation (or message passing) schema [7]. As shown
in the left part of Figure 1, it tries to learn the representa-
tion of a given node in a graph by iteratively aggregating
the hidden features (“message”) of its neighbors, and the
message can propagate to farther neighborhood in the
graph, e.g., the hidden features of two-hop neighbors
can be aggregated in a two-step iteration process. Let
𝒢 = (𝒱, ℰ) be a simple graph with node features
X ∈ R𝑁×𝑑, where 𝒱 and ℰ represent the node and edge
sets, respectively. 𝑁 represents the number of nodes and
𝑑 is the dimension of node features. We use 𝑁(𝑣) to
represent the first-order neighbors of a node 𝑣 in 𝒢, i.e.,
𝑁(𝑣) = {𝑢 ∈ 𝒱|(𝑣, 𝑢) ∈ ℰ}. In the literature, we also
create a new set ̃︀𝑁(𝑣) is the neighbor set including itself,
i.e., ̃︀𝑁(𝑣) = {𝑣} ∪ {𝑢 ∈ 𝒱|(𝑣, 𝑢) ∈ ℰ}.

Then a 𝐾-layer GNN can be written as follows: the
𝑙-th layer (𝑙 = 1, · · · ,𝐾) updates h𝑣 for each node 𝑣 by
aggregating its neighborhood as

h𝑙
𝑣 = 𝜎

(︂
W(𝑙) · Φ𝑛

(︂
{h(𝑙−1)

𝑢 ,∀𝑢 ∈ ̃︀𝑁(𝑣)}
)︂)︂

, (1)

where h(𝑙)
𝑣 ∈ R𝑑𝑙 represents the hidden features

of a node 𝑣 learned by the 𝑙-th layer, and 𝑑𝑙 is the



Table 1
Comparisons of the search space between existing NAS methods and SNAG. For more details of the “Others” columns of
GraphNAS/Auto-GNN, we refer readers to the corresponding papers.

Node aggregators Layer aggregators Others

GraphNAS/
Auto-GNN

GCN,SAGE-SUM/-MEAN/-MAX, MLP, GAT ,
GAT-SYM/-COS/ -LINEAR/-GEN-LINEAR ,

-
Hidden Embedding Size,

Attention Head,
Activation Function

Ours All above plus SAGE-LSTM and GeniePath CONCAT,MAX,LSTM IDENTITY, ZERO

corresponding dimension. W(𝑙) is a trainable weight
matrix shared by all nodes in the graph, and 𝜎 is a non-
linear activation function, e.g., a sigmoid or ReLU. Φ𝑛

is the key component, i.e., a pre-defined aggregation
function, which varies across on different GNN models.
For example, in [8], a weighted summation function is
designed as the node aggregators, and in [9], different
functions, e.g., mean and max pooling, are proposed as
the aggregators. Further, to weigh the importance of
different neighbors, attention mechanism is incorporated
to design the aggregators [10].

Usually, the output of the last layer is used as the
final representation for each node, which is denoted
as z𝑣 = h(𝐾)

𝑣 . In [12], skip-connections [21] are
incorporated to propagate message from intermediate
layers to an extra layer, and the final representation
of the node 𝑣 is computed by a layer aggregation as

z𝑣 = Φ𝑙

(︁
h(1)
𝑣 , · · · ,h(𝐾)

𝑣

)︁
, and Φ𝑙 can also have

different options, e.g., max-pooling, concatenation. Based
on the node and layer aggregators, we can define the
two key components of exiting GNN models, i.e., the
neighborhood aggregation function and the range of the
neighborhood, which tends to be tuned depending on the
tasks. In Table 1, we list all node and layer aggregators in
this work, which lays the basis for the proposed SNAG
framework.

2.2. Neural Architecture Search (NAS)
Neural architecture search (NAS) [14, 15, 16, 17] aims
to automatically find better and smaller architectures
comparing to expert-designed ones, which have shown
promising results in architecture design for CNN and
Recurrent Neural Network (RNN) [22, 23, 24, 25, 26]. In
the literature, one of the representative NAS approaches
are reinforcement learning (RL) [14, 15, 27], which trains
an RNN controller in the loop: the controller firstly
generates an candidate architecture by sampling a list of
actions (operations) from a pre-defined search space, and
then trains it to convergence to obtain the performance of
the given task. The controller then uses the performance
as the guiding signal to update the RNN parameters, and
the whole process is repeated for many iterations to find

more promising architectures. GraphNAS [18] and Auto-
GNN [19] are the first two RL-based NAS methods for
GNN.

Search space is a key component of NAS approaches,
the quality of which directly affects the final performance
and search efficiency. As mentioned in [14, 15, 23, 28, 27,
22, 29, 26, 25], a good search space should include existing
human-designed models, thus the performance of an
designed search algorithm can be guaranteed. In this
work, by unifying existing GNN models in the message
passing framework [7] with the proposed node and layer
aggregators, we design a more expressive yet simple
search space in this work, which is also flexible enough
to incorporate the weight sharing mechanism into our
RL-based method.

3. The Proposed Framework

3.1. The design of search space
As introduced in Section 2.1, most existing GNN ar-
chitectures are relying on a message passing frame-
work [7], which constitutes the backbone of the designed
search space in this work. Besides, motivated by
JK-Network [13], to further improve the expressive
capability, we modify the message framework by adding
an extra layer which can adaptively combine the outputs
of all node aggregation layers. In this work, we
argue and demonstrate in the experiments that these
two components are the key parts for a well-behaved
GNN model, denoted as Node arggregators and Layer
aggregators. The former one focus on how to aggregate
the neighborhood features, while the latter one focus on
the range of neighborhood to use. Here we introduce the
backbone of the proposed search space, as shown in the
bottom right part of Figure 1, which consists of two key
components:

• Node aggregators: We choose 12 node aggregators
based on popular GNN models, and they are presented
in Table 1.

• Layer aggregators: We choose 3 layer aggregators
as shown in Table 1. Besides, we have two more



operations, IDENTITY and ZERO, related to skip-
connections. Instead of requiring skip-connections
between all intermediate layers and the final layer in
JK-Network, in this work, we generalize this option
by proposing to search for the existence of skip-
connection between each intermediate layer and the
last layer. To connect, we choose IDENTITY, and ZERO
otherwise.

To further inject the domain knowledge from exist-
ing GNN architectures, when searching for the skip-
connections for each GNN layer, we add one more
constraint that the last layer should always be used as
the final output, thus for a 𝐾-layer GNN architecture,
we need to search 𝐾 − 1 IDENTITY or ZERO for the
skip-connection options.

3.2. Problem formulation
After designing the search space, denoted as𝒜, the search
process implies a bi-level optimization problem [30, 31],
as show in the following:

min𝛼∈𝒜 ℒ𝑣𝑎𝑙(𝛼,𝑤
*), (2)

s.t. 𝑤* = argmin𝑤 ℒ𝑡𝑟𝑎𝑖𝑛(𝛼,𝑤),

where ℒ𝑡𝑟𝑎𝑖𝑛 and ℒ𝑣𝑎𝑙 represent the training and
validation loss, respectively, and 𝒜 represents the search
space introduced in Section 3.1. 𝛼 and 𝑤 represent the
architecture and model parameters. Eq. (2) denotes a trial-
and-error process for the NAS problem, which selects an
architecture 𝛼 from the search space, and then trains it
from scratch to obtain the best performance. This process
is repeated during the given time budget and the optimal
𝛼* is kept track of and returned after the search process
finished.

In this work, motivated by the pioneering NAS
works [14, 15], we design a RL method to execute the
search process. To be specific, during the search phase,
we use a recurrent neural network (RNN) controller,
parameterized by 𝜃𝑐, to sample an candidate architecture
from the search space. The architecture is represented
by a list of actions (OPs), including the node aggregators,
layer aggregators and IDENTITY/ZERO as shown in
Table 1. Then the candidate architecture will be
trained till convergence, and the accuracy on a held-out
validation set 𝒟𝑣𝑎𝑙 is returned. The parameters of the
RNN controller are then optimized in order to maximize
the expected validation accuracy E𝑃 (𝛼;𝜃𝑐)[ℛ] on 𝒟𝑣𝑎𝑙,
where 𝑃 (𝛼; 𝜃𝑐) is the distribution of architectures
parameterized by 𝜃𝑐, and ℛ is the validation accuracy.
In this way, the RNN controller will generate better
architectures over time, and can obtain optimal one in
the end of the search phase. After finishing the search
process, we need to derive the searched architectures. We
first sample𝑛 architectures under the trained distribution

Table 2
Dataset statistics of the datasets in the experiments.

Transductive Inductive
Cora CiteSeer PubMed PPI

#nodes 2,708 3,327 19,717 56,944
#edges 5,278 4,552 44,324 818,716
#features 1,433 3,703 500 121
#classes 7 6 3 50

𝑃 (𝛼, 𝜃𝑐), and for each architecture, we train them from
scratch with some hyper-parameters tuning, e.g., the
embedding size and learning rate, etc. We then select
the best architecture as the searched one, which aligns
with the process in previous works [15, 27]. In our
experiments, we empirically set 𝑛 = 10 for simplicity.
For more technical details, we refer readers to [15, 18].

Besides, in this work, we also incorporate the weight
sharing mechanism into our framework, and propose the
SNAG-WS variant. The key difference between SNAG
and SNAG-WS lies in that we create a dictionary to load
and save the trained parameters of all OPs (Table 1) in a
sampled architecture during the search process.

4. Experiments

4.1. Experimental Settings
4.1.1. Datasets and Tasks.

Here, we introduce two tasks and the corresponding
datasets (Table 2), which are standard ones in the
literature [8, 9, 13].
Transductive Task. Only a subset of nodes in one
graph are used as training data, and other nodes are
used as validation and test data. For this setting, we use
three benchmark dataset: Cora, CiteSeer, PubMed. They
are all citation networks, provided by [32]. Each node
represents a paper, and each edge represents the citation
relation between two papers. The datasets contain bag-
of-words features for each paper (node), and the task
is to classify papers into different subjects based on the
citation networks.

For all datasets, We split the nodes in all graphs into
60%, 20%, 20% for training, validation, and test. For the
transductive task, we use the classification accuracy as
the evaluation metric.
Inductive Task. In this task, we use a number of graphs
as training data, and other completely unseen graphs
as validation/test data. For this setting, we use the
PPI dataset, provided by [9], on which the task is to
classify protein functions. PPI consists of 24 graphs, with
each corresponding to a human tissue. Each node has
positional gene sets, motif gene sets and immunological



Table 3
Performance comparisons in transductive tasks. We show the mean classification accuracy (with standard deviation). We
categorize baselines into human-designed GNNs and NAS methods. The best results in different groups of baselines are
underlined, and the best result on each dataset is in boldface.

Transductive
Methods Cora CiteSeer PubMed

Human-
designed
GNN

GCN 0.8761 (0.0101) 0.7666 (0.0202) 0.8708 (0.0030)
GCN-JK 0.8770 (0.0118) 0.7713 (0.0136) 0.8777 (0.0037)
GraphSAGE 0.8741 (0.0159) 0.7599 (0.0094) 0.8784 (0.0044)
GraphSAGE-JK 0.8841 (0.0015) 0.7654 (0.0054) 0.8822 (0.0066)
GAT 0.8719 (0.0163) 0.7518 (0.0145) 0.8573 (0.0066)
GAT-JK 0.8726 (0.0086) 0.7527 (0.0128) 0.8674 (0.0055)
GIN 0.8600 (0.0083) 0.7340 (0.0139) 0.8799 (0.0046)
GIN-JK 0.8699 (0.0103) 0.7651 (0.0133) 0.8828 (0.0054)
GeniePath 0.8670 (0.0123) 0.7594 (0.0137) 0.8796 (0.0039)
GeniePath-JK 0.8776 (0.0117) 0.7591 (0.0116) 0.8818 (0.0037)
LGCN 0.8687 (0.0075) 0.7543 (0.0221) 0.8753 (0.0012)

NAS
methods

Random 0.8694 (0.0032) 0.7820 (0.0020) 0.8888(0.0009)
Bayesian 0.8580 (0.0027) 0.7650 (0.0021) 0.8842(0.0005)
GraphNAS 0.8840 (0.0071) 0.7762 (0.0061) 0.8896 (0.0024)
GraphNAS-WS 0.8808 (0.0101) 0.7613 (0.0156) 0.8842 (0.0103)

ours
SNAG 0.8826 (0.0023) 0.7707 (0.0064) 0.8877 (0.0012)
SNAG-WS 0.8895 (0.0051) 0.7695 (0.0069) 0.8942 (0.0010)

Table 4
Performance comparisons in inductive tasks. We show the Micro-F1 (with standard deviation). We categorize baselines into
human-designed GNNs and NAS methods. The best results in different groups of baselines are underlined, and the best result
is in boldface.

Methods PPI

Human-designed
GNN

GCN 0.9333 (0.0019)
GCN-JK 0.9344 (0.0007)
GraphSAGE 0.9721 (0.0010)
GraphSAGE-JK 0.9718 (0.0014)
GAT 0.9782 (0.0005)
GAT-JK 0.9781 (0.0003)
GIN 0.9593 (0.0052)
GIN-JK 0.9641 (0.0029)
GeniePath 0.9528 (0.0000)
GeniePath-JK 0.9644 (0.0000)

NAS methods

Random 0.9882 (0.0011)
Bayesian 0.9897 (0.0008)
GraphNAS 0.9698 (0.0128)
GraphNAS-WS 0.9584 (0.0415)

ours
SNAG 0.9887 (0.0010)
SNAG-WS 0.9875 (0.0006)

signatures as features and gene ontology sets as labels.
20 graphs are used for training, 2 graphs are used for
validation and the rest for testing, respectively. For the
inductive task, we use Micro-F1 as the evaluation metric.

4.1.2. Compared Methods

We compare SNAG with two groups of state-of-the-art
methods: human-designed GNN architectures and NAS
methods for GNN.
Human-designedGNNs. We use the following popular
GNN architectures: GCN [8], GraphSAGE [9], GAT [10],



(a) Cora. (b) CiteSeer.

(c) PubMed. (d) PPI.

Figure 2: The validation accuracy w.r.t. search time (in
seconds) in log base 10.

GIN [12], LGCN [11], GeniePath [6]. For models with
variants, like different aggregators in GraphSAGE or
different attention functions in GAT, we report the best
performance across the variants. Besides, we extend the
idea of JK-Network [13] in all models except for LGCN,
and obtain 5 more baselines: GCN-JK, GraphSAGE-JK,
GAT-JK, GIN-JK, GeniePath-JK, which add an extra layer.
For LGCN, we use the code released by the authors 1. For
other baselines, we use the popular open source library
Pytorch Geometric (PyG) [33] 2, which implements
various GNN models. For all baselines, we train it from
scratch with the obtained best hyper-parameters on
validation datasets, and get the test performance. We
repeat this process for 5 times, and report the final mean
accuracy with standard deviation.
NAS methods for GNN. We consider the following
methods: Random search (denoted as “Random”) and
Bayesian optimization [34] (denoted as “Bayesian”),
which directly search on the search with random sam-
pling and bayesian optimization methods, respectively.
Besides, GraphNAS3 [18] is chosen as NAS baseline.

Note that for human-designed GNNs and NAS meth-
ods, for fair comparison and good balance between
efficiency and performance, we choose set the number of
GNN layers to be 3, which is an empirically good choice
in the literature [10, 6].

1https://github.com/HongyangGao/LGCN
2https://github.com/rusty1s/pytorch_geometric
3https://github.com/GraphNAS/GraphNAS

4.2. Performance comparison
In this part, we give the analysis of the performance
comparisons on different datasets.

From Table 3, we can see that SNAG models, including
SNAG-WS, win over all baselines on most datasets except
CiteSeer. Considering the fact that the performance
of SNAG on CiteSeer is very close to the best one
(Random), it demonstrates the effectiveness of the NAS
methods on GNN. In other words, with SNAG, we can
obtain well-behaved GNN architectures given a new task.
When comparing SNAG with GraphNAS methods, the
performance gain is evident. We attribute this to the
superiority of the expressive yet simple search space.

From Table 4, we can see that the performance trending
is very similar to that in transductive task, which is
that the NAS methods can obtain better or competitive
performance than human-designed GNNs. When looking
at the NAS methods, we can see that our proposed
SNAG, Random and Bayesian outperforms GraphNAS.
This also demonstrates the superiority of the designed
search space.

Taking into consideration the results of these two
tasks, we demonstrate the effectiveness of SNAG models,
especially the superiority of the search space.

4.3. Understanding the search space of
SNAG

In this section, we show the simplicity and expressiveness
of the designed search space of SNAG from two aspects:
speedup in searching and the performance gain from the
layer aggregators.

4.3.1. Speedup in searching

In this part, to show the simplicity of the designed
search space, we compare the efficiency of SNAG and
GraphNAS by showing the validation accuracy w.r.t to
the running time, and the results are shown in Figure 2.
The accuracy is obtained by evaluating the sampled
architecture on validation set after training it from
scratch till convergency, which can reflect the capability
of NAS methods in discovering better architectures with
time elapsing. From Figure 2, we can see that SNAG
speeds up the search process significantly comparing
to GraphNAS, i.e., the model can obtain better GNN
architectures during the search space. Considering the
fact that both GraphNAS and SNAG adopt the same RL
framework, then this advantage is attributed to simpler
and smaller search space.

4.3.2. Influence of layer aggregators

In this part, to show the stronger expressive capability
of the designed search space, we conduct experiments

https://github.com/GraphNAS/GraphNAS


Table 5
Performance comparisons of SNAG and SNAG-WS using different search spaces.

SNAG SNAG-WS
layer aggregators (w) layer aggregators (w/o) layer aggregators (w) layer aggregators (w/o)

Cora 0.8826 (0.0023) 0.8822 (0.0071) 0.8895 (0.0051) 0.8892 (0.0062)
CiteSeer 0.7707 (0.0064) 0.7335 (0.0025) 0.7695 (0.0069) 0.7530 (00034)
PubMed 0.8877 (0.0012) 0.8756 (0.0016) 0.8942 (0.0010) 0.8800 (0.0013)

PPI 0.9887 (0.0010) 0.9849 (0.0040) 0.9875 (0.0006) 0.9861 (0.0009)

on all datasets using a search space only with the node
aggregators, i.e., removing the layer aggregators, as
comparisons. The results are shown in Table 5, and we
report the test accuracies of both the SNAG and SNAG-
WS. From Table 5, we can see that the performance
consistently drops on all datasets when removing the
layer aggregators, which demonstrates the importance of
the layer aggregators for the final performance and aligns
with the observation in Section 4.2 that the performance
of human-designed GNNs can be improved by adopting
the JK-Network architecture.

5. Conclusion and Future work
In this work, to overcome the drawbacks in expres-
sive capability and search efficiency of two existing
NAS approaches for GNN, i.e., GraphNAS [18] and
Auto-GNN [19], we propose the SNAG framework,
i.e., Simplified Neural Architecture search for GNN.
By revisiting existing works, we unify state-of-the-
art GNN models in a message passing framework [7],
and design a simpler yet more expressive search space
than that of GraphNAS and Auto-GNN. A RL-based
search algorithm is designed and a variant (SNAG-WS)
is also proposed by incorporating the weight sharing
mechanism. Through extensive experiments on real-
world datasets, we not only demonstrate the effectiveness
of the proposed SNAG framework comparing to various
baselines including GraphNAS and Auto-GNN, but also
give better understanding of different components of
the proposed SNAG. For future work, we will explore
the SNAG framework in more graph-based tasks besides
node classification.

References
[1] M. Gori, G. Monfardini, F. Scarselli, A new model

for learning in graph domains, in: IJCNN, volume 2,
2005, pp. 729–734.

[2] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-
Gonzalez, V. Zambaldi, M. Malinowski, A. Tacchetti,
D. Raposo, A. Santoro, R. Faulkner, et al., Rela-

tional inductive biases, deep learning, and graph
networks, arXiv preprint arXiv:1806.01261 (2018).

[3] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L.
Hamilton, J. Leskovec, Graph convolutional neural
networks for web-scale recommender systems, in:
KDD, 2018, pp. 974–983.

[4] J. Wang, P. Huang, H. Zhao, Z. Zhang, B. Zhao,
D. L. Lee, Billion-scale commodity embedding for
e-commerce recommendation in alibaba, in: KDD,
2018, pp. 839–848.

[5] W. Xiao, H. Zhao, H. Pan, Y. Song, V. W. Zheng,
Q. Yang, Beyond personalization: Social content
recommendation for creator equality and consumer
satisfaction, in: KDD, 2019, pp. 235–245.

[6] Z. Liu, C. Chen, L. Li, J. Zhou, X. Li, L. Song, Y. Qi,
Geniepath: Graph neural networks with adaptive
receptive paths, in: AAAI, volume 33, 2019, pp.
4424–4431.

[7] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals,
G. E. Dahl, Neural message passing for quantum
chemistry, in: ICML, 2017, pp. 1263–1272.

[8] T. N. Kipf, M. Welling, Semi-supervised classifi-
cation with graph convolutional networks, ICLR
(2016).

[9] W. Hamilton, Z. Ying, J. Leskovec, Inductive
representation learning on large graphs, in:
NeurIPS, 2017, pp. 1024–1034.

[10] P. Veličković, G. Cucurull, A. Casanova, A. Romero,
P. Lio, Y. Bengio, Graph attention networks, ICLR
(2018).

[11] H. Gao, Z. Wang, S. Ji, Large-scale learnable graph
convolutional networks, in: KDD, 2018, pp. 1416–
1424.

[12] K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful
are graph neural networks?, in: ICLR, 2019.

[13] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi,
S. Jegelka, Representation learning on graphs with
jumping knowledge networks, in: ICML, 2018, pp.
5449–5458.

[14] B. Baker, O. Gupta, N. Naik, R. Raskar, Designing
neural network architectures using reinforcement
learning, ICLR (2017).

[15] B. Zoph, Q. V. Le, Neural architecture search with
reinforcement learning, ICLR (2017).



[16] T. Elsken, J. H. Metzen, F. Hutter, Neural architec-
ture search: A survey, JMLR (2018).

[17] Q. Yao, M. Wang, Taking human out of learning
applications: A survey on automated machine
learning, arXiv preprint arXiv:1810.13306 (2018).

[18] Y. Gao, H. Yang, P. Zhang, C. Zhou, Y. Hu, Graph
neural architecture search, in: IJCAI, 2020, pp. 1403–
1409.

[19] K. Zhou, Q. Song, X. Huang, X. Hu, Auto-GNN: Neu-
ral Architecture Search of Graph Neural Networks,
Technical Report, arXiv preprint arXiv:1909.03184,
2019.

[20] C. Sciuto, K. Yu, M. Jaggi, C. Musat, M. Salzmann,
Evaluating the search phase of neural architecture
search, ICLR (2020).

[21] K. He, X. Zhang, S. Ren, J. Sun, Deep residual
learning for image recognition, in: CVPR, 2016,
pp. 770–778.

[22] H. Liu, K. Simonyan, Y. Yang, Darts: Differentiable
architecture search, ICLR (2019).

[23] B. Zoph, V. Vasudevan, J. Shlens, Q. V. Le, Learn-
ing transferable architectures for scalable image
recognition, in: CVPR, 2018, pp. 8697–8710.

[24] M. Tan, Q. Le, Efficientnet: Rethinking model
scaling for convolutional neural networks, in:
ICML, 2019, pp. 6105–6114.

[25] Q. Yao, J. Xu, W.-W. Tu, Z. Zhu, Efficient neural
architecture search via proximal iterations., in:
AAAI, 2020, pp. 6664–6671.

[26] Y. Zhang, Q. Yao, L. Chen, Neural Recurrent
Structure Search for Knowledge Graph Embed-
ding, Technical Report, International Workshop on
Knowledge Graph@KDD, 2019.

[27] H. Pham, M. Guan, B. Zoph, Q. Le, J. Dean, Efficient
neural architecture search via parameter sharing,
in: ICML, 2018, pp. 4092–4101.

[28] G. Bender, P. Kindermans, B. Zoph, V. Vasudevan,
Q. V. Le, Understanding and simplifying one-shot
architecture search, in: ICML, 2018, pp. 549–558.

[29] L. Li, A. Talwalkar, Random search and reproducibil-
ity for neural architecture search, arXiv preprint
arXiv:1902.07638 (2019).

[30] B. Colson, P. Marcotte, G. Savard, An overview of
bilevel optimization, Annals of operations research
153 (2007) 235–256.

[31] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi,
M. Pontil, Bilevel programming for hyperparameter
optimization and meta-learning, in: ICML, 2018,
pp. 1568–1577.

[32] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher,
T. Eliassi-Rad, Collective classification in network
data, AI magazine 29 (2008) 93–93.

[33] M. Fey, J. E. Lenssen, Fast graph representation
learning with PyTorch Geometric, in: ICLRW, 2019.

[34] J. S. Bergstra, R. Bardenet, Y. Bengio, B. Kégl,

Algorithms for hyper-parameter optimization, in:
NeurIPS, 2011, pp. 2546–2554.


	1 Introduction
	2 Related Works
	2.1 Graph Neural Network (GNN)
	2.2 Neural Architecture Search (NAS)

	3 The Proposed Framework
	3.1 The design of search space
	3.2 Problem formulation

	4 Experiments
	4.1 Experimental Settings
	4.1.1 Datasets and Tasks.
	4.1.2 Compared Methods

	4.2 Performance comparison
	4.3 Understanding the search space of SNAG
	4.3.1 Speedup in searching
	4.3.2 Influence of layer aggregators


	5 Conclusion and Future work

