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Abstract
Injecting domain knowledge into a neural learner to alleviate reliance on high-quality data and improve explainability is a
rapidly expanding research trend. While most of the effort focused on regular topology formats such as sequences and grids,
we consider graph datasets. Moreover, instead of knowledge graph (KG) embedding that underlies the majority of graph-
centered methods, we propose a dedicated pattern mining-based approach. As our patterns are ontologically-generalized,
they achieve multiple objectives: domain knowledge infusion, generalization capacity enhancement, interpretability, etc.
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1. Introduction
Nowadays, implementing decision support systems to
help practitioners in complex activities has become a
current practice in many fields. Many of these sys-
tems, traditionally, have used machine learning to pre-
dict the outcome of a specific problem in the user’s en-
vironment and use the prediction to suggest concrete
actions. Deep learning has arrived with a promise to
expand the areas where automation is successfully ap-
plied in problem solving, hence the expectation for
high-quality decision support to profuse.

However, predicting or learning representations on
such complex domains typically requires the availabil-
ity of large amounts of data of sufficiently high qual-
ity. Unfortunately, in practice, such datasets are not
always readily available. Conversely, often quantities
of machine-readable expert knowledge do exist, and
could potentially complement already available data.
Since they reflect at least partly the expertise that un-
derlies decision making in the field, it is only natu-
ral to look for ways to inject that knowledge into the
learning process to try to guide it and compensate the
scarceness of high-quality data.

For several decades, ontologies, i.e. structured rep-
resentation of domain concepts and their relations [1],
have been promoted as the appropriate tool for mak-
ing domain knowledge available for machine process-
ing [2].
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2. Motivation
Daily activities in agro-industrial sector, e.g. a mainte-
nance of a dairy farm, like those in other areas related
to life sciences, generate large amounts of data. The
underlying data sources reflect complementary aspects
such as farm yield, environment, animal health, ge-
netics, etc. The recent trend of precision(-based) agri-
culture looks at exploiting this data to support the de-
cision making of domain stake-holders [3]: farmers,
agronomists, dairy companies, insurers, etc.

Yet, in order to be effective, any recommendation
will have to reflect existing practices and, more gener-
ally, at least partly reflect the general knowledge from
the domain. For instance, at the end of each lactation a
cow gets dry for a while. Yet there is no a straightfor-
ward way to train a neural model on milk yield data:
The ensuing abrupt drop in milk yield is hard to digest
for, at least, the most popular deep learning architec-
tures [4]. Indeed, these models do not seem to properly
grasp the dynamics in a cow life-cycle, e.g. lactation,
calvings, drying, etc.

While there are still work-arounds left to explore,
one legitimate research question is whether injecting
some domain knowledge would help here. In a broader
approach, we investigate the impact of feeding com-
plementary data, e.g. on genetics and animal health,
and organizing the overall dataset under a domain on-
tology (DO) providing additional descriptive knowl-
edge.

While supplementing a neural learner with domain
knowledge stemming from an ontology is definitely
appealing, it is also a challenging task, mainly due to
the “impedance mismatch”, i.e. the divergence in the
respective levels of knowledge expression and manip-
ulation [5].
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3. Current State Of The Art
While symbolic representations, as a way to capture
knowledge, have clearly dominated the AI field since
its inception, recently sub-symbolic ones –in the form
of trained neural networks– have rapidly gained in
popularity and use [6]. By trading discrete and man-
made (i.e. modelling) entities of the former for more
machine-made (artificial) and loosely defined “patterns”,
the later breaks free of prior knowledge in order to,
arguably, benefit for a more powerful yet difficult to
interpret representation language. At its core, infor-
mation is distilled throughout a network as a set of
waves (or pulses) representing captured knowledge.

In a broader scope, injecting domain knowledge in
a machine learning process has been extensively re-
searched and proven helpful in many practical situa-
tions [7]. More recently, since deep learning has moved
centre stage, the focus has shifted on making neural
networks collaborate with symbolic knowledge sources,
mostly knowledge graphs (KG) and, somewhat more
modestly, domain ontologies. In [5], the authors pro-
pose a classification of methods for feeding domain
knowledge to artificial neural networks (ANNs), in par-
ticular, to deep ones. Their own proposal, called know-
ledge-infused learning (K-IL), addresses a variety of is-
sues with ANN, in particular, reliance on large datasets
of sufficient quality, biases in training data selection,
complexity, etc. The proposed answer represents a
spectrum of fine-grained transformations of the ANN
architecture reflecting the content of a KG that range
from correcting the loss function to modifying the prop-
agation through the network via connection weights.

The broader trend of using KG in the form of em-
beddings –of vertices, edges or both– into a vector
space, e.g. in order to support various natural lan-
guage processing tasks, has been highly prolific for al-
most a decade now (see [8] for a somewhat outdated
survey). While initial work by Bordes et al. [9, 10]
looked at embedding a triple from a KG using energy-
based methods to force plausible combinations of com-
ponent embeddings, in [11] the focus is exclusively on
vertices, i.e. domain entities. The proposed RDF2vec
method generates a set of entity sequences, through
random walks and iterative neighbourhood encoding
techniques, which are then fed to word embedding meth-
ods. In a medical context, the authors of [12], present a
somewhat different approach toward leveraging a KG
in neural learning: In order to assess patient risk from
a series of health events, they translate the neighbour-
hoods of an event-centred KG into attention filters for
a LSTM-based ANN.

Overall, KG embedding is not straightforwardly port-

able to DOs as in the case of KGs amalgamation is
favoured by them being on the same abstraction level
as the training data. In contrast, classes and proper-
ties from a DO represent abstractions, i.e. sets of data
objects and object-to-object links, hence the apparent
mismatch with the instance-centered modus operandi
of an ANN. Yet given the strive for (proper) general-
ization in ANNs, the ontological structure, with its ca-
pacity to generalize along expert-validated conceptual
hierarchies (and property ones, for that matters), is a
natural ally.

Nonetheless, a few studies have tackled the exploita-
tion of generic knowledge from a DO in neural learn-
ing. For instance, in [13], the authors exploit a DO
(a topic hierarchy, in actuality) of sound events to en-
hance a neural classifier. They propose to replicate the
hierarchical structure of the DO in the ANN topology
by: (1) allotting a layer per level in the is-a hierar-
chy and (2) enforcing fixed distance values between
pairs of example embeddings, which roughly translate
the examples’ topological distance within the hierar-
chy. In a similar vein, the method in [14] simulates
the topology of the DO graph in learning the repre-
sentations of its classes and properties. A class is thus
reduced to the union of its data properties, those of its
sub-classes and of related classes. On a following step,
the method learns instance representations, from the
representations in the DO, and uses them in behaviour
prediction.

Besides, different ways of making ontologies and
ANN collaborate have been explored, e.g. ontology
learning [15] or neural reasoning with ontologies [16].
For example, [17] approaches the latter task as a trans-
lation problem with noisy-data.

On a broader scope, while feature vector-oriented
ANNs have shined on sequence- and grid-shaped data,
i.e. with values arguably more important than –the
highly regular– topology, graph data, due to its in-
herent sparsity, requires more fine-grained generaliza-
tion (i.e. chemical functional groups, biological path-
ways, telecom network configurations, etc.). Graph
Convolutional Neural Networks (GCNN) constitute a
recent and promising approach for learning such reg-
ularities [18, 19]. By applying convolution layers on
top of each other, they recursively aggregate 𝑛𝑡ℎ-order
neighbourhood information from the graph and can
achieve good generalization on such datasets. Yet due
to their inherent bias toward frequent regularities, the
very local, rare and context-specific ones will arguably
be missed. And, clearly, this behaviour compounds
whenever quality data prove scarce.

Beyond pure generalization capabilities, dealing with
actionable and surprising patterns mixing different ab-



straction levels is to be expected: conceptually, a se-
quentially layered generalization procedure might not
prove enough to extract such regularities.

Taking a step back, we consider three ongoing trends
each one following a founding principle: (i) K-IL sup-
ports the use of external domain knowledge as a way
to bring improvements on both predictive power and
explainability; (ii) G(C)NN approaches consider pre-
serving topology as critical when working on graph
data; (iii) Contextual mechanisms lead to better results
on both static (e.g. text translation) and dynamic (e.g.
user behaviour) predictive tasks [20].

To the best of our knowledge, no prior research has
jointly addressed the above three concerns. Here, we
present a novel approach for learning in complex do-
mains that does this. By delegating most of the knowl-
edge/pattern extraction effort to a dedicated symbolic
method, we subsequently feed those patterns as in-
put features to an architecture-agnostic neural learner.
Thus, offering ontologically-generalized graph-shaped
features a priori overlapping with a GNN’s convolved
high-level patterns. Nevertheless, ontological based
generalization plays nice with robustness properties:
by going beyond mere boolean encoding of attributes
(i.e. vertices, edges) with the help of a DO’s conceptual
structure, it helps the symbolic learning to not fall into
overfitting pitfalls.

4. Vision & Approach details
First, by bringing some ontological concepts into the
data as higher-order regularities we aim to make ex-
plicit the shared conceptual structure that remains in-
visible in the raw data. The rationale therefore is while
exact values may mismatch, more abstract types de-
scribing those values would coincide. For instance,
two groups of lactating cows may be treated for masti-
tis –a common bacterial infection of the udder– by us-
ing amoxicillin and penicillin, respectively. Now know-
ing that these are both 𝛽-lactams helps extend a com-
mon sub-graph comprising, at least, nodes for cow and
mastitis, with a further node for that class of antibi-
otics. Obviously, this increase in the shared portions of
the data graphs w.r.t. to their raw versions would not
be possible without an ontology covering the antibi-
otics. In a more general vein, inserting typing infor-
mation and property generalizations helps reveal hid-
den commonalities that would not be easily spotted
neither by a human expert, neither by a sub-symbolic
learner.

Next, our goal is to find all significant fragments of
such shared structure in a set of data graphs. These in-

Figure 1: An example of ontological graph pattern.

clude abstractions on both vertices (ontology classes)
and edges (ontology properties). As an illustrative ex-
ample, Figure 1 presents a possible pattern, illustrating
possible causes for a shorter than average first lacta-
tion of a young cow. Here, frequently, both the young
cow and its ancestor have been treated with different
kind of antibiotics.

The resulting graph structure can be qualified as
doubly-labelled, i.e. on both vertices and edges, multi-
graphs. Practically, we first discover the interesting
patterns and then, in a feature engineering step, we
assign them as higher-level descriptors of the match-
ing data graphs.

Another palpable advantage of using the ontology-
based patterns is that they offer an integrated view
of the shared structure: Edges standing for properties
connect class vertices, thus providing context to each
of them. On the other hand, pattern components, as
well as whole patterns, pertain to potentially varying
abstraction levels.

More concretely, Figure 2 details our hybrid strategy
where graph patterns are first mined (step 3) and then
fed (step 5) into a neural network (step 6) with graph
data supported by a DO as our main input (steps 2 and
1 respectively), complementary to regular tabular data
(step 4). The mining of ontological patterns from that
graph data uses the domain ontology as backbone for
the exploration (e.g. ontological types, resources as
vertices and properties as edges). Between steps 3 and
5, an optional post-processing step can also further re-
fine the patterns to emphasize contrasts, or synthesize
by approximating, if required by the learning task. The
resulting ontological graph patterns allow the original
data to be encoded with the new features supported
by domain knowledge before feeding the augmented
data to the ANN (steps 5 and 6).

Pattern mining [21], aims at extracting recurrent data
fragments, a.k.a. patterns, capturing the most relevant
information possible. A mining task is defined by a
pair of languages, one for data records and one for pat-
terns, and a relevance (interestingness) criterion. The
typical criterion is frequency of appearance, but other
criteria such as utility or some domain-related ones



Figure 2: High-level view of our hybrid learning process.

are possible. Moreover, an effective mining method
requires a general strategy for pattern space traversal
and a technique to perform a pattern-to-data record
matching. The later revolves around computing a vari-
ation of sub-graph isomorphism, here integrating the
conceptual structure of an ontology. Typically, the for-
mer entails defining a spanning tree of the pattern space
and a canonical representation of graph patterns to
avoid generating multiple copies of the same pattern [22].

Ontologies have been used in frequent pattern min-
ing to guide the exploration of the complex pattern
spaces such as sequences of objects or simple graphs
for some time [23, 24]. For predictive tasks exploiting
graph pattern mining a few successful techniques ex-
ist such as quantitative structure-activity relationships
(QSARs) [25], optimizing objective functions [26] or
dedicated pattern ranking metrics [27] exploiting ex-
ternal domain knowledge. While ontologies and pat-
terns have been combined before, to the best of our
knowledge, no mining method has targeted data of
such complexity.

The downside of the approach is its sensibility on
the pattern frequency threshold and the related poten-
tial combinatorial explosion in the result. While this
is a serious cost issues with graph patterns, possible
mitigation strategies exist, e.g. using condensed rep-
resentations thereof such as closed patterns [28].

Overall, expected immediate benefits of the on-
tological knowledge injection into the neural learning
process include higher accuracy in predictive architec-
ture and faster convergence.
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