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Abstract
Videos are a commonly-used type of content in learning during Web search. Many e-learning platforms provide quality
content, but sometimes educational videos are long and cover many topics. Humans are good in extracting important sec-
tions from videos, but it remains a significant challenge for computers. In this paper, we address the problem of assigning
importance scores to video segments, that is how much information they contain with respect to the overall topic of an
educational video. We present an annotation tool and a new dataset of annotated educational videos collected from popular
online learning platforms. Moreover, we propose a multimodal neural architecture that utilizes state-of-the-art audio, visual
and textual features. Our experiments investigate the impact of visual and temporal information, as well as the combination
of multimodal features on importance prediction.
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1. Introduction
In the era of e-learning, videos are one of the most
important medium to convey information for learn-
ers, being also intensively used during informal learn-
ing on the Web [1, 2]. Many academic institutions
started to host their educational content with record-
ings while various platforms like Massive Open On-
line Courses (MOOC) have emerged where a large part
of the available educational content consists of videos.
Such educational videos on MOOC platforms are also
exploited in search as learning scenarios, their poten-
tial advantages compared with informal Web search
have been investigated by Moraes et al. [3]. Although
many platforms pay a lot of attention to the quality
of the video content, the length of videos is not al-
ways considered as a major factor. Many academic
institutions provide content where the whole lecture
is recorded without any breaks. Such lengthy content
can be difficult for learners to follow in distant learn-
ing. As mentioned by Guo et al. [4] shorter videos are
more engaging in contrast to pre-recorded classroom
lectures split into smaller pieces for MOOC. Moreover,
pre-planned educational videos, talking head, illustra-
tions using hand drawings on board or table, and speech
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Figure 1: Sample video with annotations of importance
scores for each segment

tempo are other key factors for engagement in a video
lecture as described by Zolotykhin and Mashkina [5].

In this paper, we introduce computational models
that predict the importance of segments in (lengthy)
videos. Our model architectures incorporate visual,
audio, and text (transcription of audio) information to
predict importance scores for each segment of an ed-
ucational video. A sample video and its importance
scores are shown in Figure 1. A value between 1 and
10 is assigned to each segment indicating the score
of a specific segment whether it refers to an impor-
tant information regarding the overall topic of a video.
We refer to it as the importance score of video seg-
ments in educational domain, similar to the annota-
tions provided by TVSum dataset [6] on various Web
videos. We have developed an annotation tool that al-
lows annotators to assign importance scores to video
segments and created a new dataset for this task (see
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Section 4). The contributions of this paper are summa-
rized as follows:

• Video annotation tool and an annotated dataset

• Analysis of influence of multimodal features and
parameters (history window) for educational video
summarization

• Multimodal neural architectures for the predic-
tion of importance scores for video segments

• The source code for defined the deep learning
models, the annotation tool and the newly cre-
ated dataset are shared publicly1 with the re-
search community.

The remaining sections of the paper are organized
as follows. Section 2 presents an overview of related
work in video-based e-learning and computational ar-
chitectures covering multiple modalities in educational
domain. In Section 3, we provide detailed description
of model architectures. Section 4 presents the described
annotation tool and the created dataset. Section 5 cov-
ers the experimental results and discussions on the find-
ings of the paper and Section 6 concludes the papers.

2. Related work
Various studies have been conducted that address the
quality of online education, create personalized rec-
ommendations for learners, or focus on highlighting
the most important parts in lecture videos. Student in-
teraction with lecture videos offers new opportunities
to understand the performance of students or for the
analysis of their learning progress. Recently, Mubarak
et al. [7] proposed an architecture that uses features
from e-learning platforms such as watch time, plays,
pauses, forward and backward to train deep learning
models for predictive learning analytics. In a similar
way, Shukor and Abdullah [8] used watch time, clicks,
completed number of assignments for the same pur-
pose. Another method by Tang et al. [9] is a concept-
map based approach that analyzes the transcripts of
videos collected from YouTube and visual recommen-
dations to improve learning path and provide person-
alized content. In order to improve student perfor-
mance and enhance the learning paradigm, high-tech
devices are recommended for the classroom setting and
content presentation. For instance, instructors or pre-
senters can highlight important sections which can be
saved along with the video data and later be used by

1https://github.com/VideoAnalysis/EDUVSUM

students when they are going through the video lec-
tures.

Research in the field of video summarization addresses
a similar problem, where important and relevant con-
tent from videos is classified to generate summaries
(for instance, [10, 11] and [12]). All of these methods
are based on TVSum [6] and SumMe [13] datasets that
consist of Web videos. The nature of these datasets is
very different to videos from the educational domain.
These datasets can be a good source of visual features
but spoken words or textual content are relatively rare
or not present at all. Inspired from video summariza-
tion work, Davila and Zanibbi [14] presented a method
to detect written content in videos, e.g. on whiteboards.
This research focuses on a sub-task which only takes
into account the lectures in which the written con-
tent is available, and also addresses only the topic of
mathematics. Xu et al. [15] focused on another kind of
technique where speaker pose information can help in
action classification like writing, explaining, or eras-
ing. Here, the most important segments are explaining,
which could be an indication of an important segment
in educational videos.

Another important aspect of e-learning is student
engagement for different types of online resources. Guo
et al. [4] analyzed various aspects for MOOC videos
and provided a number of related recommendations.
Shi et al. [16] analyzed the correlation of features and
lecture quality by considering visual features from slides,
linguistic elements and audio features like energy, fre-
quency, pitch, etc. to highlight important and empha-
sized statements in a lecture video. As suggested by
YukiIchimura [17], one of the best practices in MOOCs
is to offer information on which parts of a lecture video
are difficult or need more attention, which could po-
tentially lead to a more flexible and personalized learn-
ing experience. In order to perform such tasks by ma-
chines, they need to incorporate multimodal informa-
tion from educational content. To deal with multi-
modal data is not easy and this is also true for mul-
timodal learning, as explained by Wang et al. [18]. If
user interaction data are available for videos along with
visual, textual information, then the task can be solved
by multimodal deep learning models.

3. Multimodal Architecture
In this section, we describe the proposed model archi-
tecture that predicts importance scores for each video
segment by fusing audio, visual and textual features.
Each video contains audio, visual and textual (subti-
tles) content in the three different modalities. To join
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Figure 2: Multimodal architecture for classification of important segments in educational videos

different modalities we adapt and extend ideas from
Majumder et al. [19], who apply fusion to three kinds
of modalities available in videos: visual, audio, and
text. The overall architecture is depicted in Fig. 2. In
order to deal with the temporal aspect of videos, we
use Bidirectional Long Short-term Memory (BiLSTM)
layers to incorporate information from each modality
[7, 12, 20]. We use state-of-the-art pre-trained mod-
els to encode each modality in order to extract fea-
tures. After the extraction of feature embeddings for
each modality, they are fed into separate BiLSTM lay-
ers. The outputs of these layers are then concatenated
in a time-oriented way and then fed into another BiL-
STM layer, which has 64 units. The output is fed into
two dense layers with size of 32 and 16, respectively.
Lastly, the output from the last dense layer is fed into
a softmax layer that outputs a 10-dimensional vector
indicating the importance score of a given input video
frame belonging to a certain segment. In addition to
the current frame, the model also includes history in-
formation that consists of 𝑛 previous frames according
to the setting of history window size parameter. Our
experimental results show different configurations and
corresponding results, where we evaluate different his-
tory windows sizes. Next, we describe the feature em-
beddings for each modality and the corresponding mod-
els to extract them.
Textual Features: The textual content is based on

subtitles provided for each video. The text features are
extracted by encoding words in subtitles using BERT
(Bidirectional Encoder Representations from Transform-
ers) [21] embeddings. BERT is a pre-trained trans-
former (denoted as 𝜃𝑇 ) that takes the sentence context
into account in order to assign a dense vector repre-
sentation to each word in a sentence. The textual fea-
tures are 768-dimensional vectors that are extracted by
encoding subtitles of videos. Later, these features are
passed to a layer with 64 BiLSTM cells.
Audio Features: The audio content is utilized by

means of various features that represent the zero cross-
ing rate, energy, entropy or energy, spectral features
(centroid, spread, flux, roll-off) and others. In total,
there are 34× 𝑛𝑎 features, where 𝑛𝑎 depends on the
window size and step size which are 0.05 and 0.025 %
of the audio track length in a video. The combination
of the rate of change of all these features yields a total
number of 68 features. We use pyAudioAnalysis [22]
toolkit (denoted as 𝜃𝐴) to extract these features. These
features are fed into a layer with 64 BiLSTM units. We
keep the same number of units in the BiLSTM layer of
all modalities.

Visual Features: We explored different visual mod-
els like Xception [23], ResNet-50 [24], VGG-16 [25]
and Inception-v3 [26] pre-trained on ImageNet dataset.
Visual content of the videos is encoded using one of
the visual descriptors mentioned above, denoted as 𝜃𝑉 .



Our ablation study in Section 5 provides further de-
tails on the importance of choice of visual descriptors.
Once the features are extracted, they are fed into a BiL-
STM layer with a size of 64.

Consider a video input of 𝑇 sampled frames, i.e.,
𝑉 = (𝑓𝑡 )t=1,. . . ,T, 𝑓𝑡 is the visual frame at point in time
t. The variable 𝑇 depends on the number of selected
frames per second in a video. The original frame rate
is 30 per second (fps) for a video. The input video is
split into uniform segments of 5 seconds from which
we select 3 frames per second as a sampling rate. The
input of the model are the current frame (𝑓𝑡 ) at time
step t and the preceding frames (𝑓𝑡−1, 𝑓𝑡−2, . . . , 𝑓𝑡−ℎ) ac-
cording to the selected history window size h. The fea-
tures from a modality are extracted as defined above
and passed to the respective layers. The model outputs
an importance score for the given input frame (𝑓𝑡 ).

4. Dataset and Annotation Tool
We present a Web-based tool to annotate video data for
various tasks. Each annotator is required to provide a
value between 1 and 10 for every 5 second segment of
a video. A sample screenshot of the annotation tool
is shown in Figure 3. The higher values indicate the
higher importance of that specific segment in terms of
information it includes related to a topic of a video.

We present a new dataset called EDUVSUM (Ed-
ucational Video Summarization) to train video sum-
marization methods for the educational domain. We
have collected educational videos with subtitles from
three popular e-learning platforms: Edx, YouTube, and
TIB AV-Portal2 that cover the following topics with
their corresponding number of videos: computer sci-
ence and software engineering (18), python and Web
programming (18), machine learning and computer vi-
sion (18), crash course on history of science and engi-
neering (23), and Internet of things (IoT) (21). In total,
the current version of the dataset contains 98 videos
with ground truth values annotated by the main au-
thor who has an academic background in computer
science. In the future, we plan to provide annotation
instructions and guidance via tutorials on how to use
the software for human annotators.

5. Experimental Results
In this section, we describe the experimental config-
urations and the obtained results. We use our newly

2https://av.tib.eu/

Figure 3: Screenshot of the Web-based annotation tool for
labeling video segments

created dataset consisting of 98 videos for the experi-
mental evaluation of model architectures. The dataset
is randomly shuffled before dividing it into disjoint
train and test splits using 84.7% (83 videos) and 15.3%
(15 videos), respectively. The videos are equally dis-
tributed among the topics of the dataset. The dataset
splits and frame sampling strategy are compliant with
previous work in the field of video summarization (Zhang
et al. [10], Gygli et al. [13] and Song et al. [6]).

We evaluated different configurations of model ar-
chitectures as classification and regression tasks. The
experimental configurations include varying visual fea-
ture extractors, history window sizes, audio features,
and textual features. In our experiments, we sampled
3 frames per second in order to not include too much
redundant information where variation the between
consecutive frames is low. This sampling rate corre-
sponds to 10% of the original frame rate of the video
which has 30 frames per second. Additionally, we ana-
lyzed the effects of multimodal information by includ-
ing or excluding one of the modalities. The results are
given in Table 1. All models are trained for 50 epochs
over the training split of the dataset using Adam opti-
mizer. To avoid over-fitting we applied dropout with
0.2 on BiLSTM layers. Due to many configurations
of experimental variables, we listed the best perform-
ing four models for each visual descriptor along with
the respective history window sizes and input features
from specific modalities or all.

Each trained model outputs an importance score for
every frame in a video. We computed Top-1, Top-2 and
Top-3 accuracy on the predicted importance scores of
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Figure 4: Predictions of VGG-16 model for two videos. Left: model prediction with low accuracy (18%), Right: model
prediction with high accuracy (34%)

each frame by treating it as a classification task. The
best performing model for Top-1 accuracy is VGG-16
with a history window size of 2 achieving an accuracy
of 26.3, where only visual and textual features are used
for training. The model with Top-2 accuracy is ResNet-
50 with the history window of 3 that is trained on vi-
sual, audio, textual features and it achieves an accu-
racy of 47.3. The best performing Top-3 model is again
VGG-16 with a history window 3, visual and audio fea-
tures, and it achieves an accuracy of 67.9.

In addition, we compute the Mean Absolute Error
(MAE) values for each trained model by treating the
problem as a regression task. Each model listed in
Table 1 includes an average MAE value based on ei-
ther each frame (𝑎𝑣𝑔𝑓 𝑟𝑎) or segment (𝑎𝑣𝑔𝑠𝑒𝑔 ). We per-
formed the following post-processing in order to com-
pare the values against ground truth where every seg-
ment (5 second window) of a video contains an im-
portance scores between 1 or 10. As explained above,
trained models output an importance scores for each
frame in a video. For the calculation of 𝑎𝑣𝑔𝑓 𝑟𝑎 , every
frame that belongs to the same segment is assigned the
same value in the ground truth videos. For calculation
of 𝑎𝑣𝑔𝑠𝑒𝑔 , predicted importance scores of each frame
belonging to the same segment are averaged. This av-
erage value is then assigned as a predicted value to
a segment. The 𝑎𝑣𝑔𝑠𝑒𝑔 is an average MAE between
predicted importance score of a segment and ground
truth. Based on the presented results in Table 1, the
model that uses VGG-16 for visual features together
with audio features and history window of 3 performs
with the least error for both frame and segment-based
calculation of the average MAE.

Table 1
Average accuracy and Mean Absolute Error (MAE) values
for different visual descriptors and history window (h) sizes.
Modalities: Visual (V), Audio (A), Textual (T). 𝑎𝑣𝑔𝑓 𝑟𝑎 stands
for average MAE value based on all frames in a video, 𝑎𝑣𝑔𝑠𝑒𝑔
stands for average MAE for each segment in a video.

Visual Features
h Accuracy % MAE

V A T
Top-1 Top-2 Top-3 𝑎𝑣𝑔𝑓 𝑟𝑎 𝑎𝑣𝑔𝑠𝑒𝑔

Inception-v3 3 22.34 32.01 55.94 1.93 1.84
2 22.34 30.98 55.94 1.93 1.84
3 22.34 30.98 55.94 1.93 1.84 ×
2 22.34 47.3 55.94 1.93 1.84 ×
2 23.95 43.48 60.2 1.82 1.74 ×
3 23.48 44.07 64.29 1.73 1.66 ×

VGG-16 1 22.43 47.29 66.33 1.92 1.84
2 22.37 37.47 57.92 1.87 1.81
3 25.55 46.19 67.92 1.51 1.49 ×
2 22.91 45.08 58.93 1.83 1.79 ×
2 26.26 41.92 63.09 1.6 1.57 ×
3 25.65 41.28 63.21 1.65 1.62 ×

Xception 1 23.1 39.13 57.33 1.88 1.8
3 22.34 30.98 55.94 1.93 1.84
2 22.72 47.17 59.74 1.88 1.8 ×
1 22.42 47.2 67.12 1.86 1.78 ×
3 24.04 37.99 59.76 1.82 1.74 ×
2 22.65 44.45 62.39 1.86 1.78 ×

ResNet-50 3 22.6 47.31 67.11 1.9 1.82
2 22.39 37.03 57.53 1.92 1.84
3 24.27 37.66 59.74 1.76 1.71 ×
2 22.75 37.25 57.34 1.85 1.81 ×
2 22.69 31.59 56.66 1.85 1.8 ×
1 22.67 31.61 57.39 1.81 1.78 ×

5.1. Discussion
For a deeper analysis of errors made by the trained
models, we plot ground truth labels along with pre-
dictions and select two videos with relatively low (left
video) and high (right video) accuracy. These plots are
shown in Figure 4. The video on the left side has low
accuracy (18%) because the predicted values are far off
from the ground truth. The reason could be the fact
that frames in the video have less visual variation and



the model predicts the same or similar values for those
frames. Another reason could be that the visual fea-
tures are not well suited for the educational domain,
since we use pre-trained models on ImageNet dataset
where the task is to recognize distinct 1000 objects.
On the other hand, the video on the right side has rel-
atively high accuracy (34%). Even though the impor-
tance scores for frames are not exact, we can observe
that the model predicts lower importance scores when
ground truth values are also lower, and the same pat-
tern is observed when importance scores are increased
as well. As shown in Table 1, the best model obtains
an error of 1.49 (MAE) on average, but it is observable
that most of the important segments (regardless of the
predicted values) are detected by the trained model.

6. Conclusion
In this paper, we have presented an approach to pre-
dict the importance of segments in educational videos
by fusing multimodal information. This study presents
and validates a working pipeline that consists of lec-
ture video annotation and, based on that, a supervised
(machine) learning task to predict importance scores
for the content throughout the video. The results show
the importance of each individual modality and limi-
tations of each model configuration. It also highlights
that it is not straight forward to exploit the full poten-
tial from heterogeneous source of features, i.e., using
all modalities does not guarantee a better result.

One further direction of research is to enhance the
architecture for binary and ternary fusion where modal-
ities are fused on different levels. As a second future
direction, we will focus on the release of another ver-
sion of the dataset that covers more topics and videos.
Finally, we will investigate other types of visual de-
scriptors that better fit to the educational domain.

Acknowledgments
Part of this work is financially supported by the Leib-
niz Association, Germany (Leibniz Competition 2018,
funding line "Collaborative Excellence", project SALIENT
[K68/2017]).

References
[1] G. Pardi, J. von Hoyer, P. Holtz, Y. Kammerer, The

role of cognitive abilities and time spent on texts
and videos in a multimodal searching as learn-
ing task, in: Proceedings of the 2020 Conference

on Human Information Interaction and Retrieval,
CHIIR ’20, Association for Computing Machin-
ery, New York, NY, USA, 2020, p. 378–382. URL:
https://doi.org/10.1145/3343413.3378001. doi:10.
1145/3343413.3378001.

[2] A. Hoppe, P. Holtz, Y. Kammerer, R. Yu, S. Di-
etze, R. Ewerth, Current challenges for study-
ing search as learning processes, Proceedings of
Learning and Education with Web Data, Amster-
dam, Netherlands (2018).

[3] F. Moraes, S. R. Putra, C. Hauff, Contrast-
ing search as a learning activity with instructor-
designed learning, in: Proceedings of the 27th
ACM International Conference on Information
and Knowledge Management, CIKM ’18, Associ-
ation for Computing Machinery, New York, NY,
USA, 2018, p. 167–176. URL: https://doi.org/10.
1145/3269206.3271676. doi:10.1145/3269206.
3271676.

[4] P. J. Guo, J. Kim, R. Rubin, How video production
affects student engagement: An empirical study
of mooc videos, in: Proceedings of the first ACM
conference on Learning@ scale conference, 2014,
pp. 41–50.

[5] S. Zolotykhin, N. Mashkina, Models of educa-
tional video implementation in massive open on-
line courses, in: Proceedings of the 1st Inter-
national Scientific Practical Conference "The In-
dividual and Society in the Modern Geopoliti-
cal Environment" (ISMGE 2019), Atlantis Press,
2019, pp. 567–571. URL: https://doi.org/10.2991/
ismge-19.2019.107. doi:https://doi.org/10.
2991/ismge-19.2019.107.

[6] Y. Song, J. Vallmitjana, A. Stent, A. Jaimes, Tv-
sum: Summarizing web videos using titles, in:
Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 5179–
5187.

[7] C. H. . A. S. Mubarak, A.A., et al., Pre-
dictive learning analytics using deep
learning model in moocs’ courses videos,
Springer, Educ Inf Technol (2020). URL:
https://doi.org/10.1007/s10639-020-10273-6.
doi:10.1007/s10639-020-10273-6.

[8] N. A. Shukor, Z. Abdullah, Using learn-
ing analytics to improve MOOC instruc-
tional design, iJET 14 (2019) 6–17. URL:
https://www.online-journals.org/index.php/
i-jet/article/view/12185.

[9] C. Tang, J. Liao, H. Wang, C. Sung, Y. Cao,
W. Lin, Supporting online video learning with
concept map-based recommendation of learn-
ing path, in: Extended Abstracts of the 2020

https://doi.org/10.1145/3343413.3378001
http://dx.doi.org/10.1145/3343413.3378001
http://dx.doi.org/10.1145/3343413.3378001
https://doi.org/10.1145/3269206.3271676
https://doi.org/10.1145/3269206.3271676
http://dx.doi.org/10.1145/3269206.3271676
http://dx.doi.org/10.1145/3269206.3271676
https://doi.org/10.2991/ismge-19.2019.107
https://doi.org/10.2991/ismge-19.2019.107
http://dx.doi.org/https://doi.org/10.2991/ismge-19.2019.107
http://dx.doi.org/https://doi.org/10.2991/ismge-19.2019.107
https://doi.org/10.1007/s10639-020-10273-6
http://dx.doi.org/10.1007/s10639-020-10273-6
https://www.online-journals.org/index.php/i-jet/article/view/12185
https://www.online-journals.org/index.php/i-jet/article/view/12185


CHI Conference on Human Factors in Comput-
ing Systems, CHI 2020, Honolulu, HI, USA, April
25-30, 2020, ACM, 2020, pp. 1–8. URL: https://
doi.org/10.1145/3334480.3382943. doi:10.1145/
3334480.3382943.

[10] K. Zhang, W. Chao, F. Sha, K. Grauman, Video
summarization with long short-term memory,
in: Computer Vision - ECCV 2016 - 14th Eu-
ropean Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part VII,
volume 9911 of Lecture Notes in Computer Sci-
ence, Springer, 2016, pp. 766–782. URL: https:
//doi.org/10.1007/978-3-319-46478-7_47. doi:10.
1007/978-3-319-46478-7\_47.

[11] H. Yang, C. Meinel, Content based lecture
video retrieval using speech and video text in-
formation, IEEE Trans. Learn. Technol. 7 (2014)
142–154. URL: https://doi.org/10.1109/TLT.2014.
2307305. doi:10.1109/TLT.2014.2307305.

[12] J. Wang, W. Wang, Z. Wang, L. Wang, D. Feng,
T. Tan, Stacked memory network for video sum-
marization, in: Proceedings of the 27th ACM In-
ternational Conference on Multimedia, MM 2019,
Nice, France, October 21-25, 2019, ACM, 2019, pp.
836–844. doi:10.1145/3343031.3350992.

[13] M. Gygli, H. Grabner, H. Riemenschneider,
L. V. Gool, Creating summaries from user
videos, in: Computer Vision - ECCV 2014
- 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part
VII, volume 8695 of Lecture Notes in Computer
Science, Springer, 2014, pp. 505–520. URL: https:
//doi.org/10.1007/978-3-319-10584-0_33. doi:10.
1007/978-3-319-10584-0\_33.

[14] K. Davila, R. Zanibbi, Whiteboard video summa-
rization via spatio-temporal conflict minimiza-
tion, in: 14th IAPR International Conference
on Document Analysis and Recognition, ICDAR
2017, Kyoto, Japan, November 9-15, 2017, IEEE,
2017, pp. 355–362. URL: https://doi.org/10.1109/
ICDAR.2017.66. doi:10.1109/ICDAR.2017.66.

[15] F. Xu, K. Davila, S. Setlur, V. Govindaraju, Con-
tent extraction from lecture video via speaker
action classification based on pose information,
in: 2019 International Conference on Document
Analysis and Recognition, ICDAR 2019, Sydney,
Australia, September 20-25, 2019, IEEE, 2019, pp.
1047–1054. URL: https://doi.org/10.1109/ICDAR.
2019.00171. doi:10.1109/ICDAR.2019.00171.

[16] J. Shi, C. Otto, A. Hoppe, P. Holtz, R. Ewerth,
Investigating correlations of automatically ex-
tracted multimodal features and lecture video
quality, in: Proceedings of the 1st Interna-

tional Workshop on Search as Learning with
Multimedia Information, SALMM ’19, Associa-
tion for Computing Machinery, New York, NY,
USA, 2019, p. 11–19. URL: https://doi.org/10.
1145/3347451.3356731. doi:10.1145/3347451.
3356731.

[17] H. N. K. S. YukiIchimura, Keiko Noda, Pre-
scriptive analysis on instructional structure of
moocs:toward attaining learning objectives for
diverse learners, The Journal of Information
and Systems in Education 19 N0. 1 (2019) 32–37.
doi:10.12937/ejsise.19.32.

[18] W. Wang, D. Tran, M. Feiszli, What makes
training multi-modal networks hard?, CoRR
abs/1905.12681 (2019).

[19] N. Majumder, D. Hazarika, A. F. Gelbukh,
E. Cambria, S. Poria, Multimodal senti-
ment analysis using hierarchical fusion with
context modeling, Knowl. Based Syst. 161
(2018) 124–133. URL: https://doi.org/10.1016/
j.knosys.2018.07.041. doi:10.1016/j.knosys.
2018.07.041.

[20] K. Zhang, K. Grauman, F. Sha, Retrospective en-
coders for video summarization, in: Computer
Vision - ECCV 2018 - 15th European Conference,
Munich, Germany, September 8-14, 2018, Pro-
ceedings, Part VIII, volume 11212 of Lecture Notes
in Computer Science, Springer, 2018, pp. 391–408.
doi:10.1007/978-3-030-01237-3\_24.

[21] J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT:
pre-training of deep bidirectional transformers
for language understanding, in: Proceedings
of the 2019 Conference of the North Ameri-
can Chapter of the Association for Computa-
tional Linguistics: Human Language Technolo-
gies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
Association for Computational Linguistics, 2019,
pp. 4171–4186. URL: https://doi.org/10.18653/v1/
n19-1423. doi:10.18653/v1/n19-1423.

[22] T. Giannakopoulos, pyaudioanalysis: An open-
source python library for audio signal analysis,
PloS one 10 (2015).

[23] F. Chollet, Xception: Deep learning with depth-
wise separable convolutions, in: 2017 IEEE Con-
ference on Computer Vision and Pattern Recog-
nition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017, IEEE Computer Society, 2017, pp.
1800–1807. URL: https://doi.org/10.1109/CVPR.
2017.195. doi:10.1109/CVPR.2017.195.

[24] K. He, X. Zhang, S. Ren, J. Sun, Deep resid-
ual learning for image recognition, in: 2016
IEEE Conference on Computer Vision and Pat-

https://doi.org/10.1145/3334480.3382943
https://doi.org/10.1145/3334480.3382943
http://dx.doi.org/10.1145/3334480.3382943
http://dx.doi.org/10.1145/3334480.3382943
https://doi.org/10.1007/978-3-319-46478-7_47
https://doi.org/10.1007/978-3-319-46478-7_47
http://dx.doi.org/10.1007/978-3-319-46478-7_47
http://dx.doi.org/10.1007/978-3-319-46478-7_47
https://doi.org/10.1109/TLT.2014.2307305
https://doi.org/10.1109/TLT.2014.2307305
http://dx.doi.org/10.1109/TLT.2014.2307305
http://dx.doi.org/10.1145/3343031.3350992
https://doi.org/10.1007/978-3-319-10584-0_33
https://doi.org/10.1007/978-3-319-10584-0_33
http://dx.doi.org/10.1007/978-3-319-10584-0_33
http://dx.doi.org/10.1007/978-3-319-10584-0_33
https://doi.org/10.1109/ICDAR.2017.66
https://doi.org/10.1109/ICDAR.2017.66
http://dx.doi.org/10.1109/ICDAR.2017.66
https://doi.org/10.1109/ICDAR.2019.00171
https://doi.org/10.1109/ICDAR.2019.00171
http://dx.doi.org/10.1109/ICDAR.2019.00171
https://doi.org/10.1145/3347451.3356731
https://doi.org/10.1145/3347451.3356731
http://dx.doi.org/10.1145/3347451.3356731
http://dx.doi.org/10.1145/3347451.3356731
http://dx.doi.org/10.12937/ejsise.19.32
https://doi.org/10.1016/j.knosys.2018.07.041
https://doi.org/10.1016/j.knosys.2018.07.041
http://dx.doi.org/10.1016/j.knosys.2018.07.041
http://dx.doi.org/10.1016/j.knosys.2018.07.041
http://dx.doi.org/10.1007/978-3-030-01237-3_24
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
http://dx.doi.org/10.18653/v1/n19-1423
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1109/CVPR.2017.195
http://dx.doi.org/10.1109/CVPR.2017.195


tern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016, IEEE Computer Society,
2016, pp. 770–778. URL: https://doi.org/10.1109/
CVPR.2016.90. doi:10.1109/CVPR.2016.90.

[25] K. Simonyan, A. Zisserman, Very deep convo-
lutional networks for large-scale image recogni-
tion, in: 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceed-
ings, 2015. URL: http://arxiv.org/abs/1409.1556.

[26] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens,
Z. Wojna, Rethinking the inception architec-
ture for computer vision, in: 2016 IEEE Con-
ference on Computer Vision and Pattern Recog-
nition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016, IEEE Computer Society, 2016, pp.
2818–2826. URL: https://doi.org/10.1109/CVPR.
2016.308. doi:10.1109/CVPR.2016.308.

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1109/CVPR.2016.308

	1 Introduction
	2 Related work
	3 Multimodal Architecture
	4 Dataset and Annotation Tool
	5 Experimental Results
	5.1 Discussion

	6 Conclusion

