
Graph Analytics on Proximity Data to Fight Contagion
Snehasis Banerjeea, Vivek Chandela and Avik Ghosea

aTCS Research & Innovation, Tata Consultancy Services, Kolkata, India

Abstract
As social distancing has become the new normal, it is eminent for enterprises and administrations to make decisions based
on analytics on human proximity data. Graph Analytics can serve as an essential technology to understand human network
behaviors and contact tracing inferences in pandemic and post-pandemic scenarios. A large amount of work has happened
on epidemiology of pandemics. However, a formal application of graph analytics backed by visualization and mapping of
graph algorithms has remained neglected in pandemic scenarios. This paper has addressed this important need backed by
graph modeling, methods and analytics.

Keywords
graph analytics, contact tracing, COVID-19 pandemic, human proximity data

Figure 1: SystemArchitecture for enabling Graph Analytics

1. Background
Social distancing [1] has become an essential need to
manage pandemics like COVID-19. In recent times,
the world has witnessed deployment of multiple apps
and systems by governments [2]. Contact tracing and
related methods are expected to remain prevalent in a
post pandemic scenario. Adoption in enterprise is ex-
pected to be of the order of mass scale. However, the
enterprise level settings will be different from a gov-
ernment monitored contact tracing scenario. As an ex-
ample, in a factory, same device may get shared across
multiple workers in rotation. Also, only person to per-
son proximity events will not be futile, as, an infected

Title of the Proceedings: Proceedings of the CIKM 2020 Workshops,
October 19-20, Galway, Ireland.
Editors of the Proceedings: Stefan Conrad, Ilaria Tiddi.
 snehasis.banerjee@tcs.com (S. Banerjee)
� 0000-0001-6497-2085 (S. Banerjee)

© 2020 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

person can be at a location for a certain time which is
visited by another person after some time – this events
will be missed in standard proximity detection solu-
tions. Also, depending on the infection type (in this
case COVID-19), different persons and places will have
different levels of susceptibility to risks, based on the
infection’s properties and incubation period. Hence it
is important to have: (a) a graph model to store and
represent proximity events and related attributes, that
is robust and scalable (b) fast techniques that can aid in
contact tracing (c) methods that can help risk estima-
tion by applying graph analytics. This paper presents a
system and several methods to tackle the prior points.

As seen in Fig. 1, the system intakes proximity re-
lation data (either person to person or person to zone)
from a multi-modal sensory input. It can be GPS (Global
Positioning System) and/or Bluetooth Low Energy (BLE)
present in contact tracing smart devices (like phone
and watches) or it may be a multitude of hard sen-
sors like BLE and LoRa (long range low-power net-
work communication) beacons or Radio-frequency iden-
tification (RFID) tags. Crowds (susceptible places of
high proximity events) at a specific location can be de-
tected by radar, microphone captured sound level, in-
frared, Wifi signal as well as soft sensors like location
tagged social media feeds. Sensor feeds are stored in
a relational database management systems (RDBMS,
such as PostGres with PostGIS 1 having spatial index-
ing support) in form of proximity event tuples :
{ entity, entities detected, timestamp, optional attributes}.
Based on pre-set business logic (like duration of aggre-
gation), data from RDBMS is updated periodically in a
graph database (like OrientDB2). Complex queries and
graph analytics are run on the graph from the front-
end application to get insights and visualization.

1https://www.postgresql.org ; https://postgis.net
2https://www.orientdb.org

mailto:snehasis.banerjee@tcs.com
https://orcid.org/0000-0001-6497-2085
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. Graph Data Population
While the individual events of proximity instances are
stored in a RDBMS, the actual inference and analytics
happens over the graph database. As any active sen-
sor consume power, hence keeping a sensor device al-
ways online which sends events to server is impracti-
cal. Hence, there is a sleep and wake cycle, when prox-
imity events are detected and sent to server database
at intervals. However, to perform graph analytics, the
data instances need to aggregated to populate the graph
with meaningful information. Therefore, if there is no
gap greater than a preset time threshold T in terms of
two persons being in contact, the proximity event in-
stances becomes a continuous event. When the gap is
more than T, a new entry is entered in the graph in a
similar fashion. Sometimes, due to sensor errors and
signal reflection, false proximity events can be recorded.
However, as this is two way detection (person 1 de-
tecting person 2 and vice versa when they are in close
contact of say 2 metres) [3], if there is only one event
detected, that is dropped from graph insertion – this is
a configurable setting as per sensitivity needs of spe-
cific deployments. In order for wake and sleep cycles
across sensors to be consistent, a standard time gap is
maintained across devices, which is typically a sleep
of 30 seconds and a wake of 5 seconds synchronized to
00:00:00 hours of UTC (Coordinated Universal Time).
The data in relational database and graph is deleted
based on some pre-set expiry timestamp to maintain
a sliding window based on business logic or infection
risk period (usually 30 days for COVID-19 scenario).
Geo-spatial queries may be directly run on spatially in-
dexed graph database or be optionally run on the spa-
tial layer of the relational database (to use spatial geo-
metric algorithms) by entangling with graph queries,
however, in enterprise scenarios (small geo-location
coverage), such needs are found to be rare.

2.1. Entities as Graph Nodes
A necessary part of graph modeling is identification
of entities and its representation for fast graph queries
and traversal. Here, the nodes are of 4 types:

(1) Person: humans having features (attributes) like
age, risk factors that remain static over a period of
time. Dynamic attributes are derived or calculated over
an interval – risk estimation, proximity activity and
health estimate. A necessary attribute of a person in a
contagion scenario is the person’s current health sta-
tus - infected, healthy or susceptible.

(2) Person tagged sensor: sensors like wearable smart
devices and smartphones are tagged to a person – that

Figure 2: Modeling of nodes and edges in a proximity graph

is how a person proximity event is generated. A per-
son can have multiple tagged sensors (like two smart
phones). Same sensor device (with a unique device ID)
can be used by various persons in disjoint time frames.

(3) Static zone tagged sensor: fixed sensors like bea-
cons in elevators, office areas, cabins, canteens, gym,
shops, etc. helps in proximity event detection in two
ways: (a) Any detected proximity event confirms posi-
tively if two or more persons were already reported by
person tagged sensors. (b) Usually infectious diseases
stay active at a space for some period of time. There-
fore, a proximity event with a person at time T1 and
another person with time T2 can trigger an indirect
proximity link between the two persons, if |𝑇1 − 𝑇2|
are within the infectious period relevant to that space.

(4) Dynamic zone tagged sensor: sensors tagged with
transport can keep track of proximity events that oc-
cur when a person stays in that zone. It is important to
keep track of the time span a person is in this dynamic
zone, as the entry and exit times will reveal the spatial
zones of entry and disembarkment. This needs to be
matched with other persons having overlapping prox-
imity events but different entry or exit points. Conta-
gion can be tracked in the related entry and exit spaces
(like bus stops, airports, parking lots, stations) even if
those spaces have bad sensor coverage.

Locations can be sensed from GPS or cellular tower
estimates in outdoor settings. In indoors, various lo-
calization techniques leveraging radar, RFID, Wifi, BLE
can be used. There are other possible node types specif-
ically mobile objects (like parcels, posts, shopping items,
currency notes) that can play a part in the infection
spread. However, as proper sanitization practices can
mitigate these occasional object based contagion risks,
it is kept out of scope of the paper.

2.2. Proximity Events as Graph Edges
As presented in Fig. 2, a new proximity event is en-
tered into the graph as an edge with start time (prefer-
ably UTC timestamp) and time duration (say seconds)
as necessary attributes. In the graph, relations are main-
tained between persons and not devices (bearing sen-
sors) as same device may be used by different persons
over a period of time. So person and zone resolution
at the time of graph population is of high importance
– proximity event edge keeps an attribute source (like
device sensor) to handle any future backtrack queries.
Indirect proximity events are inferred using transitive
relation of person and zones with timestamp constraints.
By nature humans are mobile, hence it makes sense to
keep a private record of all other nodes (places and
other persons) visited within a sliding interval of time
period as edges. Because, two nodes in this graph can
have multiple edges (proximity instances) and prox-
imity events are by definition both way, the resulting
graph is an undirected Multigraph. Due to social dis-
tancing measures, this graph will be sparse and have
local community clusters. Hence, adjacency list is the
best way to represent the relations between |V| ver-
tices (nodes) and |E| edges, resulting in 2*|E| space com-
plexity. A hash index on the nodes will aid in O(1)
lookup and fast adjacent node traversals. In a sparse
graph with community clusters, graph traversal us-
ing breadth first search is the optimal approach, which
takes time around (𝑉𝑐 + 𝐸𝑐) ∗ 𝑑𝑙 /𝐷𝑐 , for a depth up to
level 𝑑𝑙 . 𝑉𝑐 and 𝐸𝑐 are respective vertices and edges at
a community cluster in the graph of cluster diameter
𝐷𝑐 (largest edge distance or number of nodes in path
between two nodes in that cluster or sub-graph).

3. Graph Analytics
Graph analytics deals with pairwise relationship be-
tween two entities at a time; as well as structural char-
acteristics of the graph as a whole. Graph Analyt-
ics also includes visualization aspects, insights gained
from complex query execution and graph algorithms.

3.1. Graph Queries and Visualization
In contact tracing scenario, one of the primary require-
ment is to find the chain of persons an infected person
has come across. This can be done by graph traver-
sal and the results can be showed in front-end visual-
ization as shown in Fig. 3. For privacy reasons, the
exact identity of a person is not disclosed and an en-
crypted alias is used. Other related graph queries are
time overlap between visits to specific zones, the total

Figure 3: Visualization of proximity relations (with number
of interactions and duration) given a person and depth level

duration of contact, the number of instances of con-
tact, number of infected visiting a specific zone and the
time spent there. Other queries can detect crowds at
locations based on large number of temporally collid-
ing proximity events – those zones need to be marked
as ‘at risk’ zones. Crowd detection will be based on
spatial queries on spatio-relational database (say Post-
GIS) if dealing with latitude and longitude values (GPS).

3.2. Centrality Measures
In managing pandemics and enforcing social distanc-
ing, it becomes crucial to find the specific zones that
are hotspots and which persons have highest capabil-
ity to spread infection. Usage of graph centrality mea-
sures helps in identification of critical nodes.

Degree centrality, measured by the number of unique
edge links of a node to other nodes can be thought of
the relative risk of getting infected if the local commu-
nity sees an infection outbreak.

Closeness centrality of a node is: C(i) =∑ 𝑑𝑖 𝑗 , where
𝑑𝑖 𝑗 is the geodesic distance from node i to node j (num-
ber of links in the shortest path from node i to node
j). Closeness reveals how long it takes for infection to
flow from one node to others in the graph.

Betweenness centrality signifies that a node is cru-
cial or forms a bridge for spreading of infection. Exam-
ples are person nodes who visit many other nodes like
doctor, courier and security staff. Examples of bridge
space nodes are market and transport zones. Between-
ness centrality is measured as, b(i) = ∑ 𝑔𝑗 𝑖𝑘/𝑔𝑗 𝑘 , where
𝑔𝑗 𝑘 is number of shortest paths from node j to node k
(j and k ≠ i) and g𝑗 𝑖𝑘 is number of shortest paths from
node j to node k passing through node i.

There are other graph centrality measures [4] like
Eigenvector Centrality. However, it requires calcula-
tions over adjacency matrix where as the graph model
shown is based on adjacency list – hence not optimal.

3.3. Graph Structure Measures
Proximity events between 2 persons represent a Dyad
in graph, where as proximity event between 2 persons
and a mutually visited zone forms a Triad. This are the
simplest forms of graph structures.

Eccentricity is the maximum distance from a given
node to all other nodes in a graph. The diameter of
a graph is the maximum eccentricity value. Eccen-
tricity calculation aids in understanding contagion’s
spread from one node to the others. If infection prop-
agates from a node A towards some specific nodes in
the graph in the smallest number of steps, it means
that the node A has better propagation efficiency.

Density serves as an important graph structure mea-
sure, as more dense a graph is (more connected nodes),
the more the risk of infection spreading. Density is cal-
culated as: D(G) = 2 ∗ |𝐸|/(|𝑉 | ∗ (|𝑉 | − 1)).

A clique is a graph (or subgraph) in which every
node is connected to every other node. Finding maxi-
mum cliques in a graph provides the largest set of com-
mon links – hence, strong communities can be discov-
ered with the following risk – if any one is infected,
it will result in a high probability of others also get-
ting infected. Another structure, K-cores, which are
not necessarily cohesive groups, but indicate areas of
a graph which contain clique-like structures.

Clustering coefficient measures the drift of nodes to
form dense subgraphs. The clustering coefficient C of
a node i shows how its neighbors are connected with
each other. The local (node) clustering coefficient is
calculated as follows: C𝑖 = 2*T𝑖 / (K𝑖 * (k𝑖 - 1)), where
T𝑖 is the number of distance triangles with node i and
K𝑖 * (k𝑖 - 1) is the maximum number of possible con-
nections in neighbors of i. A large C implies that the
graph is well connected locally to form a cluster. Av-
erage graph clustering coefficient is: C = 1/n * ∑𝐶𝑖 .

3.4. Community Detection
In contact tracing and related analytics, it is important
to discover communities from the proximity events so
that at risk communities can be identified and infected
communities can be kept in isolation. As seen from
Fig. 4, number of communities increase with the num-
ber of proximity event instances. Also the density of
the communities increases reflecting closely connected
contacts. The task of community detection (or graph
clustering) is to discover subsets of nodes (clusters) of
connected communities in which nodes have many in-
ternal edges and few external edges. Detecting com-
munities in a graph is NP-complete. Community de-
tection methods can be divided into three categories:

Figure 4: Importance of Community Clusters in Contagion

divisive, agglomerative, and optimization algorithms.
Some popular algorithms [5] are K-cliques, hierarchi-
cal clustering, spectral bisection, graph partioning, mod-
ularity optimization and link communities. One of the
methods suitable for large graphs is Louvain Method
[6] that uses graph modularity and has time complex-
ity as O(|V|log|V|). Modularity is a measure of the struc-
ture of the graph and is defined as, Q = (|E𝑖𝑛 | - |E𝑖𝑛−
𝑅 |) / E , where |E𝑖𝑛 | is the number of links connect-
ing nodes that belong to the same community and |E𝑖
𝑛𝑎𝑅 | is the estimated |E𝑖𝑛 |, if links were random. The
Louvain Method works as follows: (1) By optimizing
modularity locally on all the nodes, small communities
of nodes are found. (2) Small communities are then
grouped into one node, and the first step is repeated.

3.5. Contagion and Risk Propagation
Some work has been done on contagion and risk es-
timation [7] [8]. However, they are dependent mostly
on external factors to estimate the risk. Here, a method
is presented that uses a combination of graph model-
ing, graph structure measures and infection properties
to estimate risk for a person or community. Conta-
gion is dependent on physical proximity, hence net-
work diffusion techniques can be helpful here. A re-
lated problem is Link Prediction: the task here is to
predict whether there will be a link between two nodes,
provided that link does not pre-exist. Node similari-
ties can be found using measures [9] for analyzing the
proximity of nodes in a graph such as a degree distri-
bution, common neighbors, preferential attachment,
Jaccard coefficient and Leicht-Holme-Newman Index.

Highly influential nodes (hubs) in the graph (as high-
lighted in Section 3.2) enable a swift spread of an in-
fection through the graph. On the other hand, poorly
connected or periphery nodes would relax the spread-
ing of infection and permit only a tiny portion of the
graph to get exposed to the diffusion. Graphs with lots
of localized clusters (in case of highly fragmented low-
density graph) may limit the spread of an infection
and will face hurdles in establishing any momentum,
whereas dense graphs with few gaps (or few boundary

spanners) would assist the dissemination of contagion.
Earlier discussions in the paper were around find-

ing risks in the graph structure, nodes and communi-
ties. Certain techniques like belief propagation and la-
bel propagation are popular in general graph analytics,
however in this scenario, what is needed is a knowl-
edge wrapper on breadth first algorithm which can
match the scale of incoming proximity event streams.
Finally the paper presents an approach to propagate
risk across proximity graph (Algorithm 1). Due to stor-
age of last propagation update attribute at each con-
nected node, if there is a sudden stop due to server load
or time constraints, the risk propagation can start from
last checkpoint. This avoids updating the same node
risk attribute more than once. The risk estimate propa-
gation deals with three damping factors: x – takes care
of contagion speed and is determined by disease stage
of infected person (incubation, prodromal, illness, de-
cline and convalescence), y – to handle influence of
selected centrality measure, z – to handle relative com-
munity density’s impact on risk.

In conclusion, the paper described various aspects
of Graph Analytics for proximity graph based contact
tracing in pandemic scenarios.

References
[1] M. J. M. Chowdhury et. al., Covid-19 contact trac-

ing: Challenges and future directions (2020).
[2] N. e. a. Ahmed, A survey of covid-19 contact trac-

ing apps, arXiv preprint arXiv:2006.10306 (2020).
[3] V. Chandel, S. Banerjee, A. Ghose, Proxitrak: A

robust solution to enforce real-time social distanc-
ing & contact tracing in enterprise scenario, CPD
Workshop, Ubicomp 2020 (2020).

[4] K. Das, S. Samanta, M. Pal, Study on centrality
measures in social networks: a survey, Social net-
work analysis and mining 8 (2018) 13.

[5] Y. Zhao, A survey on theoretical advances of
community detection in networks, Computational
Statistics 9 (2017) e1403.

[6] S. Ghosh et. al., Distributed louvain algorithm for
graph community detection, in: IPDPS 2018, IEEE,
2018, pp. 885–895.

[7] N. Fenton et. al., A privacy-preserving bayesian
network model for personalised covid19 risk as-
sessment and contact tracing, medRxiv (2020).

[8] T. Bhattasali, Pandemic analytics to assess risk of
covid-19 outbreak (2020).

[9] V. Martínez et. al., A survey of link prediction
in complex networks, ACM computing surveys
(CSUR) 49 (2016) 1–33.

Result: Risk Propagation to a specific depth
under specified time constraint.

Parameters:
V ← set of vertices or nodes in the graph G;
E ← set of edges or links in G;
A ← external inputs like node health (Aℎ) and
attributes like degree; specified with subscript;

A𝑙 ← attribute to store last risk propagation
node label;

software ← (.) link to software modules and
libraries;

M ← diameter of graph, i.e. maximum
eccentricity value;

x, y, z ← damping factors to balance risk
propagation bias;
Begin:
D ← 0 // current graph traversal depth level;
v ← V(i) ← node i of set V is infected; hence
Aℎ(i) = infect;

v(A𝑟) ← 1 * x * w // infected person with
weighted risk w;

Q ← queue is created and intitialized with V(i)
as root node;

R ← currrent root node at depth level D;
while Q ≠ empty And time constraint =
satisfied do

v(A𝑙) ← V(i) label //helps recover from
sudden halts ;

v ← visited //if node is not visited earlier;
v ← Q.dequeue() /* Removing vertex v
from queue whose neighbour will be
visited next */;

D ← D + 1 //increment depth ;
v(A𝑟) ← R(A𝑟) * (1 - D / M) //risk
propagation;
if v has relative Low Centrality Measure
then

v(A𝑟) ← y * v(A𝑟) //y is a damping
factor;

end
if v is part of a relative Large Community
then

v(A𝑟) ← z * v(A𝑟) //z is a damping
factor;

end
foreach neighbors W of v ∈ G do

if w ≠ visited And w(A𝑙) ≠ v(A𝑙)
//checks infected node label matches for
previous halts;
then

Q.enqueue(w) //Stores w in Q;
end

end
end
Algorithm 1: Contagion Risk Propagation

	1 Background
	2 Graph Data Population
	2.1 Entities as Graph Nodes
	2.2 Proximity Events as Graph Edges

	3 Graph Analytics
	3.1 Graph Queries and Visualization
	3.2 Centrality Measures
	3.3 Graph Structure Measures
	3.4 Community Detection
	3.5 Contagion and Risk Propagation

