
Designing an Interactive Dashboard
for Automated Cloud Resource
Management

Sana Malik
Adobe Research
San Jose, CA 95113, USA
sana.malik@adobe.com

Kanak Mahadik
Adobe Research
San Jose, CA 95113, USA
mahadik@adobe.com

Abstract
Many applications today are deployed on the cloud and
require their owners to decide how many resources (e.g.,
CPUs, memory) to allocate, known as provisioning. Due
to the complexities of understanding variations in load,
many applications are either under-provisioned or over-
provisioned. We developed an automated resource configu-
ration recommender system but found that application own-
ers were hesitant to trust an automated system that may
impact their applications’ performance. Towards increasing
trust, we built an interactive dashboard that allowed them
to understand their resource usage, review the automated
system’s recommendation, and control when the recom-
mendations are applied. We iteratively designed and piloted
the system with owners of twenty cloud applications and
discuss seven design needs for designing dashboards for
automated resource management systems.

Author Keywords
automation; resource allocation; dashboard

CCS Concepts
•Human-centered computing → Interactive systems
and tools;

________________________________________________________ 
Workshop proceedings Automation Experience across Domains
In conjunction with CHI'20, April 26th, 2020, Honolulu, HI, USA 
Copyright © 2020 for this paper by its authors. Use permitted under 
Creative Commons License Attribution 4.0 International (CC BY 4.0).
Website: http://everyday-automation.tech-experience.at

http://everyday-automation.tech-experience.at


Introduction
Performance of an application executing in the public cloud 
invariably depends on its provisioned resources. Under-
provisioning can result in performance degradation and 
costly application-level agreement (SLA) violations, while 
over-provisioning leads to low resource utilization and wasted 
money. Designing cloud applications such that they can 
deliver on resource efficiency without performance degra-
dation is key to their success. However, deciding these re-
source requirements is not straightforward for application 
owners. Cloud applications undergo striking variations in 
load and application owners don’t always have tools to un-
derstand how their resources are being used over time.

To alleviate these pains, we developed an automated re-
source configuration recommendation algorithm that pro-
vides recommendations for right-sized resource provision-
ing. However, during piloting, we found that application 
owners were hesitant to make changes to their applica-
tions’ configuration due to a lack of understanding of how 
their allocated resources are being used and distrust that 
the automated recommendations would not degrade their 
applications’ performance. Based on previous literature in 
the trust and automation domain, we decided to develop an 
interactive dashboard for application owners to build trust in 
the recommendations.

In this paper, we (1) distill seven design needs for an inter-
active dashboard for application owners through iterative 
prototyping and expert reviews, and (2) present our final 
system for automated cloud resource management(AutoCRM).

Background
Resource Management
Previous work to aid right-provisioning falls into reactive and 
predictive approaches. Reactive approaches, such as au-

toscaling with predefined heuristics, are often used to adapt
to changes in load [7, 4]. However, these heuristics are
difficult to tune and can lead to poor quality-of-application
(QoS) if the change in resource demands is quicker than
the reconfiguration time. While predictive approaches, such
as artificial neural networks and reinforcement learning [7]
ease QoS issues, they are only known to capture simpler
workload behavior or are not scalable in production envi-
ronments, respectively. Our approach is predictive but uses
a closed-loop approach that not only predicts usage and
models the scaling behavior over time to generate configu-
ration parameters.

Trust and Automation
Much work has been done surrounding trust in automated
systems, including determining trust [8], building trust [9],
and understanding the role of trust [2, 3]. Carlson et al. [2]
surveyed factors for trust in the autonomous vehicle and
medical domains and provide guidelines for building trust in
systems. The authors found similarities and differences in
important factors between these two domains, such as the
ability to stay up-to-date, past performance, and verification,
which we use as a starting point for our system.

Understanding Application Owners’ Needs
Method
The initial recommender was piloted with six teams owning
twenty applications total. Each team saw CPU and mem-
ory line charts showing allocated resources versus actual
usage, as well as the recommended allocation over time.
Based on feedback, we iteratively developed a prototype
in close collaboration with engineering teams and project
managers who were responsible for collecting resource us-
age, identifying pilot teams, and overall coordination. The
development phase took about six months. We then syn-
thesized the feedback into seven design needs.



Design Needs for Application Owners
(1) Add automation in stages. Because no similar system
existed in a previously fully manual process, it was a large
shift in application owners’ workflows which resulted in a
lack of trust. Developing the system slowly in stages en-
sured accuracy of the tool and increased users’ confidence.
For example, though possible, a fully automated version
of the system was not immediately deployed. Instead, a
mixed-initiative approach where users can manually apply
recommendations is used.

Input Data

Backend

Time

C
P

U
s

User Interface

Application

Cluster Manager

Forecaster

Simulator Controller

a

b

c

d

e

AutoCRM

Figure 1: AutoCRM consists of two
main components: a backend and
user interface. The system takes
historical CPU usage data as input
and outputs a recommended
configuration to the application.

(2) Perform formative analysis to model user needs. Be-
cause users were primarily concerned with not interrupting
application performance, it was essential to be conscious
about the recommendations and provide appropriate error
margins, since the real future demands of the application
are unknown [5]. For example, instead of recommending
the optimal configurations, the recommender skews to-
wards slightly lower utilization to balance users’ expecta-
tions and comfort levels.

(3) Provide accountability for the system. Users needed
to easily monitor system behavior, so we provide logging for
every change that the system makes and methods for users
to override changes (undo) made by the system.

(4) Be aware of coupling between data availability and
system automation. Because of the need for account-
ability, we limited the systems’ automation based on the
availability of data. For example, there is a one-day delay
for usage data, so changes are not made more than once
a day so that users can verify what the system is doing in
real-time. The system is not able to make multiple changes
without the application owner reviewing them, and this can
be artificially limited when necessary.

(5) Increase explainability where possible. Because ap-
plication owners were unable to understand their resource
needs, they were hesitant to lower provisioning and com-
promise application performance. The charts allowed users
to see gaps between their allocations and actual utilization.

(6) Build trust through simulation. Similarly, users needed
to see the expected benefits clearly and the simulator al-
lows the users to preview the provisioning under the sys-
tem’s recommendations. Additionally, the forecaster allows
them to see future usage, and the simulator forecasts the
allocations to assure the user that the recommended con-
figurations will not be under-provisioned.

(7) Provide appropriate user controls In its first iteration,
the algorithm recommended only the number of contain-
ers based on the total CPUs as selected by the user in the
sidebar. The CPU selection was presented as a slider, so
users could experiment with different CPU amounts and
understand how it affected utilization and cost, thinking it
would allow users to interact with the recommender and in-
crease trust. However, most application owners relied on
the pre-configured number of CPUs and did not experiment.
The next iteration removed the slider and instead showed
the projected utilization for the 5 nearest configurations,
however, this was crowded and confusing to users. Hence,
we refined the controller and simulator algorithms to directly
generate optimal CPU values which could be visualized.

Description of System
Here we describe the final version of the system in two
parts: (1) the recommender backend and (2) the dashboard
UI.

Recommender Backend
The main components of AutoCRM (Fig. 1) are an ARIMA-
enabled forecaster, a simulator, and a controller that em-



Figure 2: The UI was designed to give an overview of the applications’ recommended configuration, historical usage, and simulated resources.

ploys a carefully designed optimization function to arrive at
efficient application resource sizing values.

Forecaster The Forecaster predicts future usage of an ap-
plication applying the ARIMA model [1] to the input data
(Fig 1a), chosen for its lower error in prediction than other
time-series models. The Forecaster employs the Hyndman-
Khandakar algorithm [6] to implement the fitting process.

Figure 2 (cont’d): The sidebar
displays the recommendations
with cost and efficiency ben-
efits. The line charts display
historically allocated (red) and
used (grey) CPUs and memory,
so users can understand their
applications’ resource needs.
The simulated CPU allocation
based on the recommended
configuration is also shown on
the CPU chart (green).

Simulator The simulator models resource resizing over
time using the forecasted usage data (Fig 1b) and com-
putes the cost function value for a configuration and interval
specified by the controller (Fig 1c).

Controller The controller receives the predicted resource
usage values (Fig 1c) and compares two sets of resource
configurations for their utility in terms of utilization and over-
heads using a cost function. The cost function is a weighted
sum of resource wastage and overheads (number of scaling

events) for an application. The configuration that minimizes
the cost function is recommended.

User Interface
The UI (Fig. 2) was designed to display the recommenda-
tions with cost and efficiency benefits and help application
owners understand and compare their prior resource utiliza-
tion against the simulated utilization.

Recommendation Display The sidebar displays the rec-
ommended configurations and projected utilization and cost
savings. We provide both “Before” and “After” measure-
ments so application owners can directly gauge any cost-
and resource-saving benefits.

User Controls Many application owners have multiple ap-
plications, so a dropdown menu allows them to choose the
application of interest. Its repository name and region are
shown to the right. The date picker allows users to choose



from pre-defined date ranges (last week, last month, last 
three months, last six months) or select a custom date 
range. Most importantly, users can manually Apply recom-
mendations or Undo the last application.

Utilization Charts As discussed, the most important as-
pect was for users to examine their utilization history. Thus, 
we provide CPU and memory charts that display historical 
allocated versus actual usage for each resource. Next, it 
was important for users to see how the resources would 
scale given their utilization for a particular period, so in the 
CPU chart, the simulator results are also shown, which 
made users more comfortable in reducing allocation with-
out sacrificing performance or uptime. Users can pan and 
zoom on the charts to inspect the data closer.

Conclusion
In this paper, we present design needs and a system for au-
tomated resource management. We developed a backend 
recommender and an accompanying dashboard UI to in-
crease trust in the UI and share our most important lessons 
learned that can benefit the community. Future work in-
cludes deploying the system to the company at large and 
evaluating the adoption rates for the recommendations, as 
well as fully automating the system in the long-term.

Acknowledgements
We would like to thank Israel Derdik, Travis Borovatz, and 
Chandler Allphin for their valuable feedback and support 
during designing, deploying, and evaluating the system.

REFERENCES
[1] George E.P. Box, Gwilym M. Jenkins, Gregory C.

Reinsel, and Greta M. Ljung. 2015. Time series
analysis: forecasting and control.

[2] M.S. Carlson, M. Desai, J.L. Drury, H. Kwak, and H.A.
Yanco. 2014. Identifying factors that influence trust in
automated cars and medical diagnosis systems. AAAI
Spring Symp. - Tech. Report (01 2014), 20–27.

[3] Sylvain Daronnat, Leif Azzopardi, Martin Halvey, and
Mateusz Dubiel. 2019. Human-agent collaborations:
trust in negotiating control. CHI 2019 (2019).

[4] Xavier Dutreilh, Aurélien Moreau, Jacques Malenfant,
Nicolas Rivierre, and Isis Truck. 2010. From data
center resource allocation to control theory and back.
In IEEE Intl. Conf. on Cloud Computing. 410–417.

[5] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. 2010.
Press: Predictive elastic resource scaling for cloud
systems. In Intl. Conf. on Network and Service
Management. 9–16.

[6] Rob J. Hyndman, Yeasmin Khandakar, and others.
2007. Automatic time series for forecasting: the
forecast package for R. Number 6/07. Monash
University.

[7] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A
Lozano. 2014. A review of auto-scaling techniques for
elastic applications in cloud environments. J. of grid
computing 12, 4 (2014), 559–592.

[8] Alexander G. Mirnig, Philipp Wintersberger, Christine
Sutter, and Jürgen Ziegler. A Framework for Analyzing
and Calibrating Trust in Automated Vehicles. In Adjunct
Proc. of the Intl. Conf. on Automotive User Interfaces
and Interactive Vehicular Applications (AutomotiveUI
’16 Adjunct). 33–38.

[9] Holly A. Yanco, Munjal Desai, Jill L. Drury, and Aaron
Steinfeld. 2016. Methods for Developing Trust Models
for Intelligent Systems.


	Introduction
	Background
	Resource Management
	Trust and Automation

	Understanding Application Owners' Needs
	Method
	Design Needs for Application Owners

	Description of System
	Recommender Backend
	User Interface

	Conclusion
	Acknowledgements
	REFERENCES 

