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Demand-Responsive Zone Generation for Real-Time
Vehicle Rebalancing in Ride-Sharing Fleets

Alberto Castagna' and Maxime Guériau'

Abstract.  Enabling Ride-sharing (RS) in existing Mobility-on-
demand (MoD) systems allows to reduce the operating vehicle fleet
size while achieving a similar level of service. This however re-
quires an efficient vehicle to multiple requests assignment, which
is the focus of most RS-related research, and an adaptive fleet
rebalancing strategy, which counter-acts the uneven geographical
spread of demand and relocates unoccupied vehicles to the areas
of higher demand. Existing research into rebalancing generally di-
vides the system coverage area into predefined geographical zones,
however, this is done statically at design-time and can limit their
adaptivity to evolving demand patterns. To enable dynamic, and
therefore more accurate rebalancing, this paper proposes a Dynamic
Demand-Responsive Rebalancer (D2R2) for RS systems. D2R2 uses
Expectation-Maximization (EM) clustering to determine relocation
zones at runtime. D2R2 re-calculates zones at each decision step
and assigns them relative probabilities based on current demand. We
demonstrate the use of D2R2 by integrating it with a Deep Rein-
forcement Learning multi-agent RS-enabled MoD system in a fleet
of 200 vehicle agents serving 10,000 trips extracted from New York
taxi trip data. Results show a more fair workload division across the
fleet without loss of performance with respect to waiting time and
distribution of passengers per vehicle, when compared to baselines
with no rebalancing and static pre-defined equiprobable zones.

1 INTRODUCTION

Mobility-on-Demand (MoD) systems are gaining popularity over
privately owned vehicles and public transportation due to reduced
prices and shorter overall journey times [7]. Recent work suggests
that RS-enabled MoD systems can achieve similar level of service
using fewer vehicles, by better optimizing: (i) vehicle to multiple re-
quests assignment [2] and (ii) rebalancing empty vehicles to fit real-
time demand [24].

Vehicle to request matching has been widely investigated. Of-
fline methods relying on constraint solving [3, 4] can design an op-
timized plan that is then executed by the vehicle. Online methods
involve matching to requests dynamically and has so far been ad-
dressed using constraint solving methods [2] and agent-based mod-
els [1, 8,9, 25].

However, fleet rebalancing in MoD systems has been less inves-
tigated while shown to have a strong impact on level of service of
RS-enabled systems [24]. As depicted in Figure 1 created by extract-
ing requests from New York Taxi data [21] on two different periods,
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Figure 1: Observed demand imbalance in New York Taxi dataset [21]
trips between morning (7-10am) and evening (6-9pm) peak hours in
the south part of Manhattan on Tuesday, February 2™ 2016

mobility demand is changing over time and distribution of requests
is uneven. This can lead to an unbalanced fleet distribution for RS-
enabled MoD systems [2], as illustrated in Figure 2, where most of
the demand is concentrated in the top area while majority of vehicles
are located in the opposite side after finishing their last trip, where
fewer new customers are requesting for a ride.

Adaptively following (or even preventing) changes in the demand
spatial patterns can improve the perceived level of service from the
perspective of the use of the MoD system, and also, assuming a
joined fleet in which human drivers can participate with their ve-
hicles, its capability to consistently enable drivers to meet the actual
demand while optimizing vehicles usage and increase the ROI (re-
turn on investment), assuming that the participation to the RS system
would imply a subscription cost (due to setup and operating costs of
the system).

Figure 2: Example of an unbalanced fleet distribution where demand
(requests in red) location differs from available supply (vehicles)

To address this issue, existing work define rebalancing strategies
that consist in relocating vehicles according to past or current de-
mand. Rebalancing can be achieved using pre-defined location per
vehicles (station-based relocation) or by defining a set of areas (also
called zones) each vehicle can be sent to. Rebalancing approaches
can rely on a static [9, 1, 8, 25, 24, 19] or a dynamic partition of
the network [15] to split it into zones. Rebalancing vehicles using a
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dynamic partition is expected to better track changes in mobility de-
mand e.g., caused by temporary network disruptions, special events
concentrating demand temporarily and long-term city developments
affecting observed patterns.

In this paper, we propose a Dynamic Demand-Responsive Rebal-
ancer (D2R2) which, using Expectation-Maximization (EM) clus-
tering technique, generates a dynamic set of rebalancing zones and
computes relocating probability per zone from current demand trend
every time a vehicle needs to relocate. Novelty of our approach is
twofold: first, boundaries and number of relocating areas are com-
puted when required and second, rebalancing probability for each
zone is allocated dynamically using only unserved requests data
available in real-time. Therefore, D2R2 does not require data collec-
tion and no learning phase is required, enabling our proposal to op-
erate from the beginning while being responsive to current demand.

We evaluate D2R2 in an implementation of a Multi-Agent Re-
inforcement Learning (MARL) ride-sharing enabled MoD system
where 200 vehicle agents serve 10,000 ride requests in lower Man-
hattan road network. Requests have been generated from the open
NYC taxi dataset [21] to be representative of real demand patterns.
Results show that coupling D2R2 with ride-sharing enhances perfor-
mance from a single vehicle perspective, and improves the overall
balance of the distribution of requests across the fleet. At the cost
of few more kilometres travelled empty for rebalancing, the perfor-
mance at the fleet level confirms the overall efficiency of our demand-
responsive rebalancing strategy.

2 RELATED WORK

Rebalancing for MoD can be categorized in the approaches relying
on static rebalancing zones [1, 8, 9, 24, 25] and dynamic zones [15].
In static rebalancing zone generation, geographical coverage of relo-
cation zones is predefined at design time. For example, in [9], NYC
Lower Manhattan area is divided in predefined zones which do not
change over time. Each vehicle, using RL, learns and decides at each
time step whether to relocate to one of the neighbouring zones or to
stay in its current zone. In [8], rebalancing areas in Austin, Texas, are
defined by partitioning the area in 2-mile by 2-mile square blocks.
Block balance is calculated for each zone, capturing the excess or
deficit of vehicles within the block in relation to supply and expected
travel demand. Blocks with a negative balance try to gather vehicles
from neighbourhood where there is a surplus, and expected travel de-
mand is estimated from historical data and current requests. In [1],
zones are defined using a fine-grained but also static grid. In [25],
if a vehicle is idling, it can rebalance based on its local knowledge:
according to the demand distribution in surrounding areas, it decides
to rebalance to a neighbouring zone or not. The work presented in
[24] partitions the area into rebalancing zones according to the road
network layout. Zones are defined such as that for each region r;, ex-
ists a zone which allows to reach r; within the established maximum
travel time. Idle vehicles are rebalanced by taking into account travel
time, to limit empty travels, and future demand, estimated from cur-
rent demand, to avoid an excess of vehicles in the same area. How-
ever, the zones, once defined at the start, do not change based on traf-
fic or fleet conditions. Majority of the approaches allow rebalancing
only for idle (and empty) vehicles, while [1] and [9] mix rebalanc-
ing with RS assignment, and allow RS pick-ups from neighbouring
zones, shortening waiting time for passengers, but increasing their
travel time.

The only current work that uses dynamic zone generation for re-
balancing is presented in [15]; rebalancing zones are computed using

a clustering algorithm. A k-means clustering is applied on virtual re-
quests generated by a distribution defined on historical data. There-
fore the coverage and the size of the zones can change, but the total
number of zones remains fixed. This approach is the closest related
work, however, we allow different number of zones based on dif-
ferent density of requests. Furthermore, our approach relies on real
time data rather than historical to have a better respond to dynamic
demand.

Table 1 summarizes existing work on rebalancing for MoD sys-
tems, categorized by four main characteristics: Analysed data, which
can be historical, real-time or both, depending on what kind of data
is rebalancing based; Dynamic # zones, i.e., whether the number of
rebalancing zones can change over time; RB empty, whether the vehi-
cles relocate only when empty or can relocate as a part of RS assign-
ment; and Dynamic boundaries, whether the area covered by each
rebalancing zone can adapt dynamically.

Table 1: Characteristics of existing rebalancing algorithms

Analysed | Dynamic | RB only Dynamic
data # zones empty boundaries

Wen, 2017 [25] Real-time X v X
Real-time

Fagnant, 2017 [8] Historical X v X

Alonso-Mora, e

2018 [24] Real-time X v X

Alabbasi, 2019 [1] | Historical X X X

Yang, 2019 [15] Historical X v v

Guérian, 2020 [9] | Real-time x X X
Historical

This paper Real-time v v v

We observe that the main issue of reviewed research is the low
adaptability to demand changes (daily, seasonal, or more long-term
ones resulting from new city developments), as the addition of new
city areas/zones, or changing their granularity, requires system re-
design.

With respect to request assignment, multiple algorithms are used
in the literature to match riders and drivers (or vehicles). For ex-
ample, [3, 4, 2] use integer programming to optimize the objective
function for the optimal matching. RL-based approaches [9, 10, 1]
are the closest to our approach, in which agents explore by them-
selves possible solutions without having any prior knowledge. A full
review of vehicle assignment algorithms is out of scope of this paper
as our contribution focuses on rebalancing, nevertheless, it is worth
mentioning that, even though we illustrate D2R2 application in con-
junction with an RL-based vehicle assignment, R2D2 is designed to
be independent from the assignment algorithm used in the MoD sys-
tem.

3 BACKGROUND

This section introduces the background information needed to un-
derstand D2R2 design and implementation: Reinforcement Learn-
ing (RL) used for vehicle assignment problem and expectation max-
imization (EM) with model selection criterion for rebalancing.

3.1 Deep Reinforcement Learning

RL is a branch of machine learning in which an agent learns au-
tonomously by trial-and-error to map actions to the current environ-
ment state, by receiving a positive or negative reward for their exe-
cution [23]. The goal of the agent is to learn actions that maximize



the long term cumulative reward. RL iterates three tasks: at each time
step an agent obtains the perception of the environment and maps it
to a state s from its overall state space. Based on past experience,
it can select an action a from the action space. The agent then, at
timestep ¢ receives a reward r; = R(st, a:) which expresses how
good was the selected action.

In most of real-world scenarios, the environment space is complex
or continuous, making it intractable to handle all possible state-action
pairs. To overcome this issue, RL has been combined with deep neu-
ral networks to approximate states, giving rise to a range of Deep
RL techniques. The approach we choose for our implementation is
Proximal Policy Optimization (PPO) [22], which is simpler to im-
plement and tune without affecting the performance when compared
to other state-of-the-art Deep RL approaches. PPO uses a novel ob-
jective function, formed by three terms, which is maximized each
iteration:
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© is the policy’s parameter vector. The first term LEE!F s the
clipped objective function defined in Equation 2. ¢; is a coefficient,
defined between 0.5 and 1, applied to LYY = (Va(s:) — V,/*79)2,
which computes the squared-error loss of V, the learned state-value
function, compared to the target value at time ¢. Last term S is the en-
tropy bonus, used to ensure sufficient exploration which is regulated
by c2, ranging from 0 to 0.01. S of a stochastic policy me refers to
state at time ¢.
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In the LEEIF objective function definition (Equation 2), the first
term inside the min is the surrogate objective with a conservative
policy iteration which is clipped by the second term. A is an estima-

tor of the advantage function shown in Equation 3 and r(©) denotes
mo(atlst)
LENPICHED)
tween current and old policy, which is clipped if difference falls out
of boundaries by ¢, a small hyper-parameter which weighs distance

from new policy in respect to the old.

the probability ratio that expresses the difference be-
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During training, PPO method collects a sequence of samples of
length 7" from the environment and then estimates the advantage A,
for the complete sequence. Finally, several epochs of optimization
on LEHP are performed on the same batch, to maximize gathered
experiences.

While we are not aware of any application of PPO in a ride-
sharing problem, it shows good performance in many other applica-
tions with similar characteristics, such as portfolio management [14],
robot control [12, 18, 16] or simulation and games [5, 26], which mo-
tivated our decision to use it as basis for our implementation.

3.2 Clustering

Expectation-Maximization (EM) is an iterative algorithm to find the
maximum-likelihood estimates of parameters by computing proba-
bilities of cluster memberships across several probability distribu-
tions [20]. EM consists of two steps, Expectation (E step), which

computes the complete log-likelihood of data memberships in clus-
ters, and Maximization (M step), which, by maximizing the com-
puted likelihood, updates the hidden parameters 6 related to nor-
mal distribution, hence mean, variance and prior probability for each
cluster.

E step: hidden parameters are initialized by some random values
or, more likely, computed from data points. Then, expectation of the
complete log-likelihood, conditioned by observed samples and cur-
rent estimation of 6, is computed. Expected value is:

Q(O:0(6) = E| > In(p, (ur; 01X;0(1)))] )
k

where 0 is the unknown parameter vector and the term inside the log-
arithm expresses the conditional probability of a datapoint to belong
to a cluster k given the observed samples X and value of 6 at the
previous step.

M step: computes the next (¢ + 1)-zh estimation of the unknown
parameter vector by maximising the expected value Q(6;6(t)) ob-
tained from previous step.

9Q(0;6(t))
00

EM algorithm terminates when difference between expectation at
time ¢ and time ¢ — 1, obtained from Equation 4, is smaller than a
threshold e.

Once terminated, the likelihood indicates how good our model fits
data. However, this parameter alone does not take into account over-
fitting and the number of clusters; in fact likelihood could be maxi-
mized with each datapoint belonging to a different cluster. An option
to validate and select a model is by using Bayesian Information Cri-
teria (BIC) [6]. It prevents over-fitting by taking into account num-
ber of clusters. BIC is computed through Equation 6, where number
of free parameters, k, depends on number of clusters. BIC measure
weighs the number of free parameters with the number of samples
available. It looks for the true model among the set of candidates.

0t+1): =0 )

BIC = In(n)k — 21n(L) (6)
Where L is the maximized value of the likelihood function, result of
Equation 4, n is the number of data points within a dataset and k is
the number of free parameters to be estimated.

We have opted to use EM over other clustering techniques because
it computes clusters by estimating normal distribution with their pa-
rameters, which underlies data. By doing that, EM enables clusters
to have different shapes unlike other clustering methods which tends
to find clusters with comparable areas by working directly on data
points.

4 DYNAMIC DEMAND-RESPONSIVE
REBALANCER

This section describes the main contribution of our paper, a Demand-
Responsive Zone Generation for Real-Time Vehicle Rebalancing
(D2R2) in RS fleets. We first introduce our unpublished RS system
using multi-agent Deep Reinforcement Learning, and then our novel
rebalancer.

4.1 Ride-Sharing using Deep Reinforcement
Learning

We designed a multi-agent decentralized algorithm for RS applied to
a fleet composed of 5-seater autonomous vehicles for a MoD system,



which is model-free and designed to be replicable to any city in the
world. To take a decision, agent implements PPO [22], introduced in
Section 3. Each agent controls a vehicle, taking an action at each step
by evaluating its internal state and perception, without communicat-
ing or coordinating with other vehicles. Once an agent completes its
action a next step can begin. Agents evaluate and decide of an ac-
tion in a sequential order. At each time step, each agent perceives
the environment and decides of the next action: to pick-up a ride, to
drop-off passengers or to rebalance. Finally, it updates its learning
process. This cycle is described in Alg. 1.

Algorithm 1: Controller for a single vehicle V'

Parameters: V vehicle, a action, r request, PPO model

1 Perceive and act (V)

update vehicle perception and status

a<—PPO.getAction([V.perception, V.status])

if a is parked then

if (V.queue A V.perception) are empty then
rebalance(V') // Alg. 2
reward <— —0.01

end

else Vwait()

if V.queue is empty then reward < —0.3

else reward < —0.5

else if a is drop-off then

if V.queue is empty then return —10

V.destination < arg min.., ev.queue SUpply (v, r;)

detourRatio<V.goToDestination()

if detourRatio < max_detourRatio then reward < 5

else reward < 5 — (detourRatio—1)

else a is pick-up

if 37 associated to a N\ V.freeSeats > rpassengers

then

20 V.pickUp(r)

21 if size(V.queue)== 1 then reward < 1

22 else reward < 2 // doing rs

23 end

24 else reward < —10

25 end

26 PPO.update(reward, a)
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The agent’s internal state is composed by the vehicle position, rep-
resented by latitude-longitude pair, its destination, and the number of
vacant seats. For an empty vehicle, destination is void, and if a ve-
hicle is serving one or more requests, its destination matches to that
of the request r; that can be served the quickest, as shown in line 14
in Alg. 1. The vehicle location on the road network is updated ev-
ery time that a new position is reached, either destination or pick-up
point.

Perception P is composed of the three closest requests that an
agent could serve. A request r is available to a vehicle v if v has
enough empty seats to accommodate the number of passengers asso-
ciated with the request (ranging from 1 to 6), and the total waiting
time for r, i.e., the delay between request being created and esti-
mated passengers pick-up time, is less than the maximum time al-
lowed (set to 15 minutes). All customers, who have waited more than
15 minutes leave the system without being served, and the request is
recorded as not served.

Perception is defined as the aggregation of states of re-

quests perceived by an agent, P: {ST1 ,Sp2, 53 } Where,
S, [r};os, T ests rﬁaassﬁngcrs} represents the state of the i-th request
perceived by an agent. Each requests consists of a pick-up location,
the destination and number of passengers.

Vehicles can choose between 5 actions, organized in three cate-
gories: (1) drop-off, in which an agent serves a request by driving the
passenger(s) to their destination; (2) park, in which an agent waits
one minute being parked. (3) pick-up, an agent drives to a pick-up
point of the selected request. Pick-up action has three variations,
pick-up first, second or third request from the perception set. Once
an agent selects a pick-up action, is first checked whether in percep-
tion corresponds a request and then if the vehicle can accommodate
the new passenger(s), line 19 in Algorithm 1. When the vehicle per-
ception is empty and it is not serving any requests, it is enabled to
rebalance as shown at line 6 in Algorithm 1. We further discuss re-
balancing in next section.

Rewards associated with actions are also shown in Algorithm 1.
An agent get a negative reward of -10 for attempting to try to pick-
up a request while it does not have enough free seats. Otherwise,
the best (+5) and the potential worst reward are related to the same
action: when a vehicle is doing a drop-off while carrying passenger
from several requests, if the travel time for passengers to reach their
destination exceed the estimated travel time without RS by 30% or
more, then the reward is reduced according to the total additional
detour distance travelled.

4.2 Rebalancer - D2R2

D2R2 rebalancer can be used with different MoD systems, however
for illustration we describe its implementation as combined with the
Deep RL ride-sharing request assignment strategy presented in pre-
vious section. Rebalancing is triggered when a vehicle is not serving
any requests and it has no further requests to serve in its neighbour-
hood. D2R2 aims to dispatch vehicles efficiently and dynamically ac-
cording to current demand, preventing fleet unbalance, which in turn
can result in longer passenger waiting times, or an increased num-
ber of unserved requests. D2R2 infers relocating zones and computes
their associated probabilities (Eq. 7) for a vehicle to be relocated into:

_ R
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where z; is the is, zone, R; is the set of pending requests within
current zone, and R is the set of pending requests across all zones.

State &
perception

’—> PPO

New position

Unserved requests

Figure 3: Ride-sharing framework with D2R2 integrated

R2D2 framework is illustrated in Figure 3, depicting the rebalanc-
ing module and an agent behaviour. The demand filter has a double



role: it selects three requests for agents perception and also filters de-
mand for rebalancing, according to used time frame. D2R2 takes as
input pending requests available at current time. All previous unsat-
isfied requests and future requests (estimated or scheduled), are not
taken into account, as illustrated in Figure 4.

Validity time

Time ﬁ

t\/

Figure 4: Example of pending requests at time ¢,,. Only requests ac-
tive at time ¢, (i.e., r3, 74) are taken into account when rebalancing

Algorithm 2 describes the procedure applied to relocate an idle
vehicle to a new position. First, R2D2 generates new clusters, based
on pending requests, following Algorithm 3. For a single rebalancing
task, several runs of EM occur, producing different number of clus-
ters. The algorithm then selects the model which better represents the
data by choosing the clustering model which minimizes BIC mea-
sure (line 7 in Algorithm 3). The vehicle is then rebalanced to a zone
within the selected clustering model according to a weighted random
selection defined over a probability distribution among clusters and
computed in Equation 7 (lines 3-4 in Algorithm 2). Among different
approaches we preferred a weighted random selection to enable ve-
hicles exploring different zones while rebalancing, avoiding all the
vehicles to rebalance in a similar area.

Algorithm 2: Single vehicle relocating by D2R2

Result: relocates a vehicle V' to a new position

1 rebalance (V)

2 clusters, relocatingProbability <
updatingClusters(reqsAvailable, V.time)
rnd < generate random value € [0, 1]

140

do i++ while rnd<relocatingProbability]]

V.destination <clusters|[i].getCenter()

V.driveToDestination()

// Alg 3

QA »n A W

Each agent therefore, at each timestep, takes an action using its
policy trained though PPO and, when needed, relocates by using EM
as described in this section.

5 SIMULATION

We evaluate the performance of D2R2 in an RL-based RS system
by using a fleet of 200 5-seater vehicles controlled by autonomous
agents. Requests have been extracted from NYC city taxi data, and
filtered to include only requests within lower Manhattan in New York
City. Our evaluation is performed using data for the evening peak
hour (from 6 to 9 pm), and consists of 10,000 requests. These 10,000
requests have been generated by aggregating trips from 50 consecu-
tive Tuesdays between July 2015 and June 2016 (to represent a typi-
cal weekday demand pattern). Passengers by request, during evening

Algorithm 3: Defining relocating zones for rebalancing

Result: Given a set of pending requests (regsAvailable) and a
time, finds relocating zones C': {c1, ¢, . .., ¢n } With
associated probabilities P : {p1,p2,...,pn}

Parameters: V' vehicle, r request, p probability

updatingClusters (regsAvailable, V.time)

foreach r € regsAvailable do

if V.time — r.timeBegin < TIMEFRAME then
‘ queueReqgs.append (r)
end

end

clusters< min_bic3 ,,(EM (queueRegs, k))

prob < 0

foreach c € clusters do

prob < prob +

=TI B N7 N VR R

c.size()
queueReqs.size()

[
=l

1 relocatingProb|c] < prob
12 end
13 return clusters, relocatingProb

peak time, are distributed as follows: 71.95% of demand is composed
by a single passenger request, 13% by two, 4.1% by three, 2.28% by
four, 5.3% by 5 and the remaining 3.37% by 6.

Agents learning stage is performed by running multiple rounds
of single-vehicle training. Only a single vehicle v; is allowed to ex-
plore the environment at a given time ¢ and can perceive remaining
requests that the previous vehicle v, could not serve.

This emulates a multi-vehicle concurrent exploration without
competition between vehicles in serving customers. All the experi-
ence gained by all of the vehicle agents during training is gathered
into a single learning process. In this way, all vehicles update the
same learning process, to optimize the use of acquired knowledge
and speed up the overall learning process. However, if one vehicle
fails to do the update, or is not available to serve requests in a par-
ticular location, the others can continue seamlessly. Once training is
completed, knowledge is replicated to all vehicles of the fleet. This
allows new vehicles/agents to join the fleet without carrying out any
additional training.

Travel information for vehicles is estimated using the Open Source
Routing Machine (OSRM) [17], which, given two longitude-latitude
coordinates, estimates the distance and travel time driving on the
shortest route from origin and destination. Distance and time are
computed according to a 24-hours snap-shoot acquired from a real-
world scenario.

Agents, which are implemented through Tensorforce [13], use
PPO with a deep neural network with a dense topology. Input layer
has 20 neurons since an agent can perceive at most 3 requests and for
each request is taken number of passengers and position with desti-
nation, as latitude-longitude coordinates, while the output layer has 5
neurons, one for each action. Between input and output layer lie three
hidden layers, each of them composed of 32 neurons. The clipping
ratio is set to 0.2 and the discount factor to 0.99. We used Adam [11]
optimizer, with a learning rate of 1e —3 and an entropy regularization
set to 0.01.

PPO batching capacity is 100, and we executed 10 iterations over
the batches of the PPO objective. The model was trained during 20
episodes, and each episode is composed of 10 rounds in which a ve-
hicle serves requests. Each episode does not have a fixed number
of iterations, as it terminates when a given agent does not have any
more requests to serve. During training, rebalancing is disabled to



avoid unpredictable bias as it relies on a random weighted choice to
select the new zone in which a vehicle is relocated into. For this rea-
son integrating rebalancing as an action would have affected agents
learning, requiring more exploration.

6 EVALUATION RESULTS AND ANALYSIS

To evaluate the performance of D2R2 rebalancing strategy, we pro-
pose 5 different scenarios, as presented in Table 2.

Table 2: Specification of evaluated scenarios

Scenarios RB RS

Base - no RB, no RS no no

Baselines RS only no yes
RS with fixed zones RB yes | yes

D2R2 RB only yes no

D2R2 D2R2 RB and RS yes | yes

* Vehicle randomly chooses the rebalancing zone.

The first baseline scenario (Base - no RB, no RS) imitates the be-
haviour of a simple MoD system without ride-sharing or rebalanc-
ing. In the second baseline scenario (RS only) ride-sharing alone is
enabled. Third baseline is a MoD with both ride-sharing and rebal-
ancing, but the number, size, and boundaries of zones is fixed (simi-
larly to existing related work) and the zone for rebalancing is chosen
randomly. We also evaluate two variations of D2R2. (D2R2 RB only)
uses D2R2 without ride-sharing while (D2R2 RB and RS) uses both
ride-sharing and rebalancing. This combination of scenarios allows
to evaluate the benefits of rebalancing overall as well as the benefits
of D2R2-based rebalancing specifically.

For all simulations, we assumed each vehicle to have a capacity of
5 passengers, therefore requests with more passengers are ignored by
vehicles. This means that, based on the dataset used, the maximum
level of service the fleet can reach is serving 96.63% of the 10,000
requests.

6.1 Evaluation metrics

We rely on commonly used measures adopted by related work
[1, 2,9, 24] to evaluate the performance of D2R2 in the proposed
scenarios. The overall performance of the MoD fleet is assessed by
analysing the number/percentage of served requests and the percent-
age of requests that involved ride-sharing (as opposed to occupancy
of the vehicle only by one or more passengers from a single request).
From the passenger perspective, we evaluate the average detour ra-
tio (D,) (i.e., the percentage of extra travel time used to facilitate
ride-sharing) and the average waiting time (w?). D, is obtained by
comparing actual time spent to reach the passenger destination serv-
ing other RS requests, and the expected travel time for a direct trip
between the passenger origin and destination. wt represents the av-
erage time passengers have to wait between creating a request and
being picked-up. The maximum waiting time per request is limited
to 15 minutes and after this the request is discarded from the system
and flagged as unserved.

From the vehicles perspective, we recorded the distribution of the
number of passengers per vehicle in the fleet and computed its vari-
ance (opass). We also recorded the average distance travelled per
vehicle (dy).

6.2 Simulation results

This section presents the simulation results for all the scenarios.

Level of Service From the system perspective, as reported in Ta-
ble 3, each scenario shows a different level of service. Scenario Base
- no RB, no RS, which models a classical taxi service, serves around
74% of requests, and D2R2 RB only serves 95% of the requests. All
other scenarios (RS only, RS with fixed zones RB, and D2R2 RB and
RS) achieve maximum level of service possible with 5-seater cars,
of 96.63% requests. The results show that by enabling ride-sharing
in combination with D2R2 rebalancing, decreases number of request
ride-share (68% vs 80%) when compared to RS only. However, de-
tour ratio is decreased (1.5 vs 1.7), which means that average time
needed for passengers to reach their destination is decreased in D2R2
RB and RS.

Passenger waiting time Figure 5a shows passenger waiting times

for each scenario. By enabling ride-sharing in the baseline scenario
(RS with fixed zones RB) or D2R2 (D2R2 RB and RS), we observed a
significant reduction when compared to Base - no RB, no RS. RS only
shows lower overall waiting times (3.761 minutes) when compared
to D2R2 RB only (4.218 min). However, ride-sharing can generate
additional delay for passengers as vehicles are following a detour to
serve more requests as shown in Table 3. Rebalancing in addition can
limit the additional travelled distance due to detours as the vehicle
relocates in zones with closer requests that can be matched. Hence,
D2R2 RB only results as the best option for passengers with respect
to travel time.

Passenger Distribution We can observe in Figure 5b that in Base
- no RB, no RS many vehicles are driving with only a few passengers.
These vehicles, once serving one or few requests, may end up in an
area of the network that is empty of any further request. Enabling
rebalancing or ride-sharing can prevent them from staying idle and
help vehicle to find new requests. This can be observed from sce-
narios D2R2 RB only and RS only, where further improvements are
achieved by enabling ride-sharing and rebalancing, as all vehicles
serve a similar number of passengers. In particular, D2R2 RB and RS
seems to converge to a higher average value when compared to base-
line rebalancer RS with fixed zones RB. Moreover, as shown in Ta-
ble 3, the variance of the number of served passengers is also lower:
the combinations of these leads to conclude that the ROI for the indi-
vidual vehicle/agent, member of this network, is more consistent and
stable (for a fixed number of vehicles serving shared rides).

Vehicle mileage Distance travelled by agents is depicted in Fig-
ure 5c. Base scenario Base - no RB, no RS shows that around one
fourth of vehicles are travelling only a few kilometres, confirming
they only serve a few requests and then stay idle in an area with no
further demand. Also, since the number of served requests varies by
scenario, an important difference in terms of distance travelled was
recorded. We further investigate travelled distance in Table 3. From
the Table, we can confirm that enabling rebalancing adds additional
travel distance for empty vehicles.

6.3 Discussion

Simulation results show that enabling ride-sharing alone is enough to
satisfy all of the requests possible to serve, when the baseline Base
- no RB, no RS only serves 74%. We showed that D2R2 improves
the average and individual performance of all vehicles when enabled
in combination with ride-sharing (D2R2 RB and RS) compared to
Base - no RD, no RS. Passenger waiting time for (D2R2 RB and RS)
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Figure 5: Comparison of simulation results for the implemented scenarios: waiting time (a), passengers distribution per vehicle (b) and distance

travelled per vehicle (c)

Table 3: All values refer to 10,000 requests served by a fleet com-
posed by 200 5-seater vehicles

. % Served wt o d¢ —

Scenarios Regs. %RS (sec) | pass | (km) D,
Base 74.21 0 410 1926 88 1

RS only 96.63 80 226 331 118.1 1.7

RS with

fixed zones RB 96.63 70 210 82 143.6| 1.5
D2R2 RB only 95 0 253 274 137 1

DaR2REand | 96,63 68 | 204 | 63 | 1412] 15

is almost halved when compared to a normal taxi cab service (Sce-
nario Base - no RB, no RS). However, the main observed advantage
of D2R2 (with RB and RS) is that the workload that each vehicle has
to carry out seems to better converge to a global average value (Fig-
ure 5b), resulting in fairer workload distribution. This is in contrast to
other scenarios, where we observed that a few agents are contributing
more that the others and some vehicles can be under-utilized, serv-
ing only a few requests. The closest in terms of workload distribution
to our approach is (RS with fixed zones RB), however the variance is
still larger at 82 passengers vs 63 in our approach (as opass in Table 3
shows). Interestly, fairness is not a metric existing work considered.
Our results show that this should be included as a standard measure
when evaluating ride-sharing systems, along side other system, user
and vehicle metrics. We also observe that approaches with rebalanc-

ing (RS with fixed zones RB and both R2D2 scenarios) generate ad-
ditional travelled distance: total mileage is slightly increased due to
empty vehicles travelling as a part of relocation process.

4 relocating zone cwmeJ

« request position

Figure 6: Sample outcome of D2R2 clustering

To illustrate the zone outcomes of D2R2 and how does it differ
from fixed zone clustering, we here show a snapshot of the number,
size, and shape of the clusters it generated for a particular vehicle
v at time ¢ (Figure 6). In this instance, 10 relocation zones were
computed by D2R2. Cluster centres are represented by a cross and
colours intensity indicates its rebalancing probability. However, the
number of clusters throughout the simulation, based on the demand
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Figure 7: D2R2 clusters distribution during the simulated scenario

at any particular time, ranged from 4 to 30, as illustrated in Figure 7,
with majority being in range between 13 and 20.

7 CONCLUSION AND FUTURE WORK

This paper presents a Dynamic Demand-Responsive Rebalancer
(D2R2), a novel vehicle rebalancing algorithm for ride-sharing
mobility-on-demand systems. Unlike existing approaches which use
a fixed number and fixed geographical division of the network in
zones to relocate empty vehicles, D2R2 uses EM clustering to dy-
namically generate zones. D2R2 enables zones to be dynamic in
terms of their number, position and boundaries. First, rebalancing
zones are identified by analysing real-time pending requests at each
time step from each vehicle perspective. The zone to which a vehicle
rebalances is then selected, among the defined zones according to a
probability distribution defined over the zones. Thus, idle vehicles
are spread across the area rather than rebalanced to the same zone(s).
D2R?2 effectiveness is shown by integrating it with 200 RL-based
ride-sharing vehicles, which serve 10,000 ride-sharing requests in the
lower Manhattan area. We compare D2R2 to approaches with no re-
balancing and fixed-zone rebalancing, and observe a more fair work-
load division across the fleet when using D2R2, indicating a more
accurate rebalancing strategy, without loss of performance with re-
spect to waiting time and distribution of passengers per vehicle.

This work can be expanded in multiple directions. To verify
its general applicability, it should be integrated with other RS ap-
proaches, and evaluated on other road network maps and datasets.
In terms of improving the underlying PPO learning process, vehicles
could be enabled with further online learning, to fine-tune their be-
haviours to new request patterns as they arise. Rebalancing could be
further improved by taking into account vehicle position, for estimat-
ing travel time, when selecting the cluster to which to relocate. Thus,
probability computed by Equation 7 would be conditioned by vehi-
cle position and then normalized. Additionally to be more precise,
it could integrates real-time traffic congestion data. It could further
be integrated with existing approaches, as reviewed in Related Work,
which use historical data to predict future demand, and tune cluster
probabilities accordingly.
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