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Abstract.1Knowing when a driver will quit cruising and either 
leave the area or park at an expensive off-street facility is critical 
for modeling parking search. We employ a serious game – 
PARKGAME for estimating the dynamics of drivers’ decision 
making. 49 Participants of a game experiment were involved in 
three scenarios where they had to arrive on time to a fictional 
appointment or face monetary penalties, and to choose between 
uncertain but cheap on-street parking or a certain but costly 
parking lot. Scenarios diverged on the time to appointment and 
distance between the meeting place and parking lot locations. 
Players played a series of 8 or 16 computer games on a Manhattan 
grid road network with high on-street parking occupancy and 
nearby parking lot of unlimited capacity. Players’ choices to quit or 
to continue search, as dependent on the search time, were analyzed 
with an accelerated-failure time (AFT) model. Results show that 
drivers are mostly risk-averse and quit on-street parking search 
very soon after potential loses begin to accumulate. The 
implications of game-based methods for simulation model 
development and sustainable parking policy are further discussed. 

1 INTRODUCTION 

Future automated vehicles will definitely simplify urban 

transportation and parking [1]. Until that happens, long search for 

parking is an inherent component of a car trip to the center of the 

city, with negative externalities including traffic congestion, and 

air and noise pollution [2]. Cruising typically involves time-to-

money tradeoffs between certain but expensive parking at a paid 

and possibly distant off-street facility and uncertain yet usually 

cheaper on-street parking. Understanding driver behavior in 

response to on-street and off-street parking conditions and prices is 

a basic step on the way to sustainable parking policy. 

Urban parking space is highly heterogeneous and adequate 

representation of drivers’ parking search demands a high-resolution 

and spatially-explicit representation of cruising drivers and parking 

options. This can be achieved with Agent-Based models (ABM) 

[3]. Knowledge on individual driver parking behavior has the 

potential of turning ABM into a highly effective policy support 

tool. Significant efforts have been made to understand drivers’ 

reaction to parking prices [6], yet we still lack a formal description 

of drivers’ reaction to prominent factors such as the occupation 

rate, time stress and distance between parking place and 

destination.  
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The goal of this paper is to experimentally establish models of 

individual parking search behavior in a highly occupied area, under 

the dilemma of the very uncertain and cheap on-street versus 

certain and expensive off-street parking. The models can be used to 

characterize agent-drivers in a spatially-explicit, empirically-based 

parking ABM, and thus improve our ability to study the collective 

consequences of parking policy. To this end, we study and analyze 

parking behavior based on gamified lab experiments with the 

PARKGAME Serious Game. 

2 METHODOLOGY 

2.1 PARKGAME serious game platform 

Our experiments are performed with PARKGAME – a flexible 

serious game platform for studying parking search behavior and 

decision-making. The urban road and parking infrastructure in 

PARKGAME are represented by GIS layers of street links and 

parking lots in a standard shapefile format. On-street parking spots 

are constructed automatically by the game software at 4m distance 

from each other along the street links in line with the direction of 

traffic. Figure 1 presents the user interface of PARKGAME: On-

street parking spots are presented to the player as green (vacant) or 

red (occupied) dots and a parking lot is represented by a larger 

circle, and the destination is marked by a red flag. A green arrow 

that appears above the car, represented by a blue rectangle, 

functions as a virtual compass and points the driver in the direction 

of the destination. 

The player navigates – advances, accelerates, decelerates and 

takes turns using the keyboard arrow keys. The field of view is 

only 5 parking spaces ahead at any moment; spots further ahead 

remain colorless until the driver approaches them. Although other 

cars competing with the player for free spots are currently not 

included in the interface, the effect of other cruising drivers is 

indirectly represented in the game by a random turnover process 

whereby on-street parking spots are randomly occupied and 

vacated at a preset rate. 

The player can only park at a vacant spot with a maximum 

speed of 12 km/h, similar to real-life conditions [5]. A slider on the 

top right corner of the screen changes from green to red when the 

speed is too high for safe parking. The player parks the car by 

pushing the SPACE button and this ends the game. The software 

then calculates the walking distance from the selected spot to the 

destination. Based on the preset walking speed, it then computes 

the walking time and adds it to the total time of the game. 
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Figure 1. Game screenshot (translated from Hebrew): The player is about to reach the destination (red flag) in a Tel Aviv street, and 

observes a vacancy five parking places ahead (small green circle). Details important for decision-making are presented on the screen. 

Table 1. Cost-related parameters used in the game experiments 

 Parameters Derived parameters 

 Initial 

budget 

B 

Lot parking 

price Coff 

On-street 

parking price 

Con 

Penalty for one 

minute delay 

Lminute 

On-street parking 

maximum gain  

Gon,max = B - Con 

Off-street parking, 

Maximum gain 

Goff,max = B - Coff 

Value (ILS) 20 15 7.5 1.5 20 - 7.5 = 12.5 20 - 12.5 = 7.5 

 

In the game, players are expected to attend a fictional meeting 

in Ta minutes from the start of the game. They start the game with 

a fixed budget B, out of which the on-street Con or lot Coff parking 

costs are deducted, based on the eventual parking choice. Lot 

parking is always available but, to roughly reflect local conditions, 

at double the price of parking on-street, Coff ~ 2*Con. Players cruise 

for parking, park the car and walk to the destination at a constant 

speed of 3.6 km/h = 1m/sec. The total game time is calculated as 

the sum of the search time and walk to the destination. If players 

reach the destination later than Ta minutes from the start of the 

game, they are fined based on a per-minute lateness rate Lminute. 

Thus as in reality, the goal of the player is to find parking quickly 

and close to the destination. The maximum allowed cruising time is 

Tm > Ta and the player that still cruises at Tm is considered to have 

decided to park at a lot at a moment Tm, in which case we overlook 

the time of driving to the lot. The on-street and lot parking costs 

Con and Coff, as well as the remaining time until the meeting, the 

walking time from the current position of the car to the destination 

and the per-minute late fine Lminute, are presented to the player on 

the screen (figure 1). The game administrator’s UI enables 

modifying key game parameters. The output of the game includes a 

detailed log of all the decisions taken by the player during the 

game. 

2.2 Experiment design, participants and procedure 

In pilot experiments, it became clear that in realistic irregular 

street layouts, cruising is strongly affected by the network topology 

and one-way traffic, resulting in confounding effects with 

topology-enforced wayfinding. For this reason the experiment was 

performed on a Manhattan-like city grid of 10X8 blocks. Each link 

is considered as two-way traffic, 90m long with 20 parking spots 

on each side. The on-street occupancy rate r was set very high, to r 

= 99.75%, enforcing long cruising for on-street parking. Every 15 

seconds, several spots were assumed to be occupied by “other” 

drivers an identical number of randomly selected occupied spots 

were vacated. Lot parking was always available. 

The starting point in all games is 315 meters from destination, 

equivalent to ca 1-minute drive at the maximum allowed speed of 

30km/h (figure 2). This starting point is far enough from the 

destination to distinguish between the start of a game and start of 

the parking search, and close enough to avoid unnecessary 

navigation. The parking prices and lateness fee used in the 

experiments are presented in table 1. 

The parking lot was always located down the road beyond the 

destination from the perspective of the player’s starting position 

and direction. The maximum allowed search time Tm was 9 

minutes in all scenarios. 

Cruising behavior of drivers was tested in three scenarios 

(figure 2, table 2). In scenario A, the lot was located 45m from the 

destination, and the time until the expected meeting was 3:00 min. 

At a walking speed of 1m/sec, the walk between the parking lot 

and destination took 0:45 min. Scenarios B and C were devised for 

studying the influences of the parking lot’s location on cruising 

behavior. The distance between the destination and the lot in these 

scenarios is 135m and thus Woff = 2:15 min. Players had less time 

to search for on-street parking in scenario B than in scenario A, 

while in scenario C, the additional walk is seemingly neutralized 

by increasing Ta from 3:00 to 4:30 minutes. 



Table 2. Description of PARGKAME scenarios and their parameter values 

Scenario Time of the 

meeting Ta 

Distance from parking lot to 

destination Doff (m) 

Safe (until fined) 

cruising duration Ts  

Walk from the lot to 

destination woff (min) 
Number of 

participants  

A 3:00 45 2:15 0:45 49 

B 3:00 135 0:45 2:15 10 

C 4:30 135 2:15 2:15 10 
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Figure 2. View of the game area (a) and zoom to the destination (red flag) and lot (grey circle) in Scenarios A (b) and B/C (c) 

 

 

 

 

Figure 2. Game screenshot (translated from Hebrew): The player is about to reach the destination (red flag) in a Tel Aviv street, and 

observes a vacancy five parking places ahead (small green circle). Details important for decision-making are presented on the screen. 

49 participants (30 men and 19 women) holding a valid driving 

license between the ages of 19 to 67 (Avg. = 32, STD = 11) were 

recruited through an online ad to participate in the experiment. The 

participants arrived at the lab after registering online and were 

randomly divided into game sessions of up to 4 players per session, 

based on their availability that day. The sessions took place in the 

computer lab and were run from August 2017 to May 2018. 

After arriving to the computer lab, participants were provided a 

show up fee of ILS30 and signed a mandatory consent form. They 

sat individually, each in front of the computer with 21 inch screens. 

All 49 participants played scenario A. In addition, 10 randomly 

chosen players also played scenario B and another 10 participants 

played scenario C. Five players of each of the latter groups started 

out with scenario A and continued with B or C and five played in 

an opposite order - B or C and then A. 

After a 10-minute oral briefing of the game mechanism and 

scenarios details, players filled in a pre-test questionnaire regarding 

their parking habits as well as basic socio-demographic data. 

Following this they participated in a training session of 4 

consecutive games playing scenario A. The objectives of this 

session were to practice the use of the keyboard, and to get used to 

the on-street parking availability observed in the game. Players 

participating in pilot sessions were debriefed and shown videos of 

their movements in order to ensure that key decisions were 

correctly represented in the game. 

Following the training session, the experimental session 

commenced. At the end of an experimental session, cumulative 

rewards were tallied up and granted to players. 

 

3 RESULTS – TEMPORAL DECISION 
MAKING 

Cruising drivers make two types of decisions at junctions. The first 

decision is whether to continue the search for the uncertain yet 

cheaper on-street parking or head to the certain but more expensive 



 

 

Figure 3. Kaplan-Meier curves (a) and kernel-smoothed hazard rates (b) scenarios A, B and C 

Table 3. AIC value for four parametric survival models 

Parameterization Log likelihood AIC 

Lognormal -308.8 625.5 

Log-logistic -307.9 623.8 

Weibull -321.9 651.7 

Exponential -472.7 951.3 

 

lot. The second decision is where to drive, that is whether to 

approach, remain at the same distance or recede from the 

destination and/or parking lot. In this paper we focus on the former 

choice, and leave the latter for later examination. 

Overall, players parked at the lot in 59% (231 out of 392) of the 

games in scenario (A), 69% (55 of 80) in scenario (B) and 51% (41 

of 80) in scenario (C). Every player parked at the lot at least once 

during the series of 8 games of a certain scenario. The minimal 

number of times a player parked at the lot in a scenario is 2 and the 

maximal is 8. On average, players park at the lot in 4.7 of 8 games 

in scenario A, 5.5 of 8 games in scenario B and 4.1 of 8 games in 

scenario C, with STDs of 1.2, 1.6 and 1.2 respectively. The 

differences between the distributions of the number of lot choices 

in the three scenarios are insignificant (χ2 = 3.32, p > 0.1) 

according to a Kruscal-Wallis test. 

To study the dependence of the player’s decision to quit 

cruising and park at the lot we applied actuarial survival analysis 

[6], where survival means continuing cruising for on-street 

parking. Formally, the survival is relevant for games where players 

parked at the lot before reaching the maximal game time Tm, 

whereas games concluding with on-street parking and the two 

games where players cruised for the entire game time Tm without 

succeeding to park are considered as “right-censored”. 

Figure 3a presents the Kaplan-Meier survival curves – i.e. the 

probability S(t) to continue cruising, in scenarios A, B and C. The 

horizontal axis represents the time t in seconds, and the vertical 

axis shows the fraction of drivers still cruising at time t. The log-

rank test suggests the scenarios' survival curves differ substantially, 

(χ2 = 39.98, df = 2, p < 0.001). Figure 3b presents the 

corresponding kernel-smoothed instantaneous hazard function 

ℎ(𝑡) = 𝑑/𝑑𝑡  log (𝑆(𝑡)) for the three scenarios that reflects the 

instantaneous rate to park off-street at t if a player failed to park on 

street before. 

As evident, the hazard rates h(t) are non-linear in all three 

scenarios: They grow from the start of the game and until shortly 

after the time of the meeting, and many games end with the player 

parking off-street and paying no fine or a minor fine. The hazard 

rates then decrease reflecting players who take the risk of being 

late and continuing cruising despite the fine time. 

To assess the influence of scenario parameters on players’ 

choice to quit on-street parking search we employ parametric 

hazard models. Namely, we fit an accelerated-failure time (AFT) 

model, the analytical form of which is ℎ(𝑡|𝒁) =  ℎ0(𝑡)𝑒𝜷𝒁, where 

𝒁 is a vector of covariates, ℎ0(𝑡) is the baseline hazard that is, the 

hazard function assuming all components of 𝒁 are zero, and 𝛽 is a 

vector of coefficients to be estimated. 

We compare four parameterizations of the basic hazard function 

ℎ0(𝑡): Lognormal, Log-logistic, Weibull and Exponential and 

consider the time until meeting and distance between parking lot 

and destination as covariates. Akaike’s Information Criterion 

(AIC) is applied to compare goodness of fit for different 

parameterizations [7]. 

As can be seen in table 3, the log-logistic and the lognormal 

models provide the best and similar approximation of the 

experimental data and both generate hazard functions that fit very 

well to those presented in figure 3b. The Weibull model and the 

exponential model are the worst. 

The analytical form of the hazard function that is based on the 

best approximating log-logistic hazard is as follows 

    ℎ(𝑡) =  
𝜆

1
𝛾𝑡

[(
1
𝛾

)−1]

𝛾[1+(𝜆𝑡)
(

1
𝛾

)
]

            (1) 

resulting in survival function of the form 

     𝑆(𝑡) =  {1 + (𝜆𝑡)
1

𝛾}
−1

           (2) 

where 𝜆 =  𝑒𝜷𝒁 =  𝑒∑ 𝛽𝑖𝑍𝑖 , 𝑍𝑖 are covariates, and 𝛽𝑖  and 𝛾 are 

estimated from the data. If 1/𝛾 > 1, the conditional hazard first 

rises and then falls, and if 1/𝛾 < 1, it declines monotonously. 



Table 4. Log-logistic AFT regression model output 

 Coef. Std. Err. Z p  

meet_time 0.0070 0.001 6.94 < 0.001 

lot_dist -0.0036 0.0007 -4.60 < 0.001 

constant 3.988 0.1668 23.91 < 0.001 

ln 𝛾 -1.253 0.0443 -28.52 < 0.001 

Log likelihood = -307.906 

 
 

 

Figure 4. Kaplan-Meier curves (a) and kernel-smoothed hazard rates (b) scenarios A, B and C 

The parameters’ estimates for the log-logistic model are 

presented in table 4 and Wald statistic (z), indicates that the 

influence of both covariates is highly significant (p < 0.001). 

As can be seen, 1/𝛾 = 𝑒1.252823.5, indicating non-

monotonous unimodal hazard function, as in Figure 3b. The 

positive value of β for the meet_time indicates longer on-street 

search when the time between the start of the game and the 

meeting increases, while negative β for lot_dist covariate indicates 

shorter search in case the lot is farther away from the destination. 

Given the Log-logistic hazard model, the empirical equation for 

λ is, thus 

𝜆 = 𝑒−(3.99823−0.0036×𝑙𝑜𝑡_𝑑𝑖𝑠𝑡+0.00701×𝑚𝑒𝑒𝑡_𝑡𝑖𝑚𝑒)         (3) 

and the overall survival function is 

   𝑆(𝑡) =  {1 + (𝜆𝑡)3.5}−1          (4) 

while the hazard - conditional probability to decide to quit the 

on-street search and park at the lot, is given by 

    ℎ(𝑡) =  
𝜆3.5𝑡2.5

0.28571×[1 + (𝜆𝑡)3.5]
         (5) 

Figure 4 shows the log-logistic fitted survival curves compared 

to the empirical Kaplan-Meier estimates. As evident the observed 

fit is very good. 

According to (3), a marginal one-second increase in the time 

until meeting (meet_time) increases λ by 𝑒0.0071 ~ 0.007 while a 

marginal one-meter increase in the distance between the lot and the 

destination (lot_dist) that is an additional one second walk 

decreases λ by only half i.e. 𝑒−0.0036 ~ 0.0035. This makes sense 

as the distance between the lot and the destination is important in 

case of parking at the lot only, while the time until meeting always 

affects the game’s outcome. 

 

4 IS CRUISING FOR PARKING RISKY? 

Experimental data make it possible to investigate an issue critically 

important for parking modeling: Do drivers decide to quit the 

search based on the instantaneous stress of being late or is there a 

general search strategy that they apply? To answer this question, 

we propose a theoretically optimal model of player behavior and 

compare it to the experimental results 

Consider a series of games that start at a time moment 0, of 

duration Tm and assume that the player is cruising at the speed that 

is close to the maximal possible (30 km/h) and decreases the speed 

to the parking limit of 12 km/h immediately upon noticing a vacant 

on-street spot. In this case, the time necessary to traverse a 90m 

street link is close to 10 seconds and the appointment time Ta and 

maximum allowed game time Tm can be considered in 10-sec time 

steps. In the model below on-street parking at t is defined as 

“finding a vacant parking spot by the end of time step t” and 

parking at a lot at t is defined as “parking at the lot at the 

beginning of time step t”.  

Parameters of the model are as follows: initial game budget B, the 

cost of parking on street Con and on the lot Coff and fine L10 per 

additional 10-second delay, L10 = Lminute/6. For the average 

occupation rate r, the probability to find on-street parking while 

traversing a random link with its 20 parking spots (that takes a time 

step of 10 seconds) can be estimated as  

          𝑝 = 1 − 𝑟20            (6) 

The accumulated late fine for arriving at the destination is denoted 

below as L(t), and counts down starting from the Ta. For the driver 

arriving at the destination at time-step t, it is  



𝐿(𝑡) = {
 0                                  𝑖𝑓 𝑡 ≤ 𝑇𝑎

 𝐿10 × (𝑡 − 𝑇𝑎)          𝑖𝑓 𝑡 > 𝑇𝑎
   

(7)  

We assume that a player that cruises until the end of the game (Tm) 

and fails to park on-street, parks at the lot at the beginning of time 

step Tm + 1, pays the lot cost, walks to the destination from the lot 

and pays the maximal late fine calculated as L(Tm + 1 + woff). 

The probability of failing to find a vacant on-street parking spot 

during the time interval [0, t] is: 

                (1 − 𝑝)𝑡            (8) 

The gain of a player who parked on-street, if cruised during the 

time interval [0, t] and parked by the end of a time step t is:  

                         𝐺𝑜𝑛(𝑡) = 𝐵 − 𝐶𝑜𝑛 − 𝐿(𝑡 + 𝑤𝑜𝑛)           (9) 

The gain of a player who parked at the lot, if cruising during a time 

interval [0, t] and then parked at the lot at the beginning of time 

step t + 1 is: 

                    𝐺𝑜𝑓𝑓(𝑡) = 𝐵 − 𝐶𝑜𝑓𝑓 − 𝐿(𝑡 + 𝑤𝑜𝑓𝑓)         (10) 

For our experiment design, the walk time after parking off-street is 

woff = 45 sec = 4.5 time-steps in scenario A and woff = 135 sec = 

13.5 time steps in scenarios B and C. The value of won evidently 

varies between drivers and in what follows employ the rough value 

of won = 2 min = 12 time steps in all three scenarios.  

4.1 Optimal strategy of a rational player 

A perfectly rational player is assumed to choose a strategy, 

depending on the game parameters, on the cruising duration of for 

finding on-street parking that results in a maximal possible gain M. 

Based on (8) – (10), the gain M(t) from unsuccessful cruising 

during [0, t], and parking at the lot at t + 1 is: 

𝑀(𝑡) = (∑ 𝑝 ×𝜏= 𝑡
𝜏= 1 (1 − 𝑝)𝜏−1 × 𝐺𝑜𝑛(𝜏)) + (1 − 𝑝)𝑡 × 𝐺𝑜𝑓𝑓(𝑡 + 1)    (11) 

In all three scenarios lot parking price exceeds on-street parking 

price. This is the major reason why 𝑑𝑀(𝑡)/𝑑𝑡 is always positive, 

and thus M(t) monotonously increases in all three scenarios. This 

holds true even if we assume the highest observed won of 200 sec. 

The optimal strategy of a rational player in all scenarios is 

therefore to cruise until the very end of the game. The optimal 

strategy is especially rewarding considering each player 

participated in a series of 8 or 16 games. For the exploited values 

of parameters, the average gain (11) of an optimally behaving 

player will be between 9 – 10 ILS over 8 games, depending on the 

scenario.  

Players that did not follow the optimal strategy presented above 

may be considered as “myopic” that is, sensitive to the events 

during the game and deciding anew, depending on the course of a 

game, whether to continue cruising or quit and park at the lot. In 

the latter case, their decisions are based on the accumulated search 

time t and the experience gained during previous games.  

To understand these players’ choices, we consider a player who 

searched for on-street parking unsuccessfully during the time 

interval [0, t], t < Tm. The average gain K(t, Δt), Δt  1, t + Δt ≤ 

Tm, from the decision, at t, to cruise until t + Δt, and park at the lot 

at t + Δt + 1, is equal to: 

𝐾(𝑡, ∆𝑡) = (∑ 𝑝 ×
𝜏= ∆𝑡−1

𝜏= 0
(1 − 𝑝)𝜏 × 𝐺𝑜𝑛(𝜏 + 1)) + (1 − 𝑝)∆𝑡

× 𝐺𝑜𝑓𝑓(𝑡 + ∆𝑡 + 1)           

(12) 

Dependence of 𝐾(𝑡, ∆𝑡) on t and Δt for the scenario A is presented 

in figure 5, and is similar for scenarios B and C.  

In figure 5, each curve starts at a different t and represents 

𝐾(𝑡, ∆𝑡) - the gain of a player, searching unsuccessfully until t, if 

they continue searching for additional time Δt. For each t, the 

entire curve 𝐾(𝑡 + 1, ∆𝑡) is below the curve 𝐾(𝑡, ∆𝑡) and 

eventually 𝐾(𝑡, 0) becomes negative. In addition, for the values of 

t for which 𝐾(𝑡, 0) is negative, the time Δt1 that is necessary to 

return to a positive-reward state of 𝐾(𝑡,𝑡1) > 0, increases. That 

is, the gain from “cruising a bit longer” for on-street parking 

decreases throughout the course of the game. “Myopic” and, thus, 

bounded-rational players, unlike their rational and “strategic” 

counterparts, may interpret this as the potential reward from a long 

and unsuccessful search that gradually diminishes regardless of 

which course of action they choose. Eventually they become 

discouraged from very long cruising and head to the lot 

prematurely. According to the results presented in section 3, this is 

what indeed happens in our game experiments. Namely, the 

players’ behavior is myopic and they cancel their search soon after 

the fine period starts (Figure 3). None of the players followed 

optimal strategy and only in 2 out of 552 games players played 

until the very end of the game.  

5 DISCUSSION 

As we have demonstrated, PARKGAME players’ behavior can be 

considered risk-averse. They do not follow the optimal strategy 

that is to search until the end of the game. Instead, when the fine 

for being late starts to grow the probability to quit on-street search 

and park off-street grows as well. Shortly after that, the hazard 

function peaks and then starts to decline (figure 3). That is, despite 

general risk aversion tendency, some players in certain games may 

behave in a risk seeking (and optimal) manner and, despite 

accumulating losses, decide to search up to the very end of the 

game. No player behaved in this optimal risk seeking way over 

several games. Thus further experiments are needed to investigate 

the decline of the hazard function. It should be noted that this 

decline may well be considered a game artifact: players were aware 

that the total loss is limited and, thus, additional loss from 

searching to the last minute or two of a game was not substantially 

high. However, recognition of this effect demands a different 

organization of the experiment. 

The choice of when to quit cruising on-street and head to a 

parking lot is well approximated by the accelerated-failure time 

model with the log-logistic hazard function. The parameter γ of the 

log-logistic function is essentially larger than 1 reflecting the 

hazard function with a maximum soon after the time at which a late 

fee for lot-parking starts to accumulate, while parameter λ of the 

accelerated-failure time model increases as the meeting time 

approaches and decreases if the distance between the destination 



 

 

Figure 5. Average gain K(t, Δt), when cruising between t  and t + Δt and then parking at the lot for scenarios A (a 

and parking lot increases. That is, in a very intuitive manner, the 

shorter the time to the meeting and larger the distance between the 

destination and the off-street lot, the higher the probability 

becomes to quit cruising and park at the lot (figure 4). 

The revealed rules of drivers’ parking decisions can be 

incorporated into an agent-based parking simulation model. An 

advantage of the Log-logistic hazard (1) – (2) equations is in the 

estimated coefficients that can serve for the model’s initial 

parameters. Then, the modeler can investigate the consequences of 

stronger or weaker reactions of drivers to the time- and distance 

related factors by varying the parameters of these analytical rules. 

This approach of game-based modeling can benefit the reliability 

of policies and services established using the model. It is especially 

relevant in the context of parking search, where empirical studies 

are scarce and little is known about the dynamics of the process.  

The choice of whether and when to quit cruising and head to the 

expensive parking lot or continue searching for cheaper on-street 

parking is one of two major component of driver’s parking 

behavior. The second major decision that of the search path. We 

leave it for an additional paper. 
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