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Abstract. Mobility-on-Demand (MoD) systems offer a flexible mo-
bility alternative to classical public transportation services in urban
areas. However, a significant part of MoD vehicles operating time
can be spent waiting empty or driving to reach new potential ride re-
quests. Improving vehicle fleet operation is an extremely challenging
problem, as the number of vehicles in operation at a time cannot be
controlled. To cope with this issue, new forms of mobility are being
deployed successfully: for instance, ride-sharing enabled MoD sys-
tems can match riders from several requests. Existing work considers
that the best way to achieve significant performance is to control ve-
hicles. However, travel times are hard to predict in congested traffic,
and optimizing a relocation scheme of empty vehicles can be hard
for large-scale networks and big fleets. In this paper, we take the per-
spective of riders that collaborate with other travellers in order to
walk to locations where they are more likely to get picked up by a
MoD system. We introduce a multi-agent model that accounts for
vehicles, riders and the MoD platform. The aim of this interaction-
based model is to enable riders to dynamically form emergent micro-
communities that physically meet, wait and share a vehicle together
for part of their trip. Our approach is evaluated in a simulation frame-
work that allows to investigate the respective behaviour of vehicles
and riders. Ride requests are generated from New York City taxi
dataset. We show that our approach allows riders to improve their
chance to be picked up and reduce their travel costs while improving
overall efficiency of the fleet.

1 INTRODUCTION

New forms of mobility, such as Mobility-on-Demand (MoD) sys-
tems, offer a competitive alternative to travellers against traditional
taxi services or public transportation options. These new mobility
services offer a fast, private, flexible and personalised travel solution
to individuals. As part of a MoD fleet, vehicles are waiting for trip re-
quests, transmitted from an online MoD booking platform. Profits of
these systems can only be guaranteed if the distance travelled empty
to reach a pick-up location can be balanced with the distance trav-
elled carrying passengers. Variability of mobility demand can make
the MoD fleet management task harder. For instance, in Paris, these
systems have quickly reached their limits when fleet sizes grew too
much [5, 2]. Similarly, in London, a significant increase of the num-
ber of MoD vehicles did not result in an improved level of service.
This can be explained by the constant increase of fuel prices, and
an overall underutilisation of the fleet: it has been estimated that tra-
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ditional taxis can spend up to 40% of their operating time empty,
waiting or looking for new passengers [4].

Recently, major MoD companies launched ride-sharing (RS) en-
abled services (like Uberpool [22] or Lyft Line) that propose re-
duced fares by allowing one vehicle to match several riders with sim-
ilar origin and/or destination. RS further increases the complexity of
vehicle-riders assignment and trip planning. Related work focused
on solutions to optimise shared trips. However, riders (and their ob-
jectives) are often considered as constraints in the assignment prob-
lem [1, 16, 15] and are not directly taking part in the process. A few
approaches [27, 11, 6] include riders objectives in the assignment al-
gorithm, however indirectly, in a RS-enabled MoD system. Existing
centralised approaches provide an efficient solution to the assignment
problem [26, 9, 21], but neglect riders individual objectives.

The goal of our approach is to consider riders as active actors of
the problem, being able to interact with vehicles (or drivers) trying to
reach their own goals: minimising their waiting time and the cost of
their trip. Multi-agent approaches seem particularly suited to tackle
this problem which is, by definition, decentralised, large-scale and
taking place in an uncertain environment. Here, two emergent be-
haviours can be studied simultaneously: travellers can collaborate
and form micro-communities with a common destination; and the op-
portunistic behaviour of vehicles trying to maximise their time driv-
ing with passengers by increasing their occupancy. In this context,
this paper proposes a multi-agent RS-enabled MoD system that al-
lows travellers to self-organise to improve their chances to find a ride
and improve the efficiency at the fleet level. Micro-communities of
riders are emerging from travellers interaction and influence the MoD
system. Our approach is evaluated in a multi-agent simulation, using
ride requests generated from the New York City taxi dataset [17]. We
show that the emergent formation of micro-communities of travellers
allows riders, by walking short distances, to increase their chances to
be picked by a vehicle of the MoD system fleet, reducing overall
waiting times and increasing vehicles occupancy when compared to
a traditional MoD system.

The rest of this paper is organised as follows. Following Section 2
reviews existing work on MoD fleet assignment strategies. Then,
Section 3 introduces our multi-agent model for vehicle-riders as-
signment and riders-riders interaction. In Section 4, the simulation
framework and setup used for evaluation are presented, and results
of experiments conducted using real data are described in Section 5.
Finally, Section 6 gives a summary of the work and presents some
future work directions.

Giuseppe Vizzari
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



2 RELATED WORK

Existing work on Mobility-on-Demand (MoD) systems has gained
interest thanks to the development of Ride-Sharing (RS) enabled
platforms. Advances in autonomous driving technologies enables
new transportation solutions, allowing several users to share the
same journey, in a vehicle without a driver, with the potential to re-
place conventional mobility systems such as taxis with a significantly
smaller fleet [1]. With a fleet composed of autonomous or human-
driven vehicles, the problem of dynamically assigning one or more
riders to a vehicle remains open, as it faces several challenges.

First, the problem is naturally distributed. Mobility demand is gen-
erally asymmetrical, in space and time, and requires to dynamically
redistribute the fleet to optimise the system performance [26]. Cen-
tralised approaches have been developed [9, 21] and are applicable
for a single fleet [23] and a limited spatial scale [24]. However, in
the case of a dynamic fleet, with several competing fleets [18], or
for a larger network, decentralised approaches such as [16, 15] seem
particularly promising. Learning-based techniques [25] (and multi-
agent approaches [6]) enable MoD systems to adapt to demand dy-
namically.

In addition, this problem is multi-actor and multi-objective: users
(passengers/riders) have goals (to minimise their journey time, cost,
etc.) which differ from those of vehicles (to minimise travelled dis-
tances, to maximise the number of passengers, etc.). In their assign-
ment algorithm (multi-passengers), Zhang et al. [27] define a notion
of cost for vehicles, which includes distance constraints for vehicles,
financial cost, and waiting time for users considered in a planned
shared journey. Levin et al. [11] define spatial zones in which poten-
tial passengers automatically agree to share a vehicle already serv-
ing another request, with a preference for users who have waited the
longest. In SAMoD [6], vehicle agents learn to assign themselves to
existing requests, with a preference for users closer to nearby vehi-
cles (empty or not). If this strategy is shown to have a good impact the
average waiting time, some riders might be penalised by longer jour-
neys or longer individual times. Recent approaches also proposed to
compute optimal meeting points for travellers [14, 12], but are not
designed to cope with dynamic and large scale systems such as in
RS-enabled MoD.

Existing work highlights the potential of agent-based approaches
to provide a distributed and dynamic solution to the assignment prob-
lem in RS-enabled MoD systems. Although related work tried to in-
tegrate the users needs in the route selection or during request as-
signment, existing approaches only considered riders goals through
indirect constraints (such as travelled distance or travel time) which
do not accurately reflect individual objectives. Indeed, in these ap-
proaches, travellers are considered (or modelled) as goods since
they do not make any decision (for example, they never individu-
ally refuse a trip, but it is assumed that the booking platform filters
not reachable requests using a fixed and high-level threshold, e.g.,
a maximum waiting time). In this article, we propose a modelling
framework based on reactive agent that allows to specify individual
objectives for the MoD system users. We also enable the emergent
formation of micro-communities of travellers that allow riders to dy-
namically meet and share a journey in an existing RS-enabled MoD
system, increasing their chance to be picked up by a vehicle oper-
ating in the fleet. Our proposal is evaluated as part of a multi-agent
RS-enabled MoD system in an agent-based simulation.

3 A MULTI-AGENT MODEL FOR
RS-ENABLED MoD SYSTEMS

In this section, we present a multi-agent Mobility-on-Demand system
model and describe how riders and vehicles interact in a ride-sharing
enabled mobility environment.

3.1 Overview
The problem of rider-driver assignment (or rider-vehicle assignment
in the case of Autonomous MoD) can be described in a multi-agent
environment. Here agents are vehicles and riders, both trying to ful-
fil their own goals. The MoD booking platform allows vehicles to
access pending requests from riders, and unlike traditional MoD sys-
tems, this information is shared with all riders. This framework is
described in the UML diagram depicted in following Figure 1.

Figure 1. Multi-agent framework used to model the RS-enabled MoD
system.

Each class corresponds to an agent type and implementations are
used to describe agent-agent and agent-environment interaction.

3.2 Physics-inspired agents environment
The environment is a 2D representation of the city road network.
The vehicle decision process is carried out in a virtual environment,
modelled as a dynamic influence field such as a gravitational field.
The presence of an agent has an influence on the shape of this en-
vironment, similarly to the presence of non-void mass objects in a
gravitational field, as illustrated in Figure 2.

Figure 2. Graphical interpretation of agents influence in a virtual
environment through its deformation.

In this virtual environment and similarly to social potential field-
based models [19], functions inspired by Newtonian physics can be
applied during agent’s decision process. Agent perception is here
limited to a close neighbourhood in the environment and used to



compute influences on the agent. By projecting the computed agent
goal from his local perception space to the virtual environment, it
is possible to estimate an agent final decision (for instance, moving
towards his next pick-up location for vehicles).

3.3 Riders and vehicles agents
The behaviour of an agent can be described as a state machine. It
has internal variables and functions allowing it to take a decision.
Decisions are then translated into actions and executed in the envi-
ronment. We define two types of agents: vehicle (or driver in case of
a non-self-driving fleet) and rider.

3.3.1 Rider agents

A rider i is defined by the vector Ri : {Oi, Di, Pi, Ti, Ji, Si|fcit}
where Oi is its origin (where the request is created), Di its destina-
tion, Pi its field of view, Ti time of the request creation, Ji denotes
its impatience, Si its current state and fcit is an internal function that
drives the agent decision. fit uses all the other agent parameters to
minimize the waiting time and the cost of the trip. To remain active
in the environment, each rider agent must keep an impatience gauge
below 100%, otherwise, we assume that the client leaves the system
(completing its trip using an alternative transportation mode) and his
request is recorded as unserved. Riders tend to exhibit a gregarious
behaviour: each rider tries to minimize is own waiting time and the
cost of the journey by moving (walking) in the environment to form
groups of riders.

3.3.2 Vehicle (or driver) agents

Each vehicle Vj is defined by a field of view Pj , a working time Tj

and the number of free seats Cj . Similarly to riders, each vehicle has
an internal function called fdjt that traduces its objective of maxi-
mizing profit: Vj : {Pj , Tj , Cj |fdjt}. Each vehicle tries to pick-up
more passengers and attempts to avoid travelling empty. The behav-
ior of a vehicle can be divided into two phases: waiting (vehicle is
empty waiting for new requests) and traveling (with at least one rider
on board).

3.3.3 Behaviours

Interactions of an agent i are limited to its perception (close neigh-
bourhood as defined in its filed of view Pi. The final behaviour of
an agent results from the sum of interactions calculated by the agent
with other entities (other agents and the environment). As opposed
to related work that pre-compute meeting points for both riders and
vehicles [14, 12], our approach accounts for the mutual and dynamic
influence of both riders and vehicles movements in the environment.
We defined 4 types of interaction, as follows:

• Rider-rider interaction: this interaction is modeled as a simple
linear attraction force defined, for agent i, as follows:

∀Ai ∈ A and ∀Aj ∈ Pi,
−→
Fai = Ji.Ai.Aj (1)

where A is the set of agents, Pi is agent Ai perception, composed
of other riders with a similar destination. Knowledge of riders
destinations in Ai neighborhood is shared by the MoD platform.
Ji is a factor that modulates the force according to the impatience
of the client. This interaction can be illustrated as elements sliding
in a gravitational well, resulting in mutual attraction for riders

Figure 3. Example of a set of riders forming micro-communities. Each
color denotes a particular destination.

with similar destination, thus this leads to the emergence of small
groups of riders that gather in a close location. The emergence of
such a micro-community is illustrated in the following Figure 3.

• Rider-vehicle interaction: To reduce the waiting time of riders,
we enable them to walk to a location where he is more likely to be
pick-up by a vehicle, by meeting more riders with a similar des-
tination, hence making the newly formed group more attractive
to the MoD system vehicles. When a vehicle passes (or plans to
drive) near a potential rider, and goes in the same direction, the
MoD system sends a notification containing the coordinates of the
meeting point (on the current trajectory of the vehicle, where rid-
ers should meet). This meeting point is defined taking into account
the capacity of the vehicle and its dynamics (i.e., a vehicle will
be attracted if he can accommodate all the riders that are waiting
there. Attraction to this point is calculated as a linear force:

∀Ai ∈ A and Cj ∈ Pi and Cj 6= ∅,
−→
Fci = β.Ji.Ai.Aj (2)

whereA is the set of agents,Cj denotes a shared meeting point, Pi

is agent Ai perception, composed of requests with a similar desti-
nation. Factor Ji modulates the force according to the impatience
of the rider and β denotes the rider ’laziness’ (which also tunes
how far a rider is willing to walk to join a micro-community). An
illustration of computed meeting points for riders is given in Fig-
ure 4.

• Vehicle-vehicle interaction: for empty (waiting) vehicles, this in-
teraction acts as a repulsive force computed through a classical
Newtonian repulsion force in 1/d2, where d is the distance be-
tween two vehicles. Considering two agents i and j located at po-
sitions Di and Dj , this force can be expressed as:

−→
Frij =

~DiDj∥∥∥ ~DiDj

∥∥∥2 (3)

for each agent i such as
∥∥∥ ~DiDj

∥∥∥ < IR, where IR denotes
the agent perception radius. This repulsion helps to rebalance
vehicles in the environment, by ensuring a more even coverage of
available cars.



Figure 4. Example of meeting points (dots) computed on expected
vehicles trajectories (dotted lines), in the same configuration as in Figure 3

Each color denotes a particular destination.

• Vehicle-rider interaction: vehicles tend to be attracted by rid-
ers, and the intensity of this attraction is weighted by the number
of riders going to a similar destination and located close to each
other (for instance, forming a micro-community). All riders (even
individually) impact vehicles trajectories, as follows:

∀Ai ∈ Pj , ~Fdai = αJi.Ai.Vj (4)

where A is the set of agents in the vehicle perception Pj , Vj is the
current vehicle, α is a representation of free seats in vehicle.

The definition of these interactions allows to place agents in a vir-
tual environment. Each agent state can be computed using Newton’s
law of motion and taking into account all influences (agents, desti-
nation, environment) in the agent frustum. For this computation, the
environment model is considered to be continuous and decision is
triggered every discrete time step, by the environment. Let ~γi denote
agent i acceleration and m its mass, then:

~γi =
1

m
(
−→
Fri +

−→
Foi) (5)

By substituting all the forces by their expressions (Equations 1 to 4)
and integrating twice, the following equation is obtained:

~Zi(t) = ~Zi(t− 1) +

(
~Vi(t− 1)δt+

(δt)2

2m

(−→
Fri +

−→
Foi +

−→
Fdi

))
(6)

where ~Zi(t) = (xi(t), yi(t)) and ~V is the resulting velocity vector.
The sum of all forces applied to an agent (attraction and repulsion)

is used to compute its speed in the virtual environment. Each time
step, a new position is then computed according to the vector ~Zi(t),
as illustrated in Figure 5.

The sum of these interactions leads to the observation of an emer-
gent behaviour. Customers tend to gather in small communities while
drivers move to the areas with the largest community. This results in
the apparition of common meeting points that act as temporary taxi
stations, which locations can dynamically adapt to demand in time
and space.

4 SIMULATION SET-UP
To evaluate our approach, we proposed an implementation of our RS-
enabled multi-agent MoD system in a novel simulation framework.

Figure 5. Example of the path followed by a vehicle to its destination and
resulting from the successive interaction with riders from pending requests

and other cars.

4.1 Simulation framework

Some of the well-known transportation simulation platforms include
TRANSYT [20], CORSIM [8], and MITSim [3]. Each of them is de-
signed with a different granularity, and each might be used for differ-
ent applications as well. More recently, the advances in multi-agent
technology have also motivated researchers to construct simulations
that are capable of treating individual actors inside a transportation
system as agents. Some notable open-source multi-agent simulation
projects include MATSim [10] and SUMO [13]. After benchmark-
ing, the latter did not show enough flexibility and genericity by de-
sign to be extended for our needs, and we opted for the development
of a new and lighter simulation framework, less ambitious but more
in line with our needs.

We designed the Python reActive Multi agEnt pLAtform
(PAMELA), as an open source simulator designed for various multi-
agent applications. PAMELA is written in python and respects ob-
ject and agent paradigms. The Core source of PAMELA is generic
and offers a large number of abstractions to enable a personalised
simulation (for instance, to design different applications). In this pa-

Figure 6. PAMELA simulation framework overview.

per, we focused on modelling RS-enabled MoD vehicles and riders
behaviours. Traffic conditions are considered homogeneous and are
therefore not modelled explicitly. This simplifies the specification
of PAMELA environment, however, it should not have an adverse
impact on the realism of the simulation, since MoD fleet vehicles
only constitute a small percentage of all vehicles and we assume they
can operate on dedicated lanes (e.g. sharing bus lanes). A simplified



overview of PAMELA framework is depicted in Figure 6.

4.2 Scenarios

To generate ride requests, we used the open New York City taxi
dataset [17], limiting the scope of this study to the lower Manhattan
area (up to 14th Street). We extracted recorded trips from 4 consec-
utive Tuesdays (in July 2015) to extract a typical weekday demand.
From this set of requests, we specifically filtered trips between 7 and
10 a.m., corresponding to the highest demand period. The final set
of requests we obtained counts 11,728 trips (for 18,288 passengers,
with a number of passengers per request ranging from 1 to 5). Each
vehicle in the simulation has a capacity of 5 riders. Ride requests
are created dynamically and rider agents are initialised according to
their pick-up location. To evaluate the behaviour of our MoD system
under different loads, we created several scenarios, as summarised in
the following Table 1:

Table 1. Simulation scenarios used in evaluation.

Scenarios FCFS MAS 1 MAS 2
Fleet size (# of vehicles) 75 75 75 then 120
Vehicle speed (km/h) [0;50[ [0;50[ [0;50[
Vehicles capacity (# of seats) 5 5 5
Rider walking speed (km/h) 0 3 3
Rider max. walking distance (m) 0 500 500

We choose to compare two MoD systems, implemented in
PAMELA:

• FCFS: a traditional centralized MoD system that relies on the first
come first serve (FCFS) rule. FCFS can be summerized by a sim-
ples rules : une request by vehicle, no sharing, no rebalancing of
empty fleet vehicles, no adaptative policy.

• MAS: our proposal; a multi-agent RS-enabled MoD system that
allow riders to walk short distances and vehicles to react to pend-
ing requests (following the interaction model presented in Sec-
tion 3).

The first scenario (FCFS) is our baseline scenario, showing the be-
haviour of a traditional MoD system. For our proposal, we evaluated
the impact of two different fleet sizes, selected to show a case where
supply is static and not sufficient to fulfill the demand (MAS 1) and
then a dynamic demand where 45 additional vehicle agents are added
to the simulation 200 min after simulation starts (MAS 2). The latter
scenario (MAS 2) was designed to determine the expected limit of
fleet size scaling.

4.3 Metrics

To evaluate if the respective objectives of vehicles and riders are met,
we studied the following list of indicators:

• Number of passengers per vehicle: allows to observe if riders
are sharing their trips and if vehicles are serving more than one
request at a time. A higher value usually results in a better effi-
ciency at the system level.

• Number of kilometers without passengers: this indicator
records empty trips of vehicles (e.g. when driving to pick up new
requests). From both vehicles and the system perspective, lower
values indicate a better operation of the fleet.

• Riders waiting times: the percentage of unserved requests is di-
rectly linked to riders waiting time; after waiting 10 min, we as-
sume that the request is discarded and the trip is cancelled. One
objective of our approach is to increase the chances for riders to
be selected by a vehicle, meaning that overall waiting times should
be reduced.

• Riders walking distance: our model introduces an incentive to
walk short distances for riders. We expect that our proposal al-
lows for shorter waiting times at the cost of a few hundred meters
walked by riders to meet others to share a ride.

• Travelled distance: by allowing ride-sharing, vehicles can take a
short detour to pick up more passengers, and the introduction of
a vehicle/client interaction in the model tends to incentive drivers
to take routes that pass closer from pending requests. Therefore,
paths taken by vehicles can be less direct than the shortest path
between one request origin and destination.

• Unserved requests: indicates the overall level of service reached
by the MoD system, assuming that a request not assigned to a
vehicle within 10 min is considered as unserved.

5 EVALUATION
The evaluation of our approach has been carried out in the PAMELA
simulator. We investigated the behaviour of riders and vehicles in
two different set-ups: (1) our proposal (MAS), an RS-enabled MoD
system where riders and vehicles influence each other and where rid-
ers can walk to meet and form micro-communities and (2) a baseline
modelling a traditional MoD system where riders are served on a
first-come first-served (FCFS) basis. FCFS baseline allows to have a
first comparison with the most-used model in related work. We eval-
uate the performance of the two MoD systems from the perspective
of vehicles and riders, then at the system level.

5.1 Effects on vehicles
We begin our investigation by studying the effect of rider-vehicle,
vehicle-rider and rider-rider interaction from the vehicles perspec-
tive.
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Figure 7. Empty travelled distance for the MoD fleets.

Figure 7 shows the distance travelled by vehicles without any pas-
sengers. Vehicles spend less time looking for passengers with MAS
approach as compared to FCFS. This confirms that the combination
of vehicle-vehicle interaction and vehicle-rider interaction allows
empty cars to better distribute on the network and to find pending



requests more easily. Reducing empty travelled distance in MoD
systems directly links to more profits from the system perspective,
traducing a better use of the operating fleet. However, further
investigation of the number of passengers travelling in vehicles is
required to confirm that vehicles are not solely travelling for a single
request at a time.
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Figure 8. Average number of passengers travelling in a vehicle.

Vehicles occupancy is shown in Figure 8. We observed that en-
abling ride-sharing, in combination to vehicle-* forms of interaction
leads to an increased number of passengers on board. While most
trips are happening with a single passenger in the FCFS baseline, this
trend is completely reversed for our proposal: here, most of MAS ve-
hicles carry between 3 to 4 passengers. This confirms that vehicles’
objectives defined in the model are met, allowing at the same time for
shorter empty travelled distance and an increased overall occupancy.

5.2 Impact on riders
As our proposal introduces more flexibility for riders, enabling them
to dynamically form micro-communities and meet on expected vehi-
cles routes, results should confirm this can benefit to riders. Figure 9
depicts the distance travelled by riders to reach their destination.
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Figure 9. Observed distances travelled by riders in a vehicle.

Results show that riders journeys are longer with our approach:
MAS allows vehicles to take a detour to serve more requests. The
average additional distance travelled by riders in MAS is 971 me-
ters, which corresponds to an extra 3 minutes travel time. FCFS uses

direct trips from riders origin and destination, showing the shortest
distance riders could expect to travel when they are not sharing a
vehicle.
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Figure 10. Distribution of riders waiting times for each model.

This short detour and extra travel time is however balanced by
much shorter waiting times for riders, as highlighted by Figure 10. In
our simulation set-up, we observed that while average waiting time in
FCFS is around 5 to 6 minutes, a significant proportion (around 25%)
of riders have to wait 9 min. Similarly to related work [27, 6], we set
a timeout when riders waiting time reaches 10 min. The distribution
depicted in Figure 10 then suggests that in FCFS, a significant num-
ber of requests are discarded after riders waited too long. In MAS,
on average, a rider will wait 3 minutes less than in a FCFS system
before being assigned to a vehicle. This arises from the movement
and attraction that riders have on vehicles (which is weighted by the
riders group size).

However, to form micro-communities, riders need to walk and a
major part of the acceptability of the system is to ensure that walking
distance can be reasonable. In our simulations, we observed that 26%
walked to meet other riders (Figure 11), and 31% walk towards a
vehicle pick-up location (Figure 12). In total, 44.1% of riders walked.
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Figure 11. Walking distance for rider-rider interaction.

In MAS, riders can walk for a maximum of 400 m to meet new
riders and form micro-communities. The distribution of walking dis-
tance from riders to riders is depicted in Figure 11. We observed
a uniform distribution of walking distances, suggesting that rider-
rider interaction is symmetrical, and solely depends on the riders ori-
gins. This can be explained by the definition of rider-rider interac-
tion (Equation 1) that does not account of the riders individual group



100 200 300 400
walking distance per request

0.000

0.001

0.002

0.003

Pr
op

or
tio

n

To Vehicle

Figure 12. Walking distance for rider-vehicle interaction.

size. This influence could be further investigated by tuning this in-
teraction. From Figure 12, we observed that riders walk on average
112 meters before meeting a vehicle, confirming that this extra dis-
tance, which can easily be covered, should not significantly impact
the system acceptability.

5.3 System performance

From the MoD fleet system perspective, one of the most important
metric to maximize is the overall level of service i.e., minimizing the
number of requests missed by vehicles or discarded by riders.
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Figure 13. Evolution of the number of unserved requests during
simulations.

Figure 13 allows to compare the efficiency of FCFS, MAS 1, and
MAS 2: a variant of MAS 1 where 45 additional vehicles are intro-
duced 200 minutes after the simulation starts. First, MAS in general
shows a better overall efficiency, serving more requests than FCFS
thanks to ride-sharing and riders interactions. The increased number
of vehicles in MAS 2 also confirms that the performance at the sys-
tem level depends on the fleet size. Interestingly, while FCFS shows
a stable number of unserved requests, both MAS 1 and MAS 2 seems
to improve over time. This is due to the vehicle-vehicle interaction,
that results in a more evenly distributed relocation of empty car on
the network. Further rebalancing schemes should however be inves-
tigated in both FCFS and MAS to estimate the potential gain of this
behaviour when compared to centralized strategies.

5.4 Discussion

The results presented in this section confirm the benefits of emer-
gent micro-communities formation in an RS-enabled MoD system.
However, simulations also highlighted that the benefits for riders are
balanced by additional travelled distance (detours taken by vehicles
when riders share a trip) and short walking distances (to both meet
other riders and/or reach a potential vehicle route). Under our sim-
ulation set-up, this additional times (respectively on average 3 mins
in-car and up to 10 mins walking) were limited but can be impor-
tant for the acceptability of the system, hence would require fur-
ther investigation. The additional walking distance observed is how-
ever under the threshold (500-600m) commonly accepted by related
work [14, 12]. We also showed that, while vehicles tend to be at-
tracted by larger groups of riders, we defined rider-rider interaction
without accounting for the individual groups sizes. A modified form
of this interaction could result in different micro-communities forma-
tion and its influence on vehicles and the system should be studied.

6 CONCLUSIONS AND FUTURE WORK

This paper investigated a novel approach to further improve the ef-
ficiency of a fleet of vehicles operating in a ride-sharing enabled
Mobility-on-Demand system. While existing research focuses on op-
timising vehicle-riders assignment or tries to better balance the fleet
to anticipate upcoming demand, existing approaches consider the
MoD fleet management problem by taking the perspective of the fleet
manager. We studied how riders (i.e. MoD system customers) objec-
tives could affect the behaviour of vehicles and how could riders take
part in the decision when assigning cars to requests. Our proposal
is to enable riders, by sharing information about current pending re-
quests, to walk and meet at a specific location where they are more
likely to find a vehicle to drive them to their destination. In addi-
tion, we wanted to model how larger groups of travellers (that we
called micro-communities) can impact the behaviour of vehicles (or
drivers).

We proposed a multi-agent model where we defined 4 different
types of interaction, which account for the mutual effect riders and
vehicles can have between each other. This allows to design, through
a virtual environment ruled by physics-inspired influences, complex
behaviours that can benefit at the system level: cars tend to rebalance
by avoiding to stay to close from each other when waiting empty;
riders from several requests can meet and then walk to a cross a po-
tential vehicle route; and vehicles take small detours to get closer to
pending requests. Within a simulation framework and by comparing
our proposal to a traditional MoD system, we have shown that it is
possible to increase the quality of service and the efficiency of a fleet
of vehicles on demand by allowing flexibility and self-organisation,
enabling to better cover both vehicles and riders objectives. First re-
sults, when increasing fleet size, tend to show that our approach can
scale dynamically, but further evaluation is required to investigate
how the model would react to a growing number of requests.

When discussing the results, we highlighted some future work
avenues that should be investigated. For instance, our multi-agent
model could be easily extended to allow riders to adapt their be-
haviour to several MoD fleets in competition [18] or to different
transportation mode options available. Riders, similarly to vehi-
cles [7], could learn the locations where they are more likely to en-
counter cars based on historical data. Traffic congestion should also
be integrated in the riders and vehicles decision, allowing pick-ups
or drop-off in close and less busy roads.
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