
AIR-BAGEL: An Interactive Root cause-Based
Anomaly Generator for Event Logs

Jonghyeon Ko, Jongyup Lee, Marco Comuzzi
Department of Industrial Engineering

Ulsan National Institute of Science and Technology (UNIST)
Ulsan, Republic of Korea

{whd1gus2, belllight, mcomuzzi}@unist.ac.kr

Abstract—We describe AIR-BAGEL, a tool12 to generate
pseudo-real trace-level anomalies in event logs. Anomalies to be
injected are defined by their root cause, i.e., resource behaviour
or system malfunctioning. For each root cause, several anomaly
types can be specified, e.g., deleting, replacing or moving events in
a trace. Root causes and anomalies have been modelled based on
existing literature on event log cleaning and data quality analysis.
AIR-BAGEL addresses the issue of unavailability of labelled real
world event logs for developing and evaluating event log cleaning
and reconstruction techniques and it represents a step forward
compared to current approaches in the literature that simply
inject different types of anomalies randomly in event logs.

Index Terms—event log, data quality, anomaly, process mining,
event log cleaning.

I. INTRODUCTION

Event logs captured in the real world are prone to errors [1].
These can stem from a variety of root causes, such as sys-
tem malfunctioning or human mistakes, resulting in different
types of errors, such as abnormal activity labels, or missing,
duplicated, and swapped events [1]–[8]. Errors in event logs
hamper the possibility of extracting useful insights from event
log analysis. For instance, they clearly influence the models
obtained through process discovery and the fitness computa-
tion in conformance checking. Therefore, one should aim at
removing these errors before running event log analytics.

If a process model is available or can be discovered from
clean traces, then errors can be detected using traditional
conformance checking techniques. However, in many cases
a process model is not available. Event log anomaly detection
or cleaning has emerged recently as a new field in process
mining developing techniques to identify anomalies in event
logs without assuming the existence of a process model [1].

To be evaluated, event log cleaning techniques require event
logs in which traces and events are labelled, i.e., whether
normal or anomalous. When such techniques exploit machine
learning algorithms, labelled logs are also necessary for train-
ing/testing during model development. Unfortunately, labelled
real world event logs are not available among the ones3 usually
considered within the process mining community. Therefore,
researchers in this field have relied on artificially injecting
anomalies into real or simulated event logs.

1Github (including tutorial): https://github.com/jonghyeonk/AIR-BAGEL
2Screencast video: https://shorturl.at/wRY04
3e.g., at https://data.4tu.nl/repository/collection:event logs real

Anomalies of different types are normally injected randomly
into event logs at different ratios, i.e., until a target ratio of
existing traces and/or events have been modified to become
anomalous [1]. As far as existing tools are concerned, event log
generation tools, e.g., PLG2 [9] and PTandLogGenerator [10]
allow to perturb an event log obtained through simulation of
a process model by randomly changing the order of events in
a trace or randomly deleting/adding events in a trace, but they
do not allow injecting anomalies generated by more complex
patterns or into already existing event logs.

In the real world, anomalies are generated by complex
organisational situations. Anomalies in an event log, in fact,
normally are linked to specific root causes [2], [3]. These
can be classified, at least at a first high level of analysis,
into two categories: resource and system. The former refers
to human resources involved in a process being the source of
anomalies. Resource A, for instance, may be sloppier at their
job than resource B, and therefore cases in which A is involved
may have more events skipped or wrongly recorded than the
ones involving B. The latter refers to anomalies associated
with malfunctioning of systems supporting the execution of
processes. System A, for instance, may have malfunctioned for
a specific amount of time on a specific day; as a consequence,
depending on the type of malfunctioning, the events happening
in that specific time window may be missing from the log or
have been erroneously recorded, e.g., moved to a different
case.

This paper describes AIR-BAGEL, an interactive tool for
anomaly injection in event logs that aims at simulating pseudo-
real anomalies. The idea behind AIR-BAGEL is to asso-
ciate the injected anomalies with specific root causes, i.e.,
the behaviour of resources or system malfunctioning. AIR-
BAGEL injects anomalies at the level of order and occurrence
of activities in a case, e.g., skipping or replacing events in
a trace in an event log. The tool outputs event logs with
injected anomalies augmented with case-level anomaly binary
labels and other attributes required to reconstruct the type of
anomaly that was injected. The main objective of AIR-BAGEL
is to provide the process mining research community with a
simple tool to generate pseudo-real anomalies in existing event
logs, so as to enable the development and evaluation of event
log cleaning approaches using event log anomalies that better
resemble the ones that could be encountered in the real world.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

The next section gives an overview of the tool, while
Section III and IV describe more in detail the features and
the maturity of AIR-BAGEL, respectively. How to access and
install the tool is described in Section V, while conclusions
are drawn in Section VI.

II. OVERVIEW

AIR-BAGEL generates pseudo-real anomalies applying two
types of root causes, i.e., resource and system. It is assumed
that each event in a log has two attributes, one identifying
the (human) resource in charge of executing the task to
which an event refers and one identifying the system used
for recording the task. Since this information, particularly
the system attribute, is often not available in an event log,
AIR-BAGEL also allows to generate these two attributes.
The user can specify the existence of a given number of
resources/systems and associate them with specific classes of
events in the process.

As far as generating anomalies is concerned, when resource
is the root, since each resource may have different job com-
petency, experience, and behaviour, e.g., new employees are
more prone to do mistakes than longer tenured ones, AIR-
BAGEL firstly creates a distribution of probabilities for each
resource in the log to commit an error while logging an event.
This distribution may also be set manually if needed. Then, it
allows to specify what type(s) of error the resources are likely
to commit, e.g., forgetting to record an event or recording an
event as a different one. When system is the root, the time
and occurrence of one or more malfunctioning of each system
may be specified by a Poisson random process or manually-
specified. Then, the type of malfunctioning must be specified,
e.g., whether it concerned skipping the registration of events,
i.e., similarly to a system down, or recording a wrong label
for events. Specifically, AIR-BAGEL considers 8 pseudo-real
patterns of anomaly types caused by the resource root and 3
caused by the system root. These are discussed in the detail
in the next section.

The output of AIR-BAGEL is an event log having the
same attributes of the input event log in which (i) additional
resource and/or system columns are created if required, (ii)
anomalies have been injected according to specific patterns
and (iii) events and cases are augmented with additional labels
to support evaluation of event log cleaning and reconstruction
techniques. In particular, for each event, one label recording
whether the event belongs to a case that has become anomalous
is created. This label supports the evaluation of event log
cleaning techniques. Other attributes are created to record the
detail of the type of anomaly, such as the position at which an
event was skipped in a case. This type of information supports
the evaluation of event log reconstruction techniques aiming
at explaining the type and cause of trace anomalies.

III. ARCHITECTURE AND FEATURES

The usage workflow of AIR-BAGEL includes 3 steps (see
Figure 1): (i) data import and preprocessing, (ii) root parameter

Step 2

Step 3

Import
event log

Step 1

Set
key attributes

Set
resource‘s failure probability

Preprocessing

2.1. (A) Parameter setting
for resource root

Set
events of system
malfunctioning

Set types of anomalies
with parameter

and simulate incident processes

2.1. (B) Parameter setting
for system root

2.2. Fault injection

Export
event log with

anomalies and statistics

Fig. 1. AIR-BAGEL usage workflow

setting and anomaly injection, and (iii) output evaluation and
data export.

Data import and preprocessing. The tool provides basic
import functionality.4 In particular, the tool tries to guess
the meaning of columns and the format of timestamps in an
event log using basic pattern matching. The user, however,
can override the matching if incorrect. After an event log has
been imported, if necessary AIR-BAGEL supports a user to
configure and generate artificial attribute values for resource
and/or system.

Root parameter setting and anomaly injection. The next
step for the user is to specify the root of anomaly injection
(resource or system). It is also possible to inject anomalies
considering both roots at the same time.

Then, for the resource root cause, the probability of a
specific resource to inject an anomaly into an event has to be
specified. This can be done by selecting and parameterizing
one of three possible distributions: exponential(parameter λ),
normal(µ, σ), and uniform(a, b). When injecting anomalies, a
value is drawn from the specified distribution for each value
of the resource attribute in the log. Alternatively, the user can
specify the probabilities for each resource manually. This value
represents the probability that an event involving this resource
will be affected by an anomaly.

For the system root, the user must specify the time of oc-
currence and duration of system malfunctioning occurrences.
This can be done manually, or by specifying the value of the
parameter λ of a Poisson process that models the distribution
of inter-arrival times of system malfunctioning (which sets the

4Only import/export of event logs in csv format is supported at the moment.

A B C D E F

time

< Fault by a resource >

• Normal :

1 2 4 6 7 9

A B D E F

time
• Skip :

1 2 4 6 7 9

A B E F

time

• Form-based :

(max_length= 2)

1 2 4 6 7 9

A B D E F

time

• Switch :

1 2 4 6 7 9 10

A B EC

A B D E F

time

• Insert :
(max_length= 1)

1 2 4 5 6 7 9

C K

D
C

A B D E F

time

• Rework :

(max_length= 2)

1 2 4 6 7 9

C
C
C

Case_1

Case_2

A B D E F

time

• Moved :

(time_difference= 6)
1 2 4 5 6 7 9 10

C

A B

time

• Incomplete :

1 2 4 6 7 9

C

A B D E F

time

• Replace :

1 2 4 5 6 7 9

CK

< Malfunctioning of System_1 from t=3 to t=8 >

Sys_1 Sys_1

A B C D E F

time

• Normal :

1 2 4 6 7 9

A B D F

time
• Skip :

1 2 4 6 7 9

A B F

time

• Form-based :

1 2 4 6 7 8 9

A B

time

• Cut :

1 2 4 6 7 9 10

C D FE

Case_2

D E
C

Case_1

(a) Examples of anomaly injection for the resource root

(b) Examples of anomaly injection for the system root

Fig. 2. Examples of anomaly injection by root causes

start timestamp of malfunctioning occurrences) and the values
of the parameters a and b of a uniform distribution from which
the duration of the malfunctioning will be sampled (which sets
the end timestamp of malfunctioning occurrences).

Next, the user decides which type of anomalies will be
applied for each root cause to events that have been se-
lected as being anomalous, because the corresponding resource
behaviour fault probability or because they fall within the
occurrence of a system malfunctioning. Multiple types of
anomalies may be defined. If multiple types are defined for
a given root, then a strength parameter determines how likely
is each type to be chosen in respect of others when injecting
an anomaly for a given event.

Specifically, anomalies are injected to events ordered in
ascending timestamp order. In particular, once a case becomes
anomalous, i.e., because one of its events has been modified

according to an anomaly type, no other anomalies of the same
root will be applied to events of the same case. Multiple
anomalies implied by different root cases can be applied to
the same trace. Therefore, an individual trace will be injected
with at most two types of anomalies, one for the resource root
and one for the system root cause.

As stated earlier, we consider a total of 11 anomaly types, 8
for the resource root and 3 for the system root. Anomaly types
have been modelled based on previous research on event log
cleaning and event log data quality analysis [1]–[8]. They are
exemplified in Fig. 2 and described in detail next:

A. Resource root anomalies

These anomalies are defined by replacing the target event
that has been designated as anomalous (event C in Fig. 2) with
other events, skipping it or moving it to a different case.

• Skip: The target event is deleted from the log [3]–[6].
This may occur when a resource forgets to record a task
that they executed;

• Form− based(max length): A group of max length
consequent events including the target event is assigned
the timestamp of the latest event in the group. This
typically occurs when information about these events is
collected in a single form [7]. Note that, when events
have the same timestamp, traces are likely to be defined
by the lexicographic order of event activity labels, which
may introduce anomalies;

• Switch: The target event is moved to a different case
chosen randomly;

• Insert(max length): max length event(s) are ran-
domly generated by controlling their timestamp so that
they are inserted right after the target event. For instance,
in a hospital, a resource may guide a patient to visit
a wrong department to receive treatment. Events such
as registration at this wrong department may be logged
before the patient is redirected to the correct place to
receive treatment [4], [5];

• Rework(max length): The target event is recorded
multiple times. For instance, a resource might click the
‘enter’ button twice by mistake, recording 2 events of the
same type [3], [4], [6];

• Moved(time difference): The timestamp of the target
event is modified of a quantity time difference. For
instance, a resource might record a wrong time for a task
in the future or the past by mistake [3]–[5], [7];

• Incomplete: All the events after the target one are
deleted from the case. For instance, a resource may have
an emergency and leave their workplace, therefore failing
to record the last events of a case [6], [8];

• Replace: The activity of the target event is replaced by
a different one chosen randomly. For instance, a resource
may record by mistake the name of the customer or
another activity as the activity label in one or more
events [1].

B. System root anomalies

The target event(s) in this case are the ones executed by a
specific system during its malfunctioning.

• Skip: The target events are deleted. This is the typical
example of system down malfunctioning [3]–[6];

• Form− based: Similarly to the same anomaly type for
the resource root, the target events are assigned the times-
tamp corresponding to the end of the malfunctioning.
This may occur because of system lagging: the recording
of one or more events is delayed until a system that has
become unavailable goes back online [7];

• Cut: All the events after the start of the malfunctioning
are cut to form a new case. For instance, after a system
reboot, the case ID of the active cases may be reset,
leading to the creation of a new case ID [7].

Output evaluation and data export. After having configured
the root causes and anomaly types, AIR-BAGEL now can start
to generate anomalies in the event log. When the process
is completed, the tool provides a statistical summary of the
anomalies injected. The tool also allows to show or download
the process models discovered using the inductive miner [11]
with standard parameter settings from the original log and the
log with injected anomalies. These process models give a first
visual cue on the impact of injecting anomalies into an event
log. Finally, the tool allows to export the event log injected
with anomalies and augmented with additional anomaly label.
Details about the attributes added by the tool are described in
detail in the companion tutorial document.

IV. MATURITY

The tool is at an early development stage and far from being
mature, particularly from a user experience standpoint. Yet,
it provides a complete implementation of several pseudo-real
anomaly injection patterns. The user experience can be im-
proved by providing a better look-and-feel, a more streamlined
workflow, possibly including feedback from extensive testing
with students, and migrating to a Web-based interface.

As far as the functional requirements are concerned, we are
currently working on the following extensions: (i) supporting
the XES event standard format for import/export of event logs,
(ii) implementing a finer-grained control of anomaly types,
supporting users in specifying anomaly types for individual
or groups of resource/system roots, and (iii) improving the
summary information shown in the last step. We are also
developing pre-defined anomaly injection scenarios to support
non-expert users. Finally, by design the tool does not allow to
control the overall injected case anomaly ratio, i.e., the ratio of
cases that become anomalous as a result of anomaly injection.
We are extending the tool to give an early estimate while set-
ting the anomaly injection parameters of the number of cases
that will be affected. This feature is particularly important
when evaluating new techniques for event log cleaning and
reconstruction in a systematic way.

V. ACCESS AND INSTALLATION

The tool is a stand alone Python application. The
source code is available at https://github.com/jonghyeonk/
AIR-BAGEL. A tutorial document explaining the installation
procedure and discussing more details about the parameters
required to configure the anomaly injection process is available
at the same location. AIR-BAGEL has been tested for Python
3.6. It requires the installation of tk/tkinter, the Python
Imaging Library, and PM4Py [12]. For convenience, a pre-
configured Ubuntu 20.04-based virtual machine image that
could be imported by popular hosted hypervisors has also been
made available and can be downloaded at: shorturl.at/kmHN2.

VI. CONCLUSIONS

We have presented AIR-BAGEL, a tool to inject pseudo-
real trace-level anomalies in event logs. The tool contributes
to the process mining community by providing a means to
generate event log anomalies modelled around the concepts
of root cause and pseudo-real anomaly types, rather than
simply injected randomly. It can be used to generate logs for
evaluating event log cleaning and reconstruction approaches
and to support the training/testing of those approaches that
use machine learning algorithms.

REFERENCES

[1] H. T. C. Nguyen, S. Lee, J. Kim, J. Ko, and M. Comuzzi, “Autoencoders
for improving quality of process event logs,” Expert Systems with
Applications, vol. 131, pp. 132–147, 2019.

[2] F. Bezerra and J. Wainer, “Algorithms for anomaly detection of traces
in logs of process aware information systems,” Information Systems,
vol. 38, no. 1, pp. 33–44, 2013.

[3] K. Böhmer and S. Rinderle-Ma, “Multi-perspective anomaly detection in
business process execution events,” in OTM Confederated International
Conferences. Springer, 2016, pp. 80–98.

[4] T. Nolle, S. Luettgen, A. Seeliger, and M. Mühlhäuser, “Binet: Multi-
perspective business process anomaly classification,” Information Sys-
tems, p. 101458, 2019.

[5] S. Budalakoti, A. N. Srivastava, and M. E. Otey, “Anomaly detection and
diagnosis algorithms for discrete symbol sequences with applications to
airline safety,” IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), vol. 39, no. 1, pp. 101–113, 2008.

[6] R. P. J. C. Bose, R. S. Mans, and W. M. P. van der Aalst, “Wanna
improve process mining results?” in 2013 IEEE Symposium on Compu-
tational Intelligence and Data Mining (CIDM), 2013, pp. 127–134.

[7] S. Suriadi, R. Andrews, A. H. ter Hofstede, and M. T. Wynn, “Event log
imperfection patterns for process mining: Towards a systematic approach
to cleaning event logs,” Information Systems, vol. 64, pp. 132–150, 2017.

[8] K. Diba, S. Remy, and L. Pufahl, “Compliance and performance anal-
ysis of procurement processes using process mining,” in International
Conference on Process Mining, 2019.

[9] A. Burattin, “Plg2: Multiperspective process randomization with online
and offline simulations.” in BPM (Demos), 2016, pp. 1–6.

[10] T. Jouck and B. Depaire, “Ptandloggenerator: A generator for artificial
event data.” BPM (Demos), vol. 1789, pp. 23–27, 2016.

[11] S. J. Leemans, D. Fahland, and W. M. van der Aalst, “Scalable
process discovery with guarantees,” in Enterprise, Business-Process and
Information Systems Modeling. Springer, 2015, pp. 85–101.

[12] A. Berti, S. J. van Zelst, and W. van der Aalst, “Process mining for
python (PM4PY): bridging the gap between process-and data science,”
arXiv preprint arXiv:1905.06169, 2019.

