CEUR-WS.org/Vol-2705/short2.pdf

Off-the-shelf Components for Quantum
Programming and Testing

Claudio Gomes®?, Daniel Fortunato®, Joio Paulo Fernandes® and Rui Abreu’

?CISUC — Departamento de Engenharia Informatica da Universidade de Coimbra, Portugal
bFaculty of Engineering of the University of Porto, Portugal
“Instituto Superior Técnico, University of Lisbon, Portugal

Abstract

In this position paper, we argue that readily available components are much needed as central contribu-
tions towards not only enlarging the community of quantum computer programmers, but also in order
to increase their efficiency and effectiveness. We describe the work we intend to do towards providing
such components, namely by developing and making available libraries of quantum algorithms and
data structures, and libraries for testing quantum programs. We finally argue that Quantum Computer
Programming is such an effervescent area that synchronization efforts and combined strategies within
the community are demanded to shorten the time frame until quantum advantage is observed and can
be explored in practice.

Keywords

Quantum Computing, Software Engineering, Reusable Components

1. Introduction

There is a large body of compelling evidence that Computation as we have known and used for
decades is under challenge. As new models for computation emerge, its limits are being pushed
beyond what pragmatically had been seen in practice. In this line, Quantum Computing (QC) has
received renewed worldwide attention. Having its foundations been thoroughly studied, mainly
from the point of view of its physical implementation, their potential has, even if preliminarily,
is currently being witnessed.

A quantum computer can potentially solve various problems that a classical computer cannot
solve efficiently; this is known as Quantum Supremacy. Examples include scalable simulations
of quantum systems in physics, efficient modelling of chemical reactions, and fast breaking of
encryption codes in cryptography.

In an article published in Nature in October 2019, Google describes how using a self-built
54-qubit processor correctly executed, in only 200 seconds, a benchmark that even the world’s

Q-SET’20: 1st Quantum Software Engineering and Technology Workshop, October 13, 2020, Denver — Broomfield,
Colorado, USA

EMAIL: gomes@student.dei.uc.pt (C. Gomes); daniel.b.fortunato@tecnico.ulisboa.pt (D. Fortunato); jpf@dei.uc.pt
(J.P. Fernandes); rui@computer.org (R. Abreu)

URL: http://dei.uc.pt/~jpf (J.P. Fernandes); https://ruimaranhao.com/ (R. Abreu)

ORCID: 0000-0002-1952-9460 (J.P. Fernandes); 0000-0003-3734-3157 (R. Abreu)

© 2020 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

14


mailto:gomes@student.dei.uc.pt
mailto:daniel.b.fortunato@tecnico.ulisboa.pt
mailto:jpf@dei.uc.pt
mailto:rui@computer.org
http://dei.uc.pt/~jpf
https://ruimaranhao.com/
https://orcid.org/0000-0002-1952-9460
https://orcid.org/0000-0003-3734-3157
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

REQUIREMENT
GATHERING &
MAINTENANCE ANALYSIS

DESIGN

DEPLOYMENT
QUANTUM ALGORITHMS
& DATA STRUCTURES
VERIFICATION &
VALIDATION (V&V)

Figure 1: Software Development life-cycle (colored boxes are the focus of this position paper).

fastest supercomputer would have taken an estimation of 10,000 years to complete; this way
showing the so-called quantum supremacy.

In a follow-up, IBM has disputed the foundations of such estimation, and mainly the claim
that quantum supremacy has been reached. IBM’s argument is mainly about the assertion that
a properly crafted supercomputer could have reached the same result even more efficiently than
the Google quantum computer. However, no empirical demonstration was provided to support
such assertion. In essence, Google’s experiment provides clear evidence of the progress that has
been made in terms of superconducting-based quantum computing. IBM itself has also made
substantial progress to build universal quantum computers to support business, engineering
and science.

The field of QC is evolving at a pace faster than people originally expected. For example, in
September 2020 Honeywell announced a that its revolutionary quantum computer based on
trapped-ion technology with achieved a quantum volume 128 — the highest quantum volume
ever achieved, and twice as the previous state of the art. Quantum volume is a unit of measure
indicating the fidelity of a quantum system. This important achievement shows that the field of
quantum computing may reach industrial impact much sooner than originally expected.

While the fast approaching universal access to quantum computers is bound to break several
computation limitations that have lasted for decades, it is also poses major challenges in many,
if not all, computer science disciplines. It is well known, e.g., that the foundations of modern
cryptography based on the prime number factorization problem will have to be reconsidered.

In this position paper, we propose to explore the potential and study the implications of QC
under the lenses of Software Engineering, which entail several phases during for the development
life-cycle (see Figure 1). Despite there is the need to also advance the state-of-the-art of the
other phases, we propose to focus on the phases of implementation and validation of quantum
programs, both when considered in isolation, and in a hybrid approach that combines quantum
and classical programs. We argue that these two phases are the much needed work to make
quantum programming accessible to people outside the quantum mechanics world.

15



Our initial goal, which is described in Section 2, is to propose abstraction mechanisms to
improve the state of the art in terms of quantum software implementation. As the current
approaches to quantum programming also resort to quantum gates, they require a significant
effort from programmers. We will provide more efficient development mechanisms by imple-
menting a library of (hybrid) algorithms and data structures whose classical implementation is
well known and widely used. This library will be published as an open source artifact that the
community can build upon.

Furthermore, approaches to perform verification and validation of quantum programs are
essentially lacking and largely unexplored. In fact, having implemented a quantum program,
the current practice to try to establish its correctness is to run the program multiple times and
observe its probable result. Although programmers can already run a program on a quantum
computer, there is no abstraction layer to make testing, let alone verification or validation,
more effective. As described in Section 3 We will propose black-box methods to efficiently test
programs running on a quantum computer. Black-box methods are especially suited because,
due to the underlying classic quantum mechanics, one cannot observe the inner workings of
a quantum program without altering the program’s state and the final result, as measuring a
qubit destroys superposition.

2. Quantum algorithms and data structures

In 1976, in the title of his landmark textbook[1], Niklaus Wirth coined a famous equation in
Computer Science: Algorithms + DataStructures = Programs.

The sharpness of the equation supports the argument that mastering programming can not
be achieved without the combined knowledge of both algorithms and data structures.

When defining a data structure, one’s goal is to represent an entity from the real world as a
string of bits in such a way that queries about that entity can be established efficiently. Studying
data structures aims precisely at finding the sweet spot between the length of the bit string and
the time it takes to answer queries on it.

Problems associated with data structures are often divided into two categories: static and
dynamic. For static problems, we are essentially interested in being able to answer queries over
a data structure. For dynamic problems, we additionally want to be able to efficiently change
the data structure content.

We propose to study and implement data structures in quantum processing units both for
static and dynamic problems. A concrete research challenge that the quantum context entails
is that query operations typically need to inspect, or measure, the (qu)bit string, which may
irreversibly alter the corresponding data. This differs from the classical context in the sense
that now we will also need to consider how many times one can use a data structure.

We will start by targeting classical data structures with quantum access before moving on
to explore fully quantum data structures. In the former model, data is stored in classical bits,
which can be accessed quantumly. While this approach is certainly constructive, it has been
shown that for most problems, it has no (asymptotical) advantage over classical data structures.
We will then move on to the fully quantum realm, where data is encoded in qubits instead of
bits, and where we have access to all the operations that are provided in quantum computing.

16



We will also considered extensively and in depth the quantum-setting algorithmic counterpart
of Wirth’s equation.

Quantum computation models have originally been studied in the 1980s and algorithms to
explore quantum computing started appearing in the early 1990s, even if back then quantum
computational devices were essentially theoretical.

Two of the most well known quantum algorithms are Shor’s polynomial-time algorithm for
prime factorization and discrete logarithm and Grover’s algorithm that can efficiently search
data in an unstructured database.

While the groundbreaking nature of these well known algorithms can not be denied, a
challenge that we face here is that they are not possible to be executed in the near-term.
While near-term hardware implementations (of less than a hundred qubits) have recently been
developed, their limitations pose significant challenges regarding the development of practical
algorithms, the ones we propose to target. Nevertheless, a number of NISQ algorithms have
already been proposed, namely the Variational Quantum Eigensolver[2] and the Quantum
Approximate Optimization Algorithm [3], which demonstrate the feasibility of the approach.

The development of quantum algorithms is particularly challenging since it requires a combi-
nation of skills which include, e.g., quantum mechanics and complexity theory, as well as a deep
computer science background. This will be strategically considered by representing different
profiles to supervise and conduct the associated workplan.

The outcomes of our work will be made publicly available as open source tool sets that can
benefit the entire community. These artifacts will target multiple platforms that are already
available for general-purpose quantum computing such as IBM Qiskit or Google’s Cirq.

3. Validation and verification (V&V) of quantum programs

Quantum programming is challenging as quantum programs are necessarily probabilistic and
impossible to examine without disrupting execution. This difficulty is compounded by the fact
that quantum programs are difficult to test and/or debug.

In the Classical Computing realm, V&V has been extensively addressed. Classical computing
V&V techniques, however, cannot be applied off-the-shelf.

Consider, e.g., two standard techniques for debugging programs: breakpoints and print
statements. In a quantum program, printing the value of a quantum bit entails measuring it and
printing the returned value (i.e., measuring a qubit), which destroys superposition. Unit tests are
similarly of limited value when a program is probabilistic; repeatedly brute-forcing/running unit
tests on a quantum computer may be prohibitively expensive. Simulating quantum programs
on a classical computer holds some promise but requires resources exponential in the number
of qubits, so simulation cannot help in the general case.

In the context of Quantum Computing, V&V is still in its infancy[4]. A venue that has been
explored is to reason about a quantum program with vectors, as vectors do not collapse when
being analyzed. As formal verification is parametric in its inputs, one can prove properties of
that algorithm for arbitrary arities given as arguments. Preliminary advances have been shown
in a recent work using techniques like induction and algebraic reasoning[5].

We argue that, in part, the lack of study in the field may be attributed to the fact that

17



programming languages available for QC are still essentially low-level, operating at the level of
quantum gates [6, 5]. However, Quantum Programming languages are emerging [7, 8]. While
high-level constructs aim at improving productivity, they also aim to allow programmers to
express even more complex computations.

In this context, we aim to devise novel optimized quantum testing techniques to help develop
high quality quantum programs, thus leading to more confidence when deploying the envisioned
future safety and mission-critical applications of quantum computing in the long-term. Thus,
we will attempt to build theoretical foundations complemented with technologies for testing
quantum programs and, therefore, ensuring the dependability of quantum applications.

Another challenge of addressing V&V within Quantum Computing is that the systems of the
future will be hybrid, in the sense that the majority of software features will still be implemented
‘classically’, while computation-intensive features may be delegated to quantum components.
This means that our studies need to combine strategies that have demonstrated useful in the
classical setting with innovative ones that suit the quantum setting.

We will start by exploring the applicability of the classical computing technique cause elimi-
nation, which is a debugging technique that formulates hypotheses (using inductive/deductive
reasoning) by specifying a root cause for a bug under analysis. Then, data inputs and ex-
periments are crafted to refute or prove the hypothesis. We argue that this approach suits
quantum computing. Given the probabilistic nature of the QC programs[4], we plan to extend
the techniques used for testing probabilistic programs running on CC [9] to the QC domain.
Moreover, as this technique requires the program to be executed multiple times, possibly with
different inputs, we will also explore strategies to generate inputs to quantum programs (by
adapting the ever popular fuzzing techniques - which will require strategies to generate inputs
for testing quantum programs). Finally, the multiple executions, leveraging the logs, we will
propose semi-automated techniques to pinpoint the root cause of faulty programs[10].

All the techniques and approaches will not only be offered within an IDE but also seam-
lessly handle problems in both quantum and classical programs (i.e., hybrid programs) to ease
adoption.

4. Conclusions

Computing in its current form is very much limited to address problems that scale linearly
with the problem size. In turn, quantum computing is expected to be a true game changer, as
it theoretically promises polynomial and exponential speedups. Numerous projects focus on
hardware advances to enable this computation, but the awareness of this opportunity for the
perspective of the user (e.g., developers of quantum programs) is still lagging behind.

In this position paper, we propose a roadmap to advance the state-of-the-art of design and
development of quantum programs from the perspective of (quantum) software engineering.
To achieve this vision, and similar to today’s development of classical programs, we argue
that the research community needs to focus its efforts in developing quantum algorithms
and data structures as well as techniques of validate and verify quantum programs. These
developments will offer off-the-shelve components and libraries that will help programmers
to develop quantum programs without the need to fully understand the underlying (quantum

18



mechanics) technologies.

A key on the development of these approaches is to have the right abstraction such that
fields ranging from business economics, computer science, computer engineering and electrical
engineering are able to develop their applications. This abstraction will only be achieved if
researchers from different domains collaborate amongst themselves.

Acknowledgements

That authors would like to thank Shaukat Ali, Marco Pistoia, and Koen Bertels for the countless
discussions on defining a roadmap for Quantum Software Engineering.

References

(1]
(2]

(6]
(7]

(8]

(9]

[10]

N. Wirth, Algorithms + data structures=programs, Prentice-Hall, Englewood Cliffs, N.J,
1976.

A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-
Guzik, J. L. O’Brien, A variational eigenvalue solver on a photonic quantum processor,
Nature Communications 5 (2014). URL: http://dx.doi.org/10.1038/ncomms5213. doi:10.
1038/ncomms5213.

E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm applied
to a bounded occurrence constraint problem, 2015. arXiv:1412.6062.

A. Miranskyy, L. Zhang, On testing quantum programs, 2019 IEEE/ACM 41st International
Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER) (2019).
URL: http://dx.doi.org/10.1109/ICSE-NIER.2019.00023. doi:10.1109/icse-nier.2019.00023.
R. Rand, Formally Verified Quantum Programming, Ph.D. thesis, University of Pennsylva-
nia, 2018.

A. W. Cross, L. S. Bishop, J. A. Smolin, J. M. Gambetta, Open quantum assembly language,
2017. arXiv:1707.03429.

A.S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, B. Valiron, Quipper, ACM SIGPLAN
Notices 48 (2013) 333-342. URL: http://dx.doi.org/10.1145/2499370.2462177. doi:10. 1145/
2499370.2462177.

What are the Q# programming language and QDK? - Microsoft Quantum, https://docs.
microsoft.com/en-us/quantum/language/?view=gsharp-preview, 2020. Accessed: 2020-10-
03.

S. Dutta, O. Legunsen, Z. Huang, S. Misailovic, Testing probabilistic programming systems,
in: Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2018, Association for Computing Machinery, New York, NY, USA, 2018, p. 574-586. URL:
https://doi.org/10.1145/3236024.3236057. doi:10.1145/3236024.3236057.

W. E. Wong, R. Gao, Y. Li, R. Abreu, F. Wotawa, A survey on software fault localization,
IEEE Transactions on Software Engineering 42 (2016) 707-740.

19


http://dx.doi.org/10.1038/ncomms5213
http://dx.doi.org/10.1038/ncomms5213
http://dx.doi.org/10.1038/ncomms5213
http://arxiv.org/abs/1412.6062
http://dx.doi.org/10.1109/ICSE-NIER.2019.00023
http://dx.doi.org/10.1109/icse-nier.2019.00023
http://arxiv.org/abs/1707.03429
http://dx.doi.org/10.1145/2499370.2462177
http://dx.doi.org/10.1145/2499370.2462177
http://dx.doi.org/10.1145/2499370.2462177
https://docs.microsoft.com/en-us/quantum/language/?view=qsharp-preview
https://docs.microsoft.com/en-us/quantum/language/?view=qsharp-preview
https://doi.org/10.1145/3236024.3236057
http://dx.doi.org/10.1145/3236024.3236057

	1 Introduction
	2 Quantum algorithms and data structures
	3 Validation and verification (V&V) of quantum programs
	4 Conclusions

