
Supporting Smart Cities Modeling with
Graphical and Textual Editors

Francesco Basciani1, Maria Teresa Rossi2, and Martina De Sanctis2

1 University of LAquila, Italy
francesco.basciani@univaq.it

2 Gran Sasso Science Institute, L’Aquila, Italy
{mariateresa.rossi,martina.desanctis}@gssi.it

Abstract. Smart cities are characterized by their complex structures
made by different dimensions (e.g., living, mobility) managed by differ-
ent stakeholders (e.g., public/private administrations) that not always
communicate with each other. Indeed, smart cities include a huge num-
ber of diverse aspects from different contexts, ranging from technical
to societal aspects. Modeling every context is challenging but required.
Towards this direction, in this paper, we present a modeling editor for
smart cities realized by exploiting Model-Driven Engineering techniques.
We started by designing the data analytics context, while leaving the
extension to further contexts as future work. The editor shows both a
graphical and textual view and is devoted to stakeholders for the design
of smart city models in an intuitive and easy way.

1 Introduction

Smart cities are characterized by their complex structures made by differ-
ent dimensions (e.g., living, environment, mobility) managed by different stake-
holders (e.g., public and private administrations, service providers). Moreover,
they are composed by different physical and technological infrastructures, ser-
vice platforms, IoT devices. Due to the heterogeneity characterizing the smart
cities domain, it might be challenging monitoring the functioning and evolution
of the smart cities [7]. Moreover, the lack of communication among stakeholders
might compromise the possibility of having a global vision of a smart city, thus
causing difficulties for the public administration in defining, for instance, new
public policies. Yet, due to the ongoing digital revolution [3], smart cities tech-
nologies are continuously evolving. This asks for a way to easily model smart
cities environments allowing the integration of new technological systems.

The typical challenges of this domain can be handled by exploiting Model-
Driven Engineering (MDE) techniques (e.g., [10]), supporting the creation of
abstract and understandable models. In this artifact paper, we present a mod-
eling editor for designing smart cities by focusing on the data analytics context.

Copyright 2020 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).



10 F. Basciani et al.

It aims at supporting stakeholders in the creation of smart city models in an
intuitive and easy way. The editor exhibits both a graphical and a textual view,
and it fulfills the main requirements for modeling editors. Eventually, we show
the usage of the editor and its main features.

2 Background

In this section, we report about modeling editors in different contexts, and we
give an overview of the smart cities’ domain. We further extract the requirements
that, in our opinion, a modeling editor for smart cities should meet.

2.1 Modeling Editors

In the literature, modeling editors are used in different contexts.

In [5] the authors present OntoUML Lightweight Editor (OLED), a model-
ing environment to build, evaluate, and implement models written in OntoUML,
which is an ontologically based language for Ontology-driven Conceptual Mod-
eling. It allows the design of real-world contexts enabling the interoperability
between different ecosystems. In the context of Petri Nets, a modeling develop-
ment work-flow, supporting users from the model design to the final controller
code generation is presented in [9]. The editor allows the interactive design and
editing of Petri Net models, and it is deployed as a web service. In [4] the au-
thors propose a graphical modeling editor to design accessible media players.
Here, the focus is mainly in supporting accessibility through the identification of
accessibility requirements used for the development of media players. Another
modeling editor is reported in [8], where a tool in the context of Safety Analysis
Modeling Language (SAML) is provided. It aims to be a solution to deal with
the complexity of software-intensive systems.

As regards the smart cities domain, in [10] the authors present a Domain
Specific Language (DSL) to model smart cities systems showing a high number of
heterogeneous devices (e.g., sensors, platforms, communication protocols). Here,
the DSL is a tool for smart city experts that do not have knowledge in software
engineering. Thus, they developed a metamodel, a concrete syntax made by the
combination of a textual and a graphic representation of the concepts defined in
the metamodel, and a definition of the proposed DSL semantics. However, the
authors only rely on the TreeEditor provided by Eclipse Modeling Framework
(EMF), without developing a standalone editor by exploiting languages devoted
explicitly to this, as we do in this work.

The reported works demonstrate, from one side the relevance of modeling
editors in supporting the automatic management of models in diverse contexts.
From the other side, they highlight that it does not exist a modeling editor for
smart cities devoted to its heterogeneous contexts.



Supporting Smart Cities Modeling with Graphical and Textual Editors 11

2.2 The Smart Cities Domain

Due to its continuously evolving nature, the smart city concept has not yet been
clearly defined. In this work, we build on the definition given in [6], where a
smart city is defined as “an instrumented, interconnected, and intelligent city.
Instrumented refers to sources of near-real-time real-world data from both phys-
ical and virtual sensors. Interconnected means the integration of those data into
an enterprise computing platform and the communication of such information
among the various city services. Intelligent refers to the inclusion of complex
analytics, modeling, optimization, and visualization in the operational business
processes to make better operational decisions.”. Indeed, smart cities are made by
different dimensions belonging to different contexts, spanning from mobility to
education, passing through the environment. Moreover, each smart city involves
different stakeholders, such as those dealing with its management (e.g., public
administrations, municipalities), those exploiting its services (e.g., citizens), and
those acting as service providers for the city (e.g., transport companies, cultural
organizations). The backbone of a smart city is further represented by several
physical and technological infrastructures supporting both the management of
the city and the monitoring of its functioning. These bring to the availability of
a massive amount of data that must be stored, managed, integrated to extract
useful information about the smart city. Data analytics has become a hot topic
in the smart cities domain since it strongly supports the smart decision-making
process performed by the smart governance authority. For instance, in [11] the
authors expose the issues related to the presence of massive-scale infrastructures,
thus of ever-increasing the amount of data.

2.3 Requirements for Modeling Editors

As inspired from [8], we list some general requirements that we think our mod-
eling editor for smart cities must satisfy, as follows.

R1 Modeling support refers to the need of supporting users during the modeling
phase (e.g., syntax highlighting auto-completion, code snippets).

R2 Error detection, both in the syntax and semantics at modeling time.

R3 Automation of the model transformation and analysis by means of model
checkers that run into the editor.

R4 Understandable representation of the results of the model checkers.

R5 Project versioning support to allow the integration of external versioning
tools (e.g., svn, git).

R6 Staging and evolution support of the realized models.

R7 Modeling support of a great amount of data generated by the smart cities
infrastructure.

We used the listed requirements as a guideline for the development of a user-
friendly smart cities editor to support the stakeholders of smart cities.



12 F. Basciani et al.

3 A Modeling Editor for Smart Cities

In this section, we describe the two artifacts making the modeling editor for
smart cities. We started by specifying a subset of the smart city concepts, de-
signed in a smart city metamodel, also defining the relations among them. On
top of it, we built a graphical and textual editor to support smart cities mod-
eling. Both editors are based on EMF, which means that in creating a smart
city instance, both can act on the same model. This implies that whenever the
changes made to the model are saved by one of the two editors, these are auto-
matically reflected in the other editor, keeping the synchronization between the
two editors. We highlight here that the provided metamodel, thus the editor,
only refer to the data analytics context. Thus, the editor represents a trivial
but exhaustive example of the support it would give to stakeholders. Eventually,
both the metamodel and the editor are open for future extensions.

3.1 Smart Cities Metamodel

In Fig. 1 we show a portion of the smart city metamodel, specifically the one
focusing on data analytics and infrastructures. The SmartCityModel is specified

Fig. 1. Smart Cities Metamodel

as a composition of 1 . . . ∗ SmartCity, thus, to model different smart cities. Each
SmartCity can be, in turn, composed of several entities, which have been orga-
nized in three packages, namely Infrastructure, DataAnalytics, and Stakeholder.



Supporting Smart Cities Modeling with Graphical and Textual Editors 13

As regards the Infrastructure package, we refer to both the physical and orga-
nizational structures and facilities needed for the operation of a smart city. We
assume that a smart city can rely on a PublicInfrastructureLayer that can be
composed of different InfrastructureComponent, one for each infrastructure set
up in the city. For instance, we modeled a MonitoringInfrastructure that can be
composed of several IoT devices, modeled as IoTDevice and defined by the at-
tributes model and location, giving details on the specific device and its physical
position. IoTDevice can be further specialized in Sensor and Actuator. The Data-
Analytics package defines the concepts required to describe the data related to
a smart city. Thus, here we find the generic concept of Data, as part of a Data-
Package, that is further specialized in different types of values (i.e., StringValue,
RealValue, IntegerValue, BoolValue). Moreover, data may originate from different
sources. As inspired by [1], we modeled a Source for each Data that, in turn,
can be specialized in different types. More precisely, we consider that we can
gain data from SocialMedia, from an OpenData dataset, or that we can obtain
ProvidedData from third-parties, e.g., a smart city Stakeholder, for a given rea-
son. Often, in this case, data are provided in a specific format depending on
the request reason. Both the SocialMedia and OpenData components are defined
by the attribute url pointing to the specific resource location of data. Lastly,
the Stakeholder package contains the before mentioned Stakeholder component.
It allows designers to model every type of smart cities stakeholders (e.g., private
and public institutions, companies), which can act or not as data providers.

3.2 Smart Cities Editor

The smart cities metamodel presented in the previous section has been imple-
mented as an EMF/Ecore[2] artifact. Both textual and graphical editors have
been realized3.

The textual editor has been developed by means of Xtext4, which is an Eclipse
project for developing DSLs. Starting from the specification of the grammar of
the language, the Xtext framework supports the implementation of a full in-
frastructure, including parser, linker, type-checker, compiler as well as editing
support for Eclipse. The editor provides modelers with typically expected fea-
tures like syntax highlighting, code completion, and outlines.

The graphical editor is developed by relying on Sirius5, which is an Eclipse
project supporting the development of graphical modeling workbenches by lever-
aging the Eclipse Modeling technologies, including EMF and the Graphical Mod-
eling Framework (GMF). A typical workbench developed with Sirius is composed
of a set of Eclipse editors (diagrams, tables, and trees), which allow the users
to create, edit and visualize graphical representations of EMF models. The ed-
itors are defined by a metamodel, which defines the complete structure of the
modeling workbench, its behavior, and all the editing and navigation tools. The
graphical editor comes with a palette containing tools allowing users to create

3 https://github.com/gssi/MoSC2020 4 https://www.eclipse.org/Xtext/
5 https://www.obeodesigner.com/en/product/sirius



14 F. Basciani et al.

new model elements (see Fig. 2). Specifically, the palette contains tools to create
Entity elements, Attribute within entities, and relationships between the same
entities (Relation). For this work, the editor has a dedicated palette with spe-
cific tools w.r.t. the concepts defined in the smart cities metamodel. For each
modeled element, in the Eclipse Property view it is possible to give a value to its
attributes. It is important to remark that the graphical editor prevents problems
of inconsistency between the tools in the palette. In other words, it is not possible
to create elements that are not those expected from the language metamodel.
For instance, the Attribute tool in the palette’s Entity section can be inserted
only within Entity elements. The editor also allows modelers to hide elements
in the canvas to make it easier to view and develop big models.

Modeling tools have been designed also to give early feedback about the
specified models. In particular, models are analysed by a set of checks each
devoted to the discovery of possible issues. Even though the analysis tools include
ready to use checks, it is possible to extend the system by specifying additional
checks that modelers might want to add for the particular models at hand.

In particular, we added further custom validation rules in addition to the
structural ones provided by the Ecore metamodel for the textual and graphical
editor to give the user early feedback as they type and draw. Specifically, we used
Xtend6 programming language for specifying the checks on the textual editor,
while for the graphical editor, we used validation expressions written through
Acceleo Query Language (AQL)7. In addition to these, we also used the Epsilon
suite, and specifically Epsilon Object Language (EOL)8 and the Epsilon Valida-
tion Language (EVL)9, that can be used to specify and evaluate constraints on
models of arbitrary metamodels and modeling technologies. EVL also supports
interdependencies between constraints (e.g., if constraint A fails, the constraint
B cannot be evaluated), customizable error messages to be displayed to the user,
and specifications of fixes (in EOL) can be invoked to repair inconsistencies (see
an example in Fig. 6).

Morover, the language permits to handle the severity of validation result by
means of: (i) Constraints: they are used to capture critical errors that invalidate
the model; (ii) Critiques: they are used to capture non-critical situations that
do not invalidate the model, but should nevertheless be addressed by the user
to enhance the quality of the model.

4 Evaluation

To show the usage of the smart cities modeling editor, we used it to model two
medium-sized Italian cities, i.e., Bolzano and L’Aquila, located in different areas
of the country (i.e., north, center) and showing similarities and differences, as
highlighted in the models. Then, we discuss how the editor meets the before-
mentioned requirements.

6 https://www.eclipse.org/xtend/ 7 https://www.eclipse.org/acceleo/documentation/
8 https://www.eclipse.org/epsilon/doc/eol/ 9 https://www.eclipse.org/epsilon/doc/evl/



Supporting Smart Cities Modeling with Graphical and Textual Editors 15

Figs. 2 and 3 show the graphical and textual representation of the model for
the smart city of L’Aquila, respectively. For the city of L’Aquila, an instance of

Fig. 2. Graphical representation of the model for the city of L’Aquila.

Stakeholder called TIM (line 5 in Fig. 3) is the provider of the Data composing the
DataPackage instance NetworkCoverage (lines 18-22 in Fig. 3). In particular, we
modeled three instances of Data, i.e., 3GCoverage, 4GCoverage and 5GCoverage.
Moreover, the Stakeholder CityCouncil (line 4 in Fig. 3), modeling the city munic-
ipality, is the provider of the Data in the DataPackage CityStatistics (lines 23-26
in Fig. 3). The statistics modeled here, i.e., CityExt and CityPop refer to the city
area in km2 and the total population. We modeled also some OpenData sources
(lines 6-8 in Fig. 3) that provide the data composing the three DataPackage in-
stances: AirMonitoring (lines 11-17 in Fig. 3), BikePaths (lines 27-29 in Fig. 3)
and GreenAreas (lines 30-32 in Fig. 3). In particular, the service BreezoMeter10

gives live air pollution, pollen, and fires information of a selected geographical
area. PisteCiclabili.com11 provides the Italian bike paths at the provincial and
municipal levels. Regarding the information about the green areas, we gain the
TotalGreenArea data by the service Atlante Statistico dei Comuni12.

In Fig. 4 we report the graphical representation of the smart city of Bolzano
model. We can see that, differently from the model for L’Aquila, in the data
package NetworkCoverage we can have only the data instances 3GCoverage and
4GCoverage due to the lack of 5G coverage in this city. Regarding the data
package GreenAreas, the provider is Open Data Alto Adige13. Eventually, in this
model, we designed a data package, called SharedVehicles that is composed of
the data about the units of SharedBicycles provided by the service Bici Bolzano.

10 https://breezometer.com/ 11 https://www.piste-ciclabili.com/
12 http://asc.istat.it/ 13 http://daten.buergernetz.bz.it/



16 F. Basciani et al.

Fig. 3. Textual representation of the model for the city of L’Aquila.

For the city of L’Aquila, it has not been possible to design such data package
because of the lack of sharing vehicle services in the city. The described models
show the usage of the editor through an intuitive graphical palette supporting
users in modeling the different features of a smart city.

Editor’s Evaluation Against Requirements. Here, we map the presented editor
w.r.t. the requirements listed in section 2.3.

R1 Modeling support : This requirement is explicitly satisfied by the textual
editor that provides useful features like syntax highlighting, code completion,
and outlines, as shown for instance in Fig. 5.

R2 Error detection: As regards the detection of errors at modeling time, in our
approach, we can define syntax rules, by exploiting EVL features, as already said
in section 3.2. Fig. 6 reports an example of a syntax error detection (i.e., the name
of a SmartCity is supposed to begin with an upper case character). Meanwhile,
for semantic errors, the editor does not allow violations of the semantics declared
in the metamodel, by construction.

R3 Automation of the model transformation and analysis: This comes
from a combination between EVL for the model analysis and error detection (see
R2) and EOL for its ability to modify models. E.g., Fig. 6 shows the notification
of an error and the possibility of fixing it via the editor, which can apply the
performed modification directly in the model.

R4 Understandable representation: The results of model checkers, imple-
mented with EVL, are reported in the Validation view of the editor, as provided
by Eclipse (see Fig. 6).



Supporting Smart Cities Modeling with Graphical and Textual Editors 17

Fig. 4. Graphical representation of the model for the city of Bolzano.

R5 Project versioning support : This requirement is indirectly satisfied by
the use of Eclipse as a development framework. Indeed it already supports the
integration of external versioning tools (e.g., eGit14 plugin).
R6 Staging and evolution support : The evolution is supported by EMF
Compare framework15, integrated with the Eclipse Teams API, which allows for
the collaborative work on models using GIT, CVS, and SVN. It provides general
support for comparison and merges facility for models, showing, with a generic
comparison engine, the differences between two models. It is possible to see and
analyze the evolution of a model as all the differences with the starting model are
highlighted graphically. EMF Compare shows both the elements on which the
changes were made and the type of the change itself (e.g., addition, renaming)16.
R7 Modeling support of the great amount of data: The implemented
editor provides commands, allowing us to easily hide/show parts of the designed
models. This function can improve the understandability of the models when
high-numbers of components are designed (e.g., multiple devices, data packages).

Fig. 5. Auto-completion feature. Fig. 6. Syntax error at modeling time.

14 https://www.eclipse.org/egit/ 15 https://www.eclipse.org/emf/compare/overview.html
16 See an example at https://github.com/gssi/MoSC2020/wiki/EMF-Compare-example.



18 F. Basciani et al.

5 Conclusions and Future Works

In this paper, we presented a modeling editor for designing smart cities, by
starting from the infrastructure and data analytics contexts. In the near future,
we plan to model further smart cities concepts, thus finalizing the smart city
metamodel and the editor to make it ready for being evaluated with real stake-
holders. Moreover, to further support stakeholders, we plan to extend the editor
such that it shows different model views. Eventually, the presented editor will
be part of a smart cities quality assessment system, which is under development.

Acknowledgment

This work was partially supported by the Centre for Urban Informatics and
Modelling - National Project - GSSI.

References

1. Berntzen, L., Johannessen, M., El-Gazzar, R.: Smart cities, big data and smart
decision-making understanding ”big data” in smart city applications. In: Twelfth
International Conference on Digital Society and eGovernments (ICDS 2018) (2018)

2. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.: Eclipse Modeling
Framework. Addison Wesley (2003)

3. C. Selada, C. Silva and A. L. Almeida INTELI Inteligncia em Inovao, Centro de
Inovao: Urban Indicators and the Smart City Agenda (December 2016)

4. Gonzlez-Garca, M., Moreno, L., Martinez, P., Min, R., Abascal, J.: A model-based
graphical editor to design accessible media players. JOURNAL OF UNIVERSAL
COMPUTER SCIENCE (01 2014)

5. Guerson, J., Sales, T.P., Guizzardi, G., Almeida, J.P.A.: Ontouml lightweight edi-
tor: A model-based environment to build, evaluate and implement reference ontolo-
gies. In: 2015 IEEE 19th International Enterprise Distributed Object Computing
Workshop. pp. 144–147 (2015)

6. Harrison, C., Eckman, B., Hamilton, R., Hartswick, P., Kalagnanam, J.,
Paraszczak, J., Williams, P.: Foundations for smarter cities. IBM Journal of Re-
search and Development 54(4), 1–16 (2010)

7. Hefnawy, A., Bouras, A., Cherifi, C.: Relevance of lifecycle management to smart
city development. International Journal of Product Development 22, 351 (2018)

8. Lipaczewski, M., Struck, S., Ortmeier, F.: Saml goes eclipse combining model-
based safety analysis and high-level editor support. In: 2012 Second International
Workshop on Developing Tools as Plug-Ins (TOPI). pp. 67–72 (2012)

9. Pereira, F., Moutinho, F., Ribeiro, J., Gomes, L.: Web based iopt petri net editor
with an extensible plugin architecture to support generic net operations. In: IECON
2012 - 38th Annual Conference on IEEE Industrial Electronics Society. pp. 6151–
6156 (2012)

10. Rosique, F., Losilla, F., Pastor, J.A.: A domain specific language for smart cities.
In: 4th International Electronic Conference on Sensors and Applications. vol. 2,
p. 148 (2018)

11. Schleicher, J.M., Vgler, M., Dustdar, S., Inzinger, C.: Enabling a smart city applica-
tion ecosystem: Requirements and architectural aspects. IEEE Internet Computing
20(2), 58–65 (2016)


