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Abstract. When syntax of software languages is communicated, context-
free grammars are a lingua franca. They define structure of syntax, but
cannot express static semantics. The paper gives an overview of other
successful models (attribute, two-level, parsing expression, conjunctive,
Boolean grammars) in relation to defining software languages. Author’s
model—grammars with contexts—can naturally express that “a valid
identifier is an identifier that was declared before”, and was used to de-
fine static semantics of a small typed language. This paper discusses what
prevents the practical use of the model in SLE and states open problems
for further research.
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1 Attempts to Specify Algol

After Chomsky introduced phrase structure grammars in 1950s, this model
quickly became a standard for definition of syntax of programming languages.
Grammar rules of the form A → α convey the idea of defining a construct A
as a sequence of strings represented by α. Indeed, consider a rule of the form
VariableDecl → “var” ident “;”. This rule states that whenever there is a
keyword var followed by an identifier that, in its turn, is followed by a semi-
colon, then this sequence of strings represents a variable declaration. Though
being surprisingly simple, this mechanism allows defining syntax of modern pro-
gramming languages [23] (in a form of BNF notation [46,49] that is equivalent
to context-free grammars) and is still used as a lingua franca when describing
syntax [48].

Soon after context-free grammars had been introduced, it became apparent
that their expressive power is limited. In 1962, Floyd has shown [16] that Algol is
not a context-free language and thus cannot be defined by a context-free gram-
mar. Floyd considered the following Algol program, in which the only identifier
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is symbol x repeated n times.

begin real x · · · x︸ ︷︷ ︸
n

; x · · · x︸ ︷︷ ︸
n

:= x · · · x︸ ︷︷ ︸
n

; end

For this program to be valid, number n should be the same in all its three
occurrences. Under certain encoding, such programs can be represented as strings
of the form anbncn, for some symbols a, b, c; these strings form a well-known
non-context-free language. Nevertheless, context-free grammars are capable of
defining the structure of such programs: indeed, as required by Algol’s syntax,
statements are separated by semicolons, there is an identifier in the left-hand
side of the assignment operator, sequence of statements is framed with correctly
spelled keywords begin/end, etc. Below is an example of a program that satisfies
these conditions.

begin real x; xx:=xxx; end

This program will be considered correct despite containing undeclared identifiers.
Context-free grammars define structural syntax of languages, but cannot ex-

press any facts about their static semantics (what is called context conditions).
It is impossible to specify in a context-free grammar that every identifier should
be declared before use, or that the number of formal parameters and actual ar-
guments in a function call should agree. Context-sensitive grammars (initially
proposed by Chomsky to describe syntax of natural languages) are powerful
enough to define these conditions, but they are equivalent to nondeterministic
linear-bounded Turing machines, in which the “nonterminal symbols”, meant to
represent syntactic categories, could be freely manipulated as tape symbols. No
parsing algorithms with polynomial time complexity exist for such grammars1.

Subsequent research was done in two main directions: to embed “checking
actions” into rules of a context-free grammar, and to come up with an entirely
new grammatical model. The first approach led to attribute grammars [25] and
syntax-directed translation. In a grammar, every rule is associated with semantic
actions, which, for example, may use symbol tables to look up whether a certain
variable has been previously declared.

VariableDecl ::= “var” ident JsymbTable.safeAdd($1);K “;”

In this example, method safeAdd could check whether an identifier with the
same name (the name of the “current” identifier is referred to by $1) has been
declared and, if so, raise an exception. Otherwise, the new identifier is added to
the symbol table. Such essentially ad hoc techniques are still used in industry-
level compiler compilers [18,40].

The other direction of research was to develop a reasonable (that is, efficiently
parsable) model, which would be able to specify the desired context conditions.
Of many such attempts, two-level grammars by van Wijngaarden received some

1 It is worth noting here context-sensitive parsing algorithms by Kuno [27] and
Woods [47] that avoid producing several equivalent derivations of the input string—
which is an issue with other parsing algorithms for context-sensitive grammars.
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attention: they were used to formally specify syntax and static semantics of Algol
68 [44,43]. Unfortunately, two-level grammars soon turned out to be Turing-
complete: this makes impossible any practical parsing algorithms for them.

2 Logics and Order for Static Semantics

Parsing expression grammars by Ford [17] introduce ordering of rules in a context-
free grammar2: the choices are tried in order and the first one to succeed is used
to parse the string. This is useful in disambiguating constructs like if-then-else
statements.

IfStmt← “if” Expr “then” Stmts “else” Stmts /

“if” Expr “then” Stmts

This rule matches a conditional statement in a way that the optional else clause
always binds to the innermost if. Without priority of rules, the rule would lead
to dangling else ambiguity.

Parsing expression grammars also provide predicates for Boolean conjunction
(&) and negation (!). The following rules define nested comments in Pascal [20,
p. 509].

Comment← “(*” CommentedText∗ “*)”

CommentedText← Comment / ! “*)” .

A comment consists of an opening token “(*”, some commented text, and a clos-
ing token “*)”. This construct is non-trivial to recognize because the commented
text may contain symbols “*” and “)”, but not the sequence “*)”. Moreover,
comments may again contain comments: (* a:=b; (* comment *) *) is a cor-
rect statement. This construct can be recognized by the given rules: the idea
is that CommentedText is either a complete comment or any symbol (expressed
as “.” in parsing expression grammars) provided that it does not start with
the string “*)” (this is expressed by the negation predicate !“*)”). Similarly to
negation, conjunction in parsing expression grammars is used as a mechanism
of lookahead.

BulletList← & BulletSymb List

List← Item∗ ! BulletSymb

These rules define the structure of bullet lists in Markdown. Rule for BulletList
first verifies whether the first element of a list starts with a bullet symbol and
only then it tries to recognize the string according to the rule for List. In the
second rule, ! BulletSymb expresses that the list cannot end at a position where
there is still a bullet symbol to be consumed.

2 Recent work on extending parsing expression grammars towards context-sensitive
parsing includes, for example, principled stateful parsing [29] and parser combina-
tors [28].
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A systematic study of Boolean operations in grammars led to conjunctive [37]
and Boolean grammars [34,42,26,31]. In such grammars, a rule S → A & B
defines all strings produced both by A and B, and a rule S → A & ¬B defines
all strings produced by A but not produced by B at the same time.

ValidIdentifier→ ident & ¬ Keyword
Keyword→ var | if | . . .

These rules specify in a most natural way that an identifier cannot coincide with
a keyword.

Conjunctive grammars can define sophisticated non-context-free languages [32],
for example, copy language with central marker {wcw | w ∈ Σ∗}, c /∈ Σ. This
language abstracts the condition of having each identifier declared before use, as
shown below.

int amount

c︷ ︸︸ ︷
; if (hasBonus) amount︸ ︷︷ ︸
wcw (w=“amount”)

+= 100;

The main parsing algorithms for context-free grammars, including cubic-
time general parsing algorithm, Earley’s algorithm, recursive descent and Gen-
eralized LR, have been extended to the case of conjunctive and Boolean gram-
mars [36,35,34], have the same time complexity, and are implemented in a pro-
totype parser generator [33].

A Boolean grammar was constructed to specify syntax and static semantics
(including scoping rules) of a programming language [38]. This was apparently
the first such specification by an efficiently parsable grammatical model. Because
conjunction and negation operators work on entire strings, rather than merely
being a lookahead mechanism, the mentioned grammar is quite knotty [38].

this-func-not-declared-here→
different-func-name |
same-func-name & different-number-of-args

Moreover, the programming language only had one data type and no approach
of how to implement type checking was suggested.

3 A New Life for Cross-references and Scoping

Boolean predicates & and ! in parsing expressions grammars are, in fact, positive
and negative lookahead predicates, respectively. In the rules for bullet lists in
Markdown, predicate & BulletSymb succeeds if the next symbol of the input is
a bullet, and predicate ! BulletSymb succeeds if the next symbol is not a bullet.
Neither of the predicates consume any input: they are only used to check the
lookahead symbols in the input, and those lookahead symbols can be regarded as
the right context of a string [10,13,22,24]. Drawing upon both parsing expression



A New Life for Legacy Language Definition Approaches? 79

grammars and Boolean grammars, grammars with contexts [5] provide a built-in
mechanism to specify what left and right contexts should be.

ValidIdentifier→ ident & �it was declared before

ValidIdentifier→ ident & �it will be declared later

These two informal rules state that whenever an identifier is used in a program,
its declaration should appear either to its left (�) or to its right (�).

Consider the following fragment of a program in an assumed C-like language.

. . . int f() {
�� ��int ms,sec,

copied string wcw, with w=min︷ ︸︸ ︷�� ��min ; . . . return 60 *
�� ��min︸ ︷︷ ︸

extended left context (P) of use of identifier min (underlined)

;}

To ensure that identifier min used in the return statement (underlined) is de-
clared, one can verify whether its left context contains a function header (int
f {), keyword “int”, other identifiers (ms, sec), a comma, and the declaration
of identifier min, followed by any other constructs (; . . . return 60 *), all
the way up to the use of min itself. This can be expressed in a grammar with
contexts almost verbatim [6].

ValidIdentfier→ ident & P Functions

FuncHeader “int” Identifiers CopiedString

This rule finds the substring between two positions in the input: before the
declaration of an identifier and after its use. To include the use of the identifier
into this substring, a so called extended left context P is used (that is, extended
context of an identifier is its left context concatenated with that very identifier).
After the desired substring has been found by the rule, it remains to check
whether it forms a copy language wcw (copy language can be defined by a
conjunctive grammar [37]).

The standard restriction that forbids redeclaration of identifiers can be now
expressed by the following rules [6].

IntegerDeclaration→ “int” InvalidIdentifier

InvalidIdentifier→ ident & ¬ ValidIdentifier

It also becomes possible to distinguish between types of identifiers: the rule
for a valid identifier breaks up into several rules, one for each type in the lan-
guage.

ValidIntIdentfier→ ident & P Functions

FuncHeader “int” Identifiers CopiedString

The only difference between these rules is in the keyword that should occur in
the left context of an identifier use.

ValidBoolIdentfier→ ident & P Functions

FuncHeader “bool” Identifiers CopiedString
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Because identifiers are now distinguished according to their type, it makes
sense to embed type checking into a grammar with contexts.

Assignment→ ValidIntIdentifier “=” IntExpr

ValidBoolIdentifier “=” BoolExpr

These rules state that a variable of a certain type can only be assigned an
expression of the same type.

Syntax and static semantics of a small typed programming language has
been defined by a grammar with contexts [6]. That grammar specifies standard
context conditions, such as: conditional expression of while loop is of type bool;
number and types of formal parameters and actual arguments in function calls
agree; type of expression in a return statement is the same as the returning type
of a function; and others. By a set of rather sophisticated rules, the grammar
also specified scopes of visibility: identifiers are visible in the block where they
are defined, and in all its inner blocks.

Grammars with right contexts can be used in a way similar to parsing ex-
pression grammars—as a lookahead mechanism.

BulletList→ Q BulletSymb anything & List

The extended right context Q BulletSymb anything corresponds to the positive
lookahead predicate & BulletSymb in a parsing expression grammar discussed
earlier.

Several parsing algorithms, including cubic-time general parsing algorithm [5,41],
(linear time) recursive descent [7], and Generalized LR [3], have been success-
fully extended to grammars with contexts. These algorithms have the same time
complexity as their prototypes, and have been implemented in a parser genera-
tor [9,3].

4 Can Grammars with Contexts Be Used in Practice?

Grammars with contexts can define arbitrary cross-references within a string [4].
They have been used to specify an abstract programming language where iden-
tifiers can be declared before or after their use (example motivated by function
prototypes in C) [4].

Ability to define cross-references is what makes grammars with contexts ap-
plicable to software languages. On a practical side, this ability is also distinctive
in parser-based language workbenches [14], such as Eclipse Xtext [15,11]. Defi-
nition of a language in Xtext starts with writing a grammar in a metalanguage
that is similar to that of ANTLR [39,40] and supports cross-references.

Variable : ’var’ name=ID ’;’ ;

Assignment : [Variable] ’=’ Expression ’;’ ;

The first rule defines what a variable declaration is: it is keyword var followed
by an identifier and a semicolon. The identifier is to be “stored” in feature name
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associated with this rule3. In the second rule, [Variable] specifies a reference
to an existing Variable, in particular, to its feature name (in the default setting,
references are associated with the feature called name)4.

This is conceptually very similar to grammars with contexts, where Valid-

Variable would be used to specify the idea of what [Variable] expresses in
Xtext. There is, however, an important difference between the two approaches.
To perform static checking, Xtext bases on high-level programming language
code, which is either generated automatically by Xtext or is written later by
a user. In contrast, grammars with contexts are purely a syntactic formalism,
and after a language is defined by a grammar, no additional code is required to
further define its static semantics. This clearly has its advantages: a language is
defined solely by a very formal mechanism, and correctness of this definition can
be proven in a formal way.

Definition of a typed programming language by a grammar with contexts [6]
is heavily based on the copy language wcw that is used to check cross-references.
This language is defined in a non-trivial manner, and would require a substantial
modification to accommodate possible changes to how identifiers are defined in
a language. However, for small sublanguages of larger programming languages
(for example, a sublanguage of arithmetical expressions), it might make sense
to use pure grammatical models to achieve higher degree of certainty about the
correctness of the definition [30].

Can the formalism of grammars with contexts be made more approach-
able? Answering this question might involve implementing an Xtext-like lan-
guage workbench based on these grammars (all necessary parsing algorithms ex-
ist [8,3], they were proven to have decent time complexity, and are implemented
in a prototype parser generator [9]) and, most probably, introducing a simpli-
fied “front-end” formalism [43,21] that would be then translated to a grammar
with contexts. For example, in such a formalism, concepts of a language can be
annotated with tags (“suffix numbers” [43, p. 37] [2]) to define cross-references.

NewIdent : ident & ! DeclaredIdent

DeclaredIdent : ident.1 & < ’var’ ident.1

In the rule for DeclaredIdent, both the ordinary (ident.1) and contextual (<
. . . ident.1) occurrenes of ident have the same tag to express that these iden-
tifiers should be identical. That is, this rule expresses that “a declared identifier
is any identifier that was declared before”.

3 Xtext creates a model from a grammar using Eclipse Modeling Framework [19].
In a simplified setting, rules become classes (instances of EClass) and features of
rules become fields of those classes. The model is then populated during the parsing,
essentially resulting in an AST that can be further analyzed or transformed by the
user.

4 The reference is made to an instance of EClass Variable; if such an instance does
not exist, an error is reported. If the instance exists, the reference is associated with
the value of its field name.
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Devising an adequate and convenient formalism on top of grammars with
contexts is a challenging task. If this task is solved then implementing a language
workbench based on these grammars would be a matter of technique.
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