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Abstract.
A domain ontology (DO) is a machine-readable knowledge repository compat-

ible with the popular knowledge graph (KG) format. An intriguing question is
how to leverage a DO plus a KG in a neural learning process. We propose to use
ontology-rooted graph patterns mined from a DO-compatible graph translation of
the raw data as a vector for injecting some domain knowledge into the neural net-
work. Such patterns represent a frequently occurring regularities in the data yet
they are expressed in terms of the ontological entities (classes, properties, etc.) and
reflect additional knowledge from the KG. Using them as an additional input to
the learning process seems a promising way to guide it towards improved explain-
ability, accuracy and convergence, as well as, in a more general vein, increase the
generalization power of the neural models.
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1. Introduction

Decision support systems (DSS) aim at helping practitioners in complex activities by
providing suggestions as to the best action to perform. Many of them use machine learn-
ing (ML) to predict the outcome of a specific problem and select concrete actions corre-
spondingly. Deep learning (DL) has risen as a promise to expand the reach of successful
automation, hence the expectation for effective decision support to profuse.

However, predicting or learning representations on complex domains requires large
amounts of data of sufficiently high quality. In practice, though, such data are not always
readily available, especially when dealing with biological entities, for which data acqui-
sition can be pricey. Conversely, expert knowledge about the domain can be available
in a machine-readable form. Since it reflects the expertise underlying decision making,
it is natural to look for ways to inject that knowledge into the learning process, e.g. to
mitigate data scarceness.

Ontologies –structured representations of concepts and their relationships [1]– pro-
vide the means to express descriptive domain knowledge [2]. As such, they have gained
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significant popularity in life sciences [3], in particular, in precision agriculture [4]. More-
over, a domain ontology (DO), as being targeted at generic domain knowledge, is often
complemented by a compatible expression of the factual knowledge from that domain,
typically formatted as a knowledge graph (KG).

Here, we tackle the problem of injecting the domain knowledge encoded in a pair
DO + KG into a modern neural architecture that accounts for heterogeneous data. We
face it within a collaborative project on dairy production optimization whereby the en-
compassing goal is to correctly predict the milk yield of an individual cow. To that end,
a historical dataset about the provincial livestock is fed into a dedicated deep learning
(DL) architecture. To improve its predictive and generalization power, as well as to in-
crease the explanation opportunities, we decided to the infuse a good amount of domain
knowledge as encoded into the DO and its KG. Thus, we turned to graph patterns as a
vector for the infusion: We first transformed the raw historical data into RDF2 graphs
compatible with the DO and then mined all relevant patterns from the resulting graph
set. As our patterns are expressed in a language that only refers to entities from the DO
and its KG (OWL3) we used them in a specific sort of data augmentation, i.e. as comple-
mentary domain knowledge-rooted descriptive features to be fed into a dedicated ANN
learning architecture that combines them with the remaining features from the original
data.

While the expected benefits range from increased accuracy of the resulting model
w.r.t. the baseline data-only learner, to greater generalization power to enhanced explain-
ability of the overall neural learning process, there are significant challenges we face at
various step of the process. We expand on those below.

The remainder of the paper is organized as follows: Section 2 motivates our study
by outlaying the context of our ongoing project on dairy production. Section 3 summa-
rizes related work on DOs and KGs as support for ANN learning as well as on pattern
mining from RDF and KG. Section 4 expands on our vision as to the way ontologically-
generalized patterns could bring domain knowledge into the neural learning context
while in section 5 we describe the overall process and zoom on the graph mining task.
Finally, we conclude in section 6.

2. Motivation

Precision farming is a new trend in agriculture that emphasizes the use of the available
data about a farm, e.g. a dairy one, in optimizing the production process in terms of rev-
enues, ecological impact, animal welfare, etc. Indeed, daily activities in agri-food sector
generate large amounts of data through sensors (animal body mass), manually (visual as-
sessment of body parameters like corn shape) or as the product of complex analyses (milk
fat). Data is typically split into datasets w.r.t. the separate aspects of the management
process such as farm yield, environment, animal health, genetics, etc. Precision farm-
ing looks at analyzing it to support the decision making of domain stake-holders [5,6]:
farmers, agronomists, veterinarians, dairy processors, government agencies, etc.

To deal with such a heterogeneity, a two-fold approach seems suitable: On one hand,
a significant data engineering effort is needed to achieve a unique global dataset as com-
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prehensive dairy data standard is not yet available (due to diverging formats and/or gran-
ularity, alternative definitions, different ways of calculating indicators, privacy, etc.). This
requires the design of an expressive data schema federating all sources, i.e. a lightweight
DO. On the other hand, existing statistical models only partially cover the heterogeneous
set of domain variables pertaining to, say, cow profitability, which underlies the decision
to keep an animal in the herd. Therefore, dedicated deep artificial neural network (ANN)
architectures are currently experimented for the prediction of such fundamental quanti-
ties as milk yield, total cost, etc. However, our experiments have shown that when ap-
plied on dairy production data, most popular deep models fail to fully catch the dynamics
in a cow life-cycle [7] and thus suffer on lower accuracy, e.g. in predicting the yield of
sub-categories of cows like dry ones.

We see here a need to support the learning process by injecting some domain knowl-
edge into the ANN, and a rich DO seems the right candidate for that. As a first-class
component of the DSS, the DO could be the source of machine-readable domain knowl-
edge to leverage in the data analysis process. In a different vein, explainability and in-
telligibility [8] are highly desirable for a DSS which interacts with domain experts and
practitioners if its recommendations are to be heeded and results trusted.

In summary, to be effective, the DSS outcomes have to reflect existing practices and
relevant technical knowledge (e.g. at lactations’s end cows get dry) while they also need
be explainable to its broad range of users [9,10]. A reasonably-developed DO might be
the answer to both requirements. Yet, while definitely a research track to be followed,
combining ANNs with DOs is a challenging task due to the divergence in the respective
levels of knowledge expression (sub-symbolic and symbolic, respectively).

3. Current State Of The Art

Symbolic representations such as ontologies have been exploited for many decades due
to their ability to intuitively and logically model abstractions for knowledge management
and problem solving [11]. With well-defined concepts, rules, and hierarchies, they are
built around basic blocks forming a complex conceptual structure. ANN-based represen-
tations constitute an alternative knowledge capture tool [12]. By trading modelling en-
tities, i.e. discrete and man-made, for machine-made and loosely defined “patterns”, the
later breaks free of prior knowledge in order to benefit from, arguably, a more power-
ful yet difficult to interpret representation language. At its core, information is distilled
throughout a network as a set of waves (or pulses) representing captured knowledge.

Only recently, the collaboration of DOs/KGs with modern analytical architectures
such as deep ANN started to attract the attention of the scientific community in artificial
intelligence [9]. A variety of topics have been covered by the ensued research trend,
among them being domain knowledge infusion [13], reasoning [14], explainability [15],
etc. Below, we provide an overview of ANN methods exploiting ontologies and then
briefly mention alternative approaches exploiting/encoding (parts of) DOs or KGs.

Combining ANNs with DOs and/or KGs In a nutshell, a majority of existing work ex-
ploits the symbolic representations as a source of external knowledge for domain specific
tasks or as a pre-processing step prior to the learning process. For example, [16] exploits
a DO to learn better text embeddings by injecting external terms and domain entities.
Alternatively, [17] investigates the improvement of gene annotation prediction accuracy



of a deep auto-encoder ANNs whenever supported by the Gene Ontology [18]. While
being practical applications of the knowledge contained in DOs, these methods do not
fully embrace its conceptual structure.

To the best of our knowledge, few methods aim for a generic DO integration into the
neural learning process: [19] aims to exploit additional neural layers, dedicated to learn-
ing weights for each abstraction level in the DO. Such layers are responsible for learning
the relationship between classes, sub-classes and super-classes. [15] targets explainabil-
ity as a representation learning problem and proposes to learn concepts by identifying
key characteristics of individuals (i.e. sets of properties) expressed using a DO, prior to
a prediction step.

In a different vein, reasoning with neural networks [20,14] amounts to a link predic-
tion problem where new links represent inferences (e.g. transitivity, subsumption, etc.)
or alternatively could be viewed as predicting individual membership to pre-defined cat-
egories (e.g. ontology class). Surprisingly, approaching it as a translation problem with
auto-encoders achieves good results on noisy-data.

On a broader scope, the embedding of concepts and relationships from a DO has
been extensively studied since at least [21] and that of individual resources and triples
from a KG even more so (see [22] for a survey).

Yet the corresponding methods seem to better fit the processing of graph data alone
rather than exploiting the DO in the overall analytical process.

Mining patterns from a DO-compliant graph dataset Pattern mining [23], aims at ex-
tracting recurrent patterns capturing the most relevant regularities in the data. Relevance
is typically measured in term of frequency. Beyond existing vanilla graph pattern min-
ing [24], few approaches tackle mining such patterns using a DO. The trend was ini-
tiated by [25] which introduced generalized graph patterns and proposed an extension
of an existing graph miner that efficiently mines non-redundant such patterns. Here, the
generalized items are drawn from a taxonomy, i.e. a light-weight DO. In [26], the au-
thors introduced ontologically-generalized patterns, in the sense that: (1) the generalized
items stem from a DO, and (2) unlike previous studies, generalization was performed on
graph edges. On the downside, while the data records are oriented graphs, the backbone
thereof represents a sequence which substantially reduces the processing effort [27] but
limits the scope of the method. Recently, in [28] the use of graph patterns for KG sum-
marization has been proposed. While technically different from graph pattern mining,
the method still explores the space of possible summaries, i.e. patterns.

As a simplified scenario, the mining of flat generalized patterns from RDF data has
been studied at least since [29]. The method works on triple sets representing the initial
graphs and outputs what is called generalized relation sets which do not necessarily
represent a connected graph. In a slightly different vein, mining association rules (AR)
from RDF dataset with a DO has also been investigated. In [30], a method is proposed
for extracting logical association rules made of ontological components implementing
an inductive logic programming (ILP)-based strategy for the traversal of the rule space.
A special flavor of flat AR custom-tailored for RDF data has been introduced in [31]:
Unlike standard AR, they explicitly incorporate the supporting set of RDF resources, i.e.
domain individuals while items represent shared combinations (predicate, object) in the
corresponding triples.

In summary, despite a significant amount of work on a wide range of combination
scenarios for DOs/KGs and ANNs, the question of how to efficiently and effectively in-



Figure 1. An example of ontological graph pattern.

ject domain knowledge, generic and or factual, into an ANN is still wide open. Moreover,
to the best of our knowledge, no prior work has set the use of generalized graph patterns
as a vector for this task. More intriguing even, the notion of ontologically-generalized
pattern has not been studied in its most general settings, i.e. with RDF data graph(s) as
input and fully-blown DO and KG as additional parameters.

4. Our Vision

As a vector for bringing domain knowledge into the ANN, we propose to use frequent
patterns that: (1) are mined from the data graphs and (2) use the vocabulary provided
by the DO and the KG. By bringing in ontological entities we aim at making explicit
the shared conceptual structure otherwise invisible in raw data. Indeed, while exact val-
ues/labels may mismatch, higher-order abstractions describing them may well coincide.
For instance, assume two lactating cows from a herd have been treated for mastitis (ud-
der infection) with two different antibiotics, say amoxicillin and penicillin, respectively.
Now, considering whet both cases have in common and how to express this as a unique
shared graph structure, we easily see the graph should comprise nodes for cow and mas-
titis connected by an edge expressing the illness relationship. Moreover, the cure with
antibiotics could also be represented, and, if higher precision is desired, event the fact
that both drugs used are of the β -lactams category might be reflected. Obviously, the
latter increase in the common structure would require a taxonomy on drugs or, more am-
bitiously, a drug DO (e.g. linking drugs to symptoms, health disorders, adverse effects,
etc.)

In a more general vein, inserting typing information and property generalizations as
available within a DO helps reveal hidden commonalities that wouldn’t be easily spotted
by a neural learner. Here, our goal is to discover such relevant shared fragments in data
so that they could support ANN learning. As an illustration, Figure 1 presents a (purely
fictional) pattern which summarizes the above example. The pattern hints at possible
causes for a shorter firstLactation for Young Cows: In summary, such a cow and a male
ancestor of it, have been both treated with antibiotics of specific types. Observe that the
pattenr is a graph whose components are classes (vertices) or properties (edges) from a
hypothetical DO.

The context of our pattern extraction is illustrated in Figure 2: On top, the relevant
excerpts of a hypothetical DO for dairy production are drawn whereas beneath lay two
data graphs, #1 and #2 (named RDF graphs), both matched by the pattern in Figure 1.

Observe now that, while vertices in data graphs are instances, patterns are made of
classes, or rather exemplars thereof, that match the ontological types of respective data
nodes. For instance, vertex-wise, in graph #1, Duke is a Bull while Clindamycin is a
Lincosamide, another subclass of Antibiotic. Edge-wise, in pattern they correspond to



Figure 2. Context of the example in Figure 1.

ontological properties that are identical to or more general than their counterparts in data
graphs, e.g. ancestor in the pattern generalizes parent from graph #1 and is identical to
the corresponding link in graph #2. The above specifications make for a very specific
graph structure, a doubly-labelled –on both vertices and edges– multi-graph.

Now, back to ANN, the grounding idea is that we discover the relevant patterns
from a graph dataset and then we feed them to the network as higher-level descriptors
of the matching data graphs. This is not unlike data augmentation, a preprocessing step
aimed at improving the learning outcome. For instance, on images, additional expert
knowledge in the form of binary masks, heatmaps or bounding boxes are expert-fed into
the original data to help the network discriminate objects [32]. Similarly, modern NLP
methods typically enhance text data with manual annotations to heed finer-grained type
labelling [33].

In comparison, our approach offers quasi-full automation: Even if patterns could be
manually crafted and then attached to data, a more effective approach is to both automat-
ically mine and assign them.

Yet there are more palpable advantages of using the DO-based patterns. On one
hand, unlike isolated bounding boxes in images, they offer an integrated view of the
shared structure: Edges standing for properties connect class vertices, thus providing
context to each of them. Moreover, individual patterns pertain to potentially varying
abstraction levels, thus leaving the determining of the right level in a particular case to
the learning component.

Interestingly enough, our patterns intertwine complementary aspects of entity de-
scription: Part of it reflects a definitional view (intrinsic features), e.g. cow ID, birth date,
race. The remainder translates dynamic aspects of the domain, i.e. here: calving, lacta-
tion, milk tests, health events, etc. While the former represents a sort of invariant mirror-
ing the DO structure, the latter admits substantial variation, e.g. a healthy cow with no
health issues vs a poorly bred one which gets ill fairly often. Obviously, both categories
of descriptors would contribute differently to the shared structure and hence appear in
the patterns with unequal frequency. Since the underlying DO components are known
beforehand the pattern discovery process could be biased to favour one or the other.

Expected immediate benefits of the ontological knowledge injection into the neu-
ral learning process include higher accuracy in predictive architecture and faster conver-
gence. Additionally, the explainability of the results should be increased.



Figure 3. High-level view of our hybrid learning process.

5. Technical aspects of our approach

Our approach can be summarized as follows: First, we designed a DO for the dairy pro-
duction field as a rich unified data schema for the available datasets that enables integra-
tion and interrogation thereof. It is currently complemented with a knowledge graph that
reflects the current practices in the Quebec province. Next, starting from the raw data in
the Valacta warehouse, a dataset of named RDF graphs representing animals and com-
patible with our DO was produced to populate a dedicated triple store. At the following
step, these graphs are mined using the DO and its KG as a domain knowledge source in
order to extract the most relevant graph patterns of a very specific flavor. Indeed, rather
than referring to actual graph components, our patterns are expressed in terms of on-
tological entities, i.e. OWL classes and properties, which qualifies them as (ontologi-
cally) generalized graph patterns. The resulting patterns are then fed into the predictive
ANN models for dairy production. In fact, they are used as supplementary features for
cow records that are submitted to the target neural architecture. Depending on the kind
of features selected in the initial cow-centered datasets, this may or may not require a
preliminary embedding of the initial records into a lower-dimension space.

Figure 3 shows a detailed view of the entire learning pipeline. First, based on original
data and domain expert feedback, we model and populate a dairy DO. Then, we mine
graph patterns representing recurring sub-graphs made of ontological abstractions. These
patterns refine the initial data with extra features reflecting the content of the DO which
are to help improve the subsequent neural learning step.

Technically speaking, a pattern mining task [23] is specified by defining two lan-
guages, one for data records one and one for patterns, and a pattern interestingness crite-
rion. Our languages are both based on the DO populated by, on the one hand, the KG and
on the other hand the input dataset translated into RDF triples. Let this extended version
of the DO be denoted Ω = 〈 O, C, R,≤C,≤R , ∈C, ρ〉 be an ontology where O, C and R
are its sets of objects (RDF instances), classes, and object properties, respectively. Ob-
serve that we do not consider property graphs, hence we ignore the data property part of
our dataset. Both classes and properties are organized into well-defined hierarchies where
HC = 〈C,≤C〉 and HR = 〈R,≤R〉with≤C denoting the rdfs:subClassOf relationship
and ≤R the rdfs:subPropertyOf one. The instanciation relationship ∈C⊆ O×C is
the translation of rdf:type. The incidence relation ρ ⊆ C×R×C is made of triples
c1 × r× c2 denoting a relation r between classes c1 and c2 as its domain and range,
respectively.

In the above notations, a graph data record gd (see Figure 2) represents a doubly-
labelled directed multi-graph. Such graph record gd = 〈Vd ,Ed〉 where Vd is a set of ver-



tices and Ed is a multi-set of pairs of vertices. A labelling function λ maps each vertex in
Vd to a label in O and edge in Ed to R. Moreover, intuitively, a pair of adjacent vertices
in gd exists iff the corresponding RDF triple exists in the populated ontology. Obviously,
our data language fully coincides with RDF. Now, a pattern gp, expressed by our pattern
language, is also a doubly-labelled directed multi-graph gp = 〈Vp,Ep〉, yet its vertices are
labelled with classes from C while edges are mapped to the same set R. Two examples
of such pattern graphs have been discussed in section 4 (see Figure 2).

Alternatively, p can be represented as a set of triples. Finally, interestingness of pat-
tern is typically measured by their frequency in the dataset, yet other generic measures,
e.g. utility, or domain-dependent ones can be adopted.

Next, an effective mining method requires a strategy for pattern space traversal and
a technique to perform a pattern-to-data matching. Matching with graphs is akin to sub-
graph isomorphism which, in the presence of a DO, must be enhanced by generality and
instanciation relationships. Efficient traversals, in turn, require defining a spanning tree
of the pattern generality relationship (the transitive reduction thereof) seen as a graph
itself. This spanning tree can then be itself traversed with a particular discipline that
yields a total order on patterns. Furthermore, a canonical representation of graph patterns
is another mandatory construct to avoid multiple generations of the same pattern [24].
While DOs and patterns have been combined before, to the best of our knowledge, no
mining method has targeted data of such complexity as our ontologically-generalized
graphs patterns. Known downsides of pattern mining include sensibility on frequency
threshold and the potential combinatorial explosion, yet these admit mitigation strategies
such as using condensed representations, e.g. closed patterns [34] or maximal ones [35].
This is the subject of our current research.

6. Conclusion

We describe an approach for infusing some domain knowledge encoded into a DO and a
compatible KG into a neural learning process that boils down to augmenting the learning
dataset with additional descriptive features. The features correspond to graph patterns
mined from the raw data formatted as graphs under the DO, which are themselves ex-
pressed in terms of DO/KG entities. Key advantages of our approach include higher ab-
straction level of the new features, contextualized expression of commonalities in data,
potential automation, etc. Expected benefits thereof range from increased prediction ac-
curacy to faster convergence of the ANN to higher explainability of the results.

At the current stage, we are fine-tuning the design of our graph mining tool which
faces a huge and highly combinatorial pattern space that is induced over graphs by the
ontological relationships of generality and instanciation. It required the development of
dedicated mining methods as classical graph pattern miners could not go beyond label
equality on vertices and edges.
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