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Abstract. There is a distinct difference between modeling linguistic knowledge
and knowledge that is expressed linguistically. The research effort described herein
concerns the latter, i.e. how to model the output of a natural language understanding
system in a formal ontology in such a way that robotic agents can carry out the
tasks given to them via natural language. For this, we build on a given foundational
ontology that is suitable for our requirements and introduce the basic modeling
principles and design patterns to model and represent the meaning of instructions.
Linguistically, our model is informed by constructional approaches to language
understanding, i.e. embodied- and fluid construction grammar. Ontologically, we
base our model on the foundational framework provided by the Dolce Ultra Light
+ Descriptions and Situations ontology. The proposed model, called SOMA-SAY,
is part of a larger system of ontologies that are employed in the Everyday Activity
Science and Engineering collaborative research center.
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1. Introduction

Numerous formal ontological models representing linguistic objects and their corre-
sponding grammatical theories have been presented in the past. This is not another one
of these models. While we will discuss some prior modeling efforts in Section 2, the
scope and intent of our model differs from previous ones in several respects. Firstly,
we do not focus on modeling linguistic objects themselves, such as morphological, lex-
ical or syntactic constructions. We do, however, focus on representing the socially con-
structed meaning that is conveyed by instructions. Specifically, our work takes place in
the challenging and practical application of giving robots underspecified and vague natu-
ral language instructions to perform certain everyday activities that are subsequently car-
ried out by them. Representing an underspecified instruction also involves representing
information that was left implicit by the textual or verbal command.
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The ontology module presented in this work is part of the cognitive backbone of a
greater robotic infrastructure [1]. It serves the function of representing the socially con-
structed semantic content of an instruction. More specifically, given that we are using a
constructional approach to language understanding [2], we need to represent the prag-
matic implications of the meaning pole of imperative constructions. This work, there-
fore, constitutes an attempt to employ state of the art knowledge engineering principles
to connect formal ontologies to constructional cognitive linguistic theories [3,4].

2. State of the Art

In the past 20 years various approaches to model linguistic knowledge, i.e. the entities
and features that make up human language, in formal ontologies have been proposed.
These approaches differ in some respects such as alignment to upper layers, their mod-
eling intent and their scope. One point of divergence lies in the specific alignment to a
foundational layer. While, for example, the GOLD ontology [5] is aligned to the SUMO
upper ontology [6], the OntoWordNet model [7], is aligned to the DOLCE foundational
ontology [8]. The LingInfo model [9] can be used with any foundational framework as
it relies on meta-classes to model information about the lexical entities. In contrast, the
OntoWordNet aims at merging the linguistic information contained in WordNet with the
respective classes employed in specific domain models, while both LingInfo and GOLD
seek to incorporate more linguistic information, such as morphological and grammatical
features of language. They all allow for a direct connection of the respective linguistic
information for terms with corresponding classes and properties in a domain ontology.

These efforts are, in a sense, orthogonal to ours and each model could be integrated
as an additional module to allow reasoning about linguistic information or as a link be-
tween lexical and ontological resources. For those purposes we employ a Lower Seman-
tic Model that connects lexical and ontological information and is interchangeable with
either of the models described above. More closely related to our approach is the so-
called General Upper Model (GUM) [10]. GUM provides a detailed semantics for lin-
guistic spatial expressions and is based on a principled ontological engineering approach.
It covers language concerned with space, actions in space and spatial relationships for
which an ontological organization is proposed that relates such expressions to general
classes of fixed semantic import. However, as we seek to align our model with a specific
foundational model and construct it as a module within the SOMA2 ontological frame-
work, we cannot employ the upper model GUM as is, but will re-use relevant details
concerning schematic theories about functional relations, where applicable.

The ontology module described in this work is part of the EASE family of ontolo-
gies, collectively called SOMA. Like all of the SOMA ontologies, it is based on the
DOLCE+DnS Ultralite (DUL) foundational framework [8], a decision that is greatly mo-
tivated by their underlying ontological commitments. Firstly, DUL is not a revisionary
model, but seeks to express stands that shape human cognition. Furthermore, it assumes
a reductionist approach – rather than capturing, for example, the flexibility of our usage
of objects via multiple inheritance in a multiplicative manner, it commits to a reduced
ground classification and use a descriptive approach for handling this flexibility. For this,
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a primary branch of the ontology represents the ground physical model, e.g. objects and
actions, while a secondary branch represents the social model, e.g. roles and tasks. All
entities in the social branch would not exist without humans, i.e. they constitute social
objects that represent concepts about or descriptions of ground elements. Every axiom-
atization in the physical branch can, therefore, be regarded as expressing some physi-
cal context whereas axiomatizations in the descriptive social branch are used to express
social contexts. A set of dedicated relations is provided that connect both branches. For
example the relation classifies connects ground objects, e.g. specific utterances, with the
roles they can play, i.e. potential classifications. Thus, we can state that an interrogative
can in some context be conceptualized as an assertion, a command or simply a query.
Nevertheless, neither its ground ontological classification as an interrogative will change
nor will interrogatives be subsumed as commands or assertions via multiple inheritance.

The semantics of the actions and entities executed by the robots performing everyday
activities, such as setting a table or cooking a meal, are defined by this formal ontology.
This ontology is designed to provide descriptions for everyday activities in terms of
human physiology and human mental concepts, as well as enabling formal reasoning.
The ontology supplying the labels for the objects has been designed using the principles
proposed by Masolo et al. [8,11]. Specific branches of the former KnowRob knowledge
model pertaining to everyday activities [1], such as those involved in table setting and
cooking, have consequently been aligned to the DUL framework in the creation of the
SOMA framework. Additional axiomatization that is beyond the scope of description
logics is integrated by means of the Distributed Ontology Language [12].

3. The SOMA-SAY Module

Our application domain of everyday activites requires robotic agents to carry out natural
language instructions, such as recipes or manuals. This involves flexibly parsing abstract
and underspecified input into a meaning representation, which in turn enables further
steps necessary for real grounding, such as simulations or additional reasoning. To this
end, a deep semantic parser based on the Construction Grammar formalism is employed
[13,14,15]. Both the constructions’ meaning poles and the analysis itself make use of
ontological knowledge, to disambiguate otherwise unclear instructions and to evoke un-
specified parameters which need to be inferred by later processing steps. In this way,
natural language commands are transformed into models of SOMA-SAY, which consist
of series of state transitions specifying the evoked schemas. The employed parser’s un-
derlying mechanism is based on the unification and merging algorithms implemented in
Fluid Construction Grammar[2], while its ontology integration and schema handling are
inspired by the Embodied Construction Grammar framework [16]. The constructions are
co-engineered with the concepts of SOMA-SAY and can be viewed as rules mapping be-
tween word-positional relationships and syntactic properties, and semantically rich onto-
logical concepts. The parsing process integrates tightly into our knowledge base-focused
understanding pipeline, with both the internal data structures as well as the semantic
output being represented as semantic triples.

We can firstly define a LOCUTION as an ACTION3 A LOCUTION represents any ac-
tivity of expression using natural language that can be verbal, textual or else. The ac-
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tual linguistic form of such an expression, i.e. declaratives, imperatives or interrogatives,
are modeled as a LINGUISTICOBJECT. A LINGUISTICOBJECT itself is an INFORMA-
TIONOBJECT. Using the given hasPart relation we can express that only linguistic ob-
jects can be components of a locution, i.e. Locutionv ∀ hasPart.LinguisticObject.

DUL features the useful distinction between an EVENT that happens in the world
and an EVENTTYPE, i.e. a classification or interpretation thereof.4 Analogously, we can
apply the same design pattern to the linguistic function of a LOCUTION, i.e. an ILLOCU-
TION. Additionally, we define three types of ILLOCUTION, i.e. ASSERTION, INSTRUC-
TIVE, and INTERROGATIVE. This solves certain aspects of semantic construal and prag-
matic analysis [17]. We all know that utterances formalized as declaratives, e.g. it is
drafty in here, are actually veiled instructions as in this example to close a window or
door. Our models allows for all possible construals, i.e. questions that are meant as as-
sertions, e.g. how stupid is this meaning this is very stupid as all other form-function
combinations. This is realized via the classifies relation.

In our domain, instructions are important as they constitute the input for the robotic
agents. So even if asked could you put the plates on the table the robot should not reply
with a resounding yes, but rather execute the given command. In the DnS system [18]
a DESCRIPTION is a SOCIALOBJECT that represents a conceptualization that can be
understood as a ’descriptive context’. This context uses or defines concepts to create a
view on a ’relational context’. This relational context is modeled as a SITUATION. A
SITUATION is a view consistent with a DESCRIPTION, i.e. it satisfies it. It is created by
an observer on the basis of a ’frame’ provided by the DESCRIPTION. As such it used
to represent reified n-ary relations, where isSettingFor is the top-level relation for all
binary projections of the n-ary relation. For modeling the meaning of any locution that is
construed as a command we employ the TRANSITION subclass of SITUATION. First of
all a TRANSITION creates a context for two additional different Situation(s), i.e. the state
before and the state after the transition takes place. For our scenario we create a subclass
of TRANSITION called STATETRANSITION. Via the relation includesEvent, we can state
that every STATETRANSITION includes exactly two EVENTS, e.g. two STATES.

Additionally, we create a new type of situation, called a SCENE. Using the given
DUL relations of hasInitialState and hasTerminalState, we can connect situations to situ-
ations, i.e. two scenes to one transition. Based on the constructional approach to language
understanding, representing the meaning of utterances is impossible without recourse
to schematic knowledge in the form of image schema, x-schema or a FrameNet frame
[3,19,20,4,21]. We subsume these schematic theories under the class THEORY making
them a type of DESCRIPTION. We can now start to populate our model with the schemas
that have been proposed in the literature [3,19] with the addition of an ESTSCHEMA that
is evoked in expressions featuring the existence of an entity, as in ”there is a cup”.

We now define a new evokes relation that can hold between two social objects. In
our case we employ it to state that schemas can evoke other schemas, thereby making the
evoked schemas’ constituent roles accessible to itself [16], e.g. CausedMotionSchema
v ∃ evokes.SourcePathGoal. Following the computational practice [22,16], we want
to assign constituents to the individual schemas, whereby only entities of type ROLE can
be a constituent of a schema, i.e. SchematicTheory v ∀ hasConstituent.Role

4DUL defines an EVENTTYPE as a concept that classifies an EVENT. It should, therefore, describe how an
EVENT should be interpreted, executed, expected, seen, etc.



As provided by the DUL foundations, the classification of objects is realized via the
ROLE pattern. Roles are CONCEPTS and, as such, reside in the SOCIALOBJECT branch
of DUL. The classifies relation is used to constrain what can be classified as a source
or goal or what can be classified as a trajector. This role pattern is if paramount impor-
tance, especially in restricting the type of entity that become the filler of a schematic con-
stituent. The SOMA framework imports the roles that have been established in the field
of frame semantics [21]. The selectional restrictions imposed by the classifies relation are
used in a number of reasoning processes ranging from natural language understanding
to tool selection. As certain roles can only classify physical agents or specific types of
designed artifacts, these axiomatizations provide substantial information about context
dependent meaning of objects, e.g. Destination v ∀ classifies.Location. Lastly, we
can now link situations to schematic theories, as every scene and action in a given situa-
tion evokes specific schematic theories that consequently need to be satisfied as well, i.e.
StateTransition v ∀ satisfies.SchematicTheory.

Please note that the ensuing structures are still not sufficiently specific to drive a
robotic control system. A detailed overview of further parametrizations and explication
of these plans via physical simulation and human computation is given in Pfau et al. [23].

4. Conclusion

We introduce a modeling approach cum model that seeks to represent the social interpre-
tation of imperatives, regardless of their linguistic form. The ensuing model is part of the
SOMA framework that constitutes a socio-physical model of activities for autonomous
robotic agents. As SOMA itself is aligned to the DUL foundational ontology, we show-
case where and how our model connects to this axiomatic theory about the high-level
domain-independent categories in the real world. There are obvious limitations to our
model, as numerous constraints are outside of the scope of description logics. More ex-
pressive models of image schemas and their implications, in first order logic, have been
proposed and discussed recently [24]. In other on-going work, we define theories for
image schemas in a more tractable formalism of propositional defeasible logic and use
them for counterfactual simulation. As future work we are considering a complete refor-
mulation of constructional and schematic knowledge using some form of propositional
defeasible logic. Additionally, further reasoning and mental simulation is needed to ex-
plicate the given instructions completely. This concerns both the grounding of referents
as well as the parametrization of the ensuing actions.

As with the work presented herein, we aim to put the insights provided by cognitive
linguistic theories to use in making robotic agents more flexible and robust in carrying
out the vague and underspecified instructions that are given to them by their human in-
terlocutors. This increase in flexibility is a result of combining physical models that rep-
resent actual events, such as a LOCUTION with social descriptions thereof, e.g. an IL-
LOCUTION. This two-pronged approach is employed throughout the proposed SOMA-
SAY module, whether it is in the ROLE - OBJECT or the TASK - ACTION pattern. Em-
ploying this throughout the cognitive infrastructure of robotic agents enables them to
reason about their actions and react felicitously to a given linguistic input. This work,
therefore, represents another step towards moving from robotic agents that can perform
a single task to ones that actually master an everyday activity, such as preparing a meal
and setting a table.
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