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Abstract. Developing knowledge-driven applications requires a mix of competen-
cies; however, ontology experts are often not available, and end-users may be prone
to introducing mistakes. Generic Ontology Design Patterns, GODPs, encapsulate
complex semantics; during reuse, instantiations provide handles for checking ar-
guments against structural and semantic constraints stated in ontology parameters.
Development is divided according to expertise: ontology experts develop GODPs
while domain experts focus on their domain application; for end-users, consistency
of modelling and safety of data input are significantly increased.

Ontology engineering with GODPs is demonstrated with episodes, a significant
extension of DUL patterns, for a use case in service robotics: GODPs for narra-
tively enabled episodic memories provide increased consistency, and safe popula-
tion with data substantially scales up.

1. Introduction

Developing knowledge-driven applications requires a mix of competencies that is not
always available. In particular, not all development teams have or can afford ontology
experts to handle the foundational aspects of knowledge modelling, and end-users of
knowledge-driven solutions may be prone to introducing mistakes. We distinguish (at
least) three kinds of stakeholders, whose kind and level of expertise is quite different:
end-users should not be required to have ontology expertise and may have little domain
knowledge; domain experts often lack ontology expertise due to insufficient training;
ontology experts usually have little domain expertise.

Ontology Design Patterns (ODPs) have been proposed for some time as a methodol-
ogy for ontology development, see the early work by [1,2,3], the compilation in [4,5,6],
and the review of the state of the art in [7].

In theory, ODPs provide a solution for the lack of ontology experts: ODPs enable
domain ontologists to reuse existing best practices and design decisions, and thus benefit
from the experience of ontology experts, who developed the ODPs. However, in practice
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the adaptation of ODPs as tools for ontology engineers has been slow. In our opinion this
is caused by the fact that currently the utilisation of ODPs is cumbersome for ontology
developers and not practical for large ontologies, let alone data patterns.

Generic Ontology Design Patterns, GODPs, have been proposed as a methodology
for representing and instantiating ODPs in an adaptable way allowing domain experts
and end-users to safely use ODPs [8,9,10,11]. In [12] we argue that GODPs implement
ODPs effectively, and discuss the merits of GODPs vs. ODPs.

The main ideas behind GODPs are the following: GODPs are expressed in a dedi-
cated formal, parameterised pattern language that allows to (a) define GODPs, (b) spec-
ify instantiations, and (c) extend and combine them to larger GODPs; they embody ded-
icated development operations. GODPs are defined in Generic DOL, an extension of
the Distributed Ontology, Model and Specification Language, DOL [13], supported by
the Heterogeneous Tool Set, Hets [14].

GODPs enable the nested use of ODPs, which reduces code duplication. Further-
more, GODP developers are able to explicitly state logical properties of GODPs, and to
represent competency questions and definition extensions. During reuse, instantiations
provide extra handles for improving consistency, checking arguments against structural
and semantic requirements stated in the parameters.

GODPs are patterns: they contain typed variables. The definition of a GODP in-
volves the specification of parameters that need to be provided for the instantiation of
a GODP. Parameters are ontologies; the case of symbols as parameters is covered by
ontologies without axioms and only one symbol declaration. These enable the expres-
sion of powerful semantic constraints using corresponding axioms; such requirements
act like preconditions for instantiations, guaranteeing more consistency and safety. For
each argument for a parameter, a verification condition is generated. If expressed in DL
(as in this paper), it may be discarded automatically by deduction using a DL reasoner;
in a heterogeneous setting, DOL and Hets allow more expressive logics.

Overview. In this paper we emphasise this consistency aspect: we argue, and show by
example, that not only models expressed as GODPs may be more safely extended using
e.g. subclass constraints, but also data expressed as individuals may be interrelated with
object properties and “typed” using structural constraints, increasing safety of data input.
We would like to demonstrate, how

• ontology experts encapsulate complex semantics in foundational GODPs;
• domain experts assemble a specialised toolbox of configuration GODPs;
• end-users focus on GODPs dedicated to a particular development domain.

Thus domain experts benefit from the delegation of expertise to ontology experts, re-
lieved from cumbersome detail and avoiding potential mistakes due to lack of training;
end-users are provided with a suitable user interface for safe data input.

We will guide our exposition by an illustration of how GODPs can be used in a
knowledge-driven process. We have chosen a problem coming from service robotics as
an example: to define activity episodes (Sect. 2). Episodes are descriptions of past events,
augmented by semantic annotations about what happened. The goal of knowledge-driven
development then is to define what episodes consist of, and to provide ways to ease con-
struction of coherent episodes, regardless of whether the data for the episode come from
human or autonomous robot performance. Sect. 3 briefly recalls Generic DOL and il-
lustrates with an example, how a GODP can be instantiated and what the ontology ob-



tained by expanding the instantiation is. We introduce foundational GODPs by repre-
senting several ODPs from the literature, such as Role or Transition patterns in the style
of DUL2, the DOLCE+DnS Ultralite Upper Ontology [15], extending them by new spe-
cialisations of situations such as Scene, and Episode (Sect. 4). These are supplemented
by GODPs for data, yielding quite an elaborate catalogue of interrelated, non-trivial
GODPs (Sect. 5). In Sect. 6 the development process is adapted to the domain of service
robotics, and in particular for modelling and storing episodes of activities. The end-user
perspective is demonstrated in Sect. 7 with dedicated data patterns for Table Setting.
Sect. 8 summarises coherence issues for GODPs: How can logically consistent episodes
be achieved? What is a ”good, well-performed” episode? How can episode records be
easily and safely populated with data? Finally, the conclusion points out the lessons
learned, and future extensions.

Thus the contribution of this paper is twofold:

• consistent ontology engineering with GODPs, demonstrated with an extensive
case study: episodes, a significant extension to DUL patterns, and

• GODPs for safe data population by end-users revealing substantial scaling.

2. Motivation: Episodic Memories

GODPs and related techniques are very widely applicable in knowledge engineering;
to illustrate their potential we will use a particular use case coming from the field of
knowledge-driven service robotics. This use-case originates from the Collaborative Re-
search Center EASE. In fact, service robotics provides opportunities for extensive use of
heterogeneous combinations of reasoners [16]; in this paper we will focus on a partic-
ular topic: narratively enabled episodic memories (NEEMs). An episodic memory is a
more or less comprehensive record of events that an agent observed; these may include
raw sensor data and control values for actuators. A narratively-enabled record of events
also contains interpretations of them: perception results, what tasks were being executed,
what the results of the tasks were, possibly judgements of the outcomes according to
some metric, etc.

The reason for having NEEMs is to provide semantically annotated data about real-
world performance of routine household tasks: what was done, in what context, with
what result. These data are subsequently used for teaching robots how to perform such
tasks robustly and efficiently. A robot will accumulate and learn from NEEMs during its
own active life, but also the life of other robots. However, NEEMs may also come from
humans demonstrating a task—after all, humans are the best demonstrators of robust,
efficient performance for household tasks.

We may already observe a complication: a NEEM cannot be a rigid list of con-
tents. NEEMs may come from many kinds of agents, who will have different recording
abilities; sometimes control values for actuators are available, sometimes not. Another
complication is to formalize what is meant by an episode.

This results in a number of challenges for each of the stakeholders in the ontology
engineering process:

• ontology expert: formalize basic concepts needed to represent NEEMs

2http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
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• robotics expert: define what kind of episodes may exist (e.g., what kinds of activ-
ities might be recorded in episodes), and what are acceptable structures for each
kind of episode (e.g. tasks in the activity and constraints)

• ontology user, NEEM creator: populate a NEEM with data obeying structural and
logical constraints on the kind of NEEM being generated

• ontology user, NEEM consumer: query a database of NEEMs by various criteria:
kind of episode, agents/items involved, task success or failure, etc.

Throughout the rest of the paper, we will show how an ontology development process
powered by GODPs will assist each stakeholder in meeting their challenges. We will
present a motivating example for a coherent episode to give an overview of our approach,
showing how to model a particular episode: setting a table for tea. The episode of setting
a table for one person is abstracted to a pattern, re-used in an episode of setting the table
for tea for two, sitting on opposite sides.

A distinction must be drawn between the modelling assumptions we have made in
this paper and the GODP approach itself; GODPs can be applied to represent other mod-
elling assumptions, e.g. situation modelling such as provided by Almeida [17]. In our
case, we model episodes as sequences of transitions between scenes, both of which are
DUL Situations. Scenes however correspond to situations that are considered unchang-
ing in the absence of interventions from some agent; such interventions are the transi-
tions. This implies that general knowledge about sequences must be formalized, as well
as more domain-specific knowledge e.g. limits to what transitions are possible between
which scenes.

We would like to set up dedicated development tasks for end-users such as
fetchFrom[CrockeryCupboard][DessertPlate], transportTo[front][Table], place[on][Table]

in a language they understand with a structured vocabulary to choose from. In the sequel
we will describe the development stages to reach this goal. Due to lack of space, we will
only present the most prevalent GODPs used; see [18] for more elaborate versions and
a scaled-up example of more data input.

3. Generic Ontology Design Patterns in Generic DOL

The Distributed Ontology, Model and Specification Language, DOL, an OMG standard,
allows the structured definition of ontologies with import, union, renaming, module ex-
traction, etc. Thus, DOL is not “yet another ontology language”, but a meta-language
to define and manipulate ontologies; it may be used for a variety of ontology languages
(e.g. OWL-DL) and logics in a heterogeneous manner.

Generic DOL [9,10,11] extends DOL by a parameterization mechanism for ontolo-
gies; this allows the expression of powerful semantic pre-conditions.

A brief description of Generic DOL can be given as follows. For the purposes of this
paper, all ontologies will be OWL ontologies. A pattern has a name, a list of parameters,
an optional imported ontology and a body. An instantiation of a pattern is made by giving
a list of argument ontologies, one for each parameter. The parameters of a pattern are
themselves ontologies or lists of ontologies. The axioms in a parameter are regarded as
semantic pre-conditions that the argument of an instantiation of the pattern must fulfil. If
the axioms are missing, no restrictions are imposed on the symbols of the parameter. The
imported ontology provides the non-variable entities that are used for expressing these



pattern TASK KINDS
[ Class : AncestorTask SubClassOf : Task ; %% ancestor i n Task taxonomy

Class : AncestorPre SubClassOf : PreScene ; %% ancestor i n Pre taxonomy
Class : AncestorPost SubClassOf : PostScene ; %% ancestor i n Post taxonomy
ObjectProperty : tAncestor ; %% ancestor task r e l a t i o n

{ObjectProperty : t } : : t s ] %% l i s t o f task r e l a t i o n s
given Foundation =

Class : Task [ t ] SubClassOf : AncestorTask %% task wi th r e l a t i o n t
Class : Pre [ t ] SubClassOf : AncestorPre %% pre−cond i t ions f o r t
Class : Post [ t ] SubClassOf : AncestorPost %% goals o f Task [ t ]
ObjectProperty : t SubPropertyOf : tAncestor Domain : Pre [ t ] Range : Post [ t ]

then TASK KINDS [ AncestorTask ; AncestorPre ; AncestorPost ; tAncestor ; t s ]
. . . I n s t a n t i a t i o n :
TASK KINDS [ Task [ Tab leSet t ing ] ; Pre [ Tab leSet t ing ] ; Post [ Tab leSet t ing ] ;

t r ansac t [ Tab leSet t ing ] ; [ fetchFrom ] ]
. . . DOL Expansion :
Class : Task [ fetchFrom ] SubClassOf : Task [ Tab leSet t ing ]
Class : Pre [ fetchFrom ] SubClassOf : Pre [ Tab leSet t ing ]
Class : Post [ fetchFrom ] SubClassOf : Post [ Tab leSet t ing ]
ObjectProperty : fetchFrom SubPropertyOf : t r ansac t [ Tab leSet t ing ]

Domain : Pre [ fetchFrom ] Range : Post [ fetchFrom ]

Figure 1. TASK KINDS and expansion of instantiation

semantic pre-conditions. The body of the pattern, in the simplest unstructured variant,
is an ontology using the symbols of the parameters. In general, any DOL structuring
mechanism may be used in the body. If the pre-conditions given in the parameters hold
for the arguments of an instantiation, a macro replacement substitutes the symbols of the
arguments for the symbols of the parameters in the body. This gives rise to a structured
DOL ontology that can be analyzed by Hets and flattened to an unstructured ontology,
via an expansion procedure.

Fig. 1 contains a small example. The pattern TASK KINDS allows the extension of
an existing ontology with new tasks. A task relation t has pre- and post-conditions as
domain Pre[t] and range Post[t], resp. In its body (after the “=” symbol), TASK KINDS
defines Task[t], Pre[t], and Post[t], and sets up their position in the taxonomy as sub-
classes of the corresponding ancestors, which are passed as parameters AncestorTask,
AncestorPre, and AncestorPost; similarly, the object property t is defined as a sub-
property of its ancestor tAncestor, with domain and range. The pattern defines both a
property t and a concept Task[t], since it is convenient in some parts of the modelling
to treat tasks as concepts to classify observed events, and in others as transformations
between scenes.

A parameterised name such as Task[t] denotes a different name for each argument
of t in an instantiation. At the end of the expansion process of instantiations in Generic
DOL, parameterised names will be converted to proper OWL names by stratification3: if
t is given the argument fetchFrom, then Task[t] expands to Task[fetchFrom], and after
stratification to Task fetchFrom.

The definitions for t are iterated over a list of such task relations. The list is given as
a parameter in a constructive fashion t :: ts stating the head of the list, t, the concatenation

3“[” and “,” become underscores “ ”, “]” are deleted.



pattern FUNCTION INVERSE
[ ObjectProperty : f ; Class : D; Class : R; ObjectProperty : f i n v ] =

ObjectProperty : f Domain : D Range : R %% C h a r a c t e r i s t i c s Func t iona l
ObjectProperty : f i n v Domain : R Range : D InverseOf : f

Figure 2. FUNCTION INVERSE (see text for Characteristics Functional)

pattern SEQUENCE [ Class : E ] %% kind of sequence elements
= FUNCTION INVERSE [ hasLast [E ] ; Seq [E ] ; E ; i sLas tOf [E ] ]

and FUNCTION INVERSE [ hasF i r s t [E ] ; Seq [E ] ; E ; i s F i r s t O f [E ] ]
and FUNCTION INVERSE [ isSeqElemOf [E ] ; E ; Seq [E ] ; hasSeqElem [E ] ]
and FUNCTION INVERSE [ succ [E ] ; E ; E ; prec [E ] ]

pattern ROLE [ Class : Rle ; Class : Ancestor ;
Class : Performer ; ObjectProperty : performedBy ; ObjectProperty : performs ;

?Class : Prov ider ; ?ObjectProperty : providedBy ; ?ObjectProperty : p rov ides ]
= FUNCTION INVERSE [ performedBy ; Rle ; Performer ; performs ]

and FUNCTION INVERSE [ providedBy ; Rle ; Prov ider ; prov ides ]
then Class : Rle SubClassOf : Ancestor ,

performedBy some Performer , providedBy some Prov ider

Figure 3. SEQUENCE and ROLE

symbol, “::”, and the tail of the list, ts. The instantiation of TASK KINDS at the end of
the body effects a recursion, with the same arguments as the parameters, except for the
tail of the list, ts, as the last argument.

Fig. 1 shows the expansion of an instantiation of TASK KINDS, taken from Fig. 9
below. The arguments are again parameterised names; the last argument denotes a sin-
gleton list [fetchFrom].

The expressions in the body of the ontology TASK KINDS are in OWL Manchester
Syntax. The phrase A then B in DOL indicates that all definitions in A are visible in B,
where A and B are flat (OWL) ontologies or instantiations of GODPs. Similarly, A and
B is the union of the two ontologies.

The parameter AncestorTask is constrained by an axiom: it must be a subclass of
Task. Since the subclass property is interpreted in OWL to be subset, this means in fact
that AncestorTask must be “somewhere in the subclass chain” ending in Task in the
taxonomy. Task in turn is defined in the imported (given) ontology Foundation4. This
demonstrates additional structural consistency for ontology extension; it may be com-
pared with strong typing in programming languages, and we will refer to it as “typing”
at the model level. Such semantic conditions are not restricted to subclass axioms: arbi-
trarily complex OWL assertions may be used.

The pattern FUNCTION INVERSE in Fig. 2 is intended for the extension of an ex-
isting ontology by declaring a new object property, a function f, whose name is provided
as the first parameter, and its domain and range classes as second and third parameter,

4Foundation includes (a selective view to) DUL, e.g. Task, and extensions, e.g. PreScene.



resp. Moreover, the name of its inverse function finv is given as the fourth parameter.
The body defines f and finv with domains and ranges.

Confinement of Design Choices. The choice of the way in which to state that f should
be a function is strictly confined to the body of FUNCTION INVERSE. The Func-
tional characteristics for f is only provided as a comment; this becomes necessary since
OWL-DL explicitly forbids this characteristics for a function that is a superproperty of a
property chain. As soon as we needed such axioms, we adjusted the pattern once, for all
instantiations, to accommodate the restriction; only this one pattern needs readjustment
for a more powerful reasoner.5

The pattern SEQUENCE in Fig. 3 defines (linear) sequences Seq[E], a collection
with functions succ[E] and its inverse prec[E] between elements. The parameter E de-
notes the kind of sequence elements; sequences are distinguished using [E] in param-
eterised names: Seq[E] (succ[E] etc.) are different in each instantiation. The pattern
FUNCTION INVERSE is instantiated several times in the body of SEQUENCE; this
provides a clear definition with good structuring.

Roles. The foundational ODP for role in DUL has received considerable attention in
the literature, see [12,11] for a comparison of different approaches. With ROLE in Fig. 3,
we use a GODP in a version that allows different choices of names for the object prop-
erties performs and provides, and their inverses. We believe that this is more suggestive
in most applications than using inheritance of these standard names, and alleviates the
need for a careful scoping approach used in conventional ODP approaches, overloading
such names for many applications.6

ROLE allows the parameters Provider, as well as providedBy and provides, to be
optional, indicated by the question mark. Thus the pattern may also be used just for cre-
ating different “manifestations” of a Performer.7 However, we realised how important
the notion of context using a Provider is (cf. transitions in Sect. 4).

4. Ontology Expert Perspective: Foundational Patterns

An episode8 is a sequence of task executions; it corresponds to linear “unrolling” of a
plan (that has branches and iterations).9 In the pattern EPISODE (Fig. 4) we model an
Episode[E] as a Sequence[E] of Transition[E]s between Scene[E]s using instantia-
tions of the patterns SEQUENCE, TRANSITION and SCENE.10

5See discussion in [11]. One could add a functionality axiom in a more powerful logic in a heterogeneous
context, at the price of losing decidability of OWL-DL reasoners enforcing the restriction (https://www.
w3.org/TR/owl2-syntax/#Global_Restrictions_on_Axioms_in_OWL_2_D).

6We are using a differentiated approach to inheritance (cf. also [12]): R is tied to its AncestorRole in the
taxonomic hierarchy of Role in DUL, while object properties in ROLE or other patterns are intentionally kept
separate, i.e. not related to ancestor relations or overloaded.

7The notion of time is irrelevant here (TEMPORAL Extent[Rle] is omitted); cf. a discussion in [19,20,11].
DUL uses the notions isClassifiedBy for performs, and defines for provides.

8“episode” and “scene” are new terms, specialisations of DUL situations.
9As in ROLE, we have no need for the notion of time; sequence elements (or manifestations in roles, cf.

[19,20]) may however be decorated with time intervals in the context of actions.
10We use roles explicitly: e.g. includesAgent[E] has AgentRole[E] as domain and not XAgent

https://www.w3.org/TR/owl2-syntax/#Global_Restrictions_on_Axioms_in_OWL_2_D
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Agent Roles in Pre- and PostScenes

Legend
Transition tr1

Scene s0, s1, s2

Task Relation t1, t2
Agent a
Agent Roles r0, r1
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s1

includesAgent[E]
r0

s0

r1

a
isAgentRoleof[E] isAgentRoleof[E]

t1

includesAgent[E]

s1s0 t1
s2t2

tr1hasPreScene[E] hasPostScene[E]

pattern EPISODE [ Class : E ; %% kind of episode
Class : XAgent SubClassOf : PhysicalAgent ; %% kind of agents
Class : XItem SubClassOf : Phys ica lOb jec t ; %% kind of i tems
Class : XEnv SubClassOf : Phys ica lOb jec t ] %% kind of environment

given Foundation =
SCENE[E; XAgent ; XItem ; XEnv ] and TRANSITION [E ] and SEQUENCE[ T r a n s i t i o n [E ] ]

then Class : Episode [E ] SubClassOf : Seq [ T r a n s i t i o n [E ] ] , Episode

pattern SCENE [ Class : E ; %% kind of episode
Class : XAgent SubClassOf : PhysicalAgent ; %% kind of agents
Class : XItem SubClassOf : Phys ica lOb jec t ; %% kind of i tems
Class : XEnv SubClassOf : Phys ica lOb jec t ] %% kind of environment

given Foundation %% Physica lObject , PhysicalAgent , Scene , T r a n s i t i o n
= Class : Scene [E ] SubClassOf : Scene
then ROLE[ AgentRole [E ] ; AgentRoleScene ;

XAgent ; isAgentRoleOf [E ] ; hasAgentRole [E ] ;
Scene [E ] ; i sAgent In [E ] ; inc ludesAgent [E ] ]

and %% . . . analogously f o r EnvRole [E ] , ItemRole [E ]

Figure 4. EPISODE and SCENE

pattern TRANSITION [ Class : E ] given Foundation =
ROLE[ T r a n s i t i o n [E ] ; T r a n s i t i o n ; Task [E ] ; executesTask [E ] ; executedIn [E ] ;

Pre [E ] ; hasPreScene [E ] ; isPreSceneOf [E ] ]
and FUNCTION INVERSE [ hasPostScene [E ] ; T r a n s i t i o n [E ] ;

Post [E ] ; isPostSceneOf [E ] ] then
Class : Scene [E ] SubClassOf : Scene
Class : Pre [E ] SubClassOf : Scene [E ] , PreScene
Class : Post [E ] SubClassOf : Scene [E ] , PostScene
Class : T r a n s i t i o n [E ] SubClassOf : T rans i t i on , hasPostScene [E ] some Post [E ]
Class : Task [E ] SubClassOf : Task
ObjectProperty : t r ansac t [E ] Domain : Pre [E ] Range : Post [E ]

SubPropertyOf : t r ansac t

Figure 5. TRANSITION

The parameter E denotes the kind of episode in distinctive parameterised names;
it will be specialised to a particular domain scenario below (Sect. 6). E is passed as
argument to instantiations in the body, as are the other parameters.

A scene is a snapshot of a part of the state of the world under consideration in an
episode of kind E. Consider SCENE in Fig. 4, and note the applications of the ROLE
pattern: a Scene[E] includesAgent[E] an agent of kind XAgent in its role Agent-



pattern DATA Role [ Class : R SubClassOf : Role ;
ObjectProperty : performs ; ObjectProperty : providedBy ;
Ind iv idual : pe r f ; Ind iv idual : prov ; Ind iv idual : r l e ]

given Foundation =
Ind iv idual : r l e Types : R Facts : providedBy prov
Ind iv idual : pe r f Facts : performs r l e

Figure 6. DATA Role

pattern DATA Scene [ Class : E ; %% kind of episode
Class : XAgent SubClassOf : PhysicalAgent ; %% kind of agent
Class : XEnv SubClassOf : Phys ica lOb jec t ; %% kind of environment
Ind iv idual : s ; %% scene i d
Ind iv idual : a Types : XAgent ; %% agent o f episode
Ind iv idual : env Types : XEnv ] %% environment o f episode

given Foundation %% Physica lObject , PhysicalAgent
= DATA Role [ AgentRole [E ] ; hasAgentRole [E ] ; i sAgent In [E ] ; a ; s ; a [ s ] ]
and DATA Role [ EnvRole [E ] ; hasEnvRole [E ] ; isEnvIn [E ] ; env ; s ; env [ s ] ]

Figure 7. DATA Scene

Role[E]; analogously an environment of kind XEnv in its EnvRole[E], and a special
object of kind XItem in its ItemRole[E] as its major focus (see [18]).

A transition Transition[E] (Fig. 5) corresponds to a mapping from a Scene[E], its
pre-scene Pre[E], to another, its post-scene Post[E].

A task assumes a role in a transition: a task Task[E] is executedIn[E] a Transi-
tion[E], which hasPreScene[E] Pre[E] (acting as perfomer and provider, resp.); thus
a transition has its pre-scene as context (also its post-scene by hasPostScene[E]). A
task relation t maps from a pre-scene Pre[t] to a post-scene Post[t]; in fact, this relation
governs the transition the task is executed in and thus becomes the transition relation.11

Pre[t], Post[t] express pre- and post-conditions, cf. Fig. 1.12

5. Ontology Expert Perspective: Data Patterns

As we have seen so far, GODPs may be used to extend an existing ontology in a con-
trolled, structured way with additional safeguards such as “typing”. We will now demon-
strate how such safer change management may also be applied to data, to guard their
typing (with Types, e.g. on input), and to generate their intricate interrelations (e.g. with
Facts).

Assuming that roles have been set up by instantiating the ROLE pattern (Fig. 3),
then instantiations may be obtained using DATA Role, see Fig. 6; cf. the instantiations of
DATA Role for the agent and the environment in DATA Scene (Fig. 7). We rely heav-

11Pre[E] and Post[E] are the domain and range of a relation transact[E] (cf. [18]), the transition super-
relation for all individual relations t for episodes of kind E, cf. Fig. 9.

12Task[t] is a kind of reification of t. This correspondence cannot be expressed in OWL, but since t, Task[t]
etc. are synchronously generated by one GODP, they exist coherently.



ontology EASE TableSett ing log = Foundation then
Class : Agent [ Tab leSet t ing ] SubClassOf : NaturalPerson or AutonomousRobot

then EPISODE[ Tab leSet t ing ; Agent [ Tab leSet t ing ] ; Tableware ; DesignedContainer ]

pattern DATA Episode TableSett ing [ Ind iv idual : e ; Ind iv idual : a ;
Ind iv idual : env ; Ind iv idual : s0 ; {ObjectProperty : t0} : : t s ]

given EASE TableSett ing log =
DATA Episode [ Tab leSet t ing ; Agent [ Tab leSet t ing ] ; DesignedContainer ;

e ; a ; env ; s0 ; t0 : : t s ]

pattern D A T A I n i t i a l T a b l e S e t t i n g
[ Ind iv idual : s0 ; Ind iv idual : a0 ; Ind iv idual : env0 ]

given EASE TableSett ing log =
DATA Scene [ Tab leSet t ing ; Agent [ Tab leSet t ing ] ; DesignedContainer ; s0 ; a0 ; env0 ]

Figure 8. EASE TableSetting log, DATA Episode TableSetting, DATA Initial TableSetting

ily on parameterised names (cf. Sect. 3): the individuals a[s] or env[s] in the instanti-
ations are parameterised by the (pre)scene s, i.e. the provider is included as a context
in the name; this distinguishes the role instance from others (for the same performer) in
different situations.

Consider the analogous application to the role Transition[E]: the “performer” should
be the task relation t (executedIn[E] Task[t]); t, however, is not an individual but an
object property. Therefore a pattern DATA RoleTransition has been devised in analogy
to DATA Role (see [18]). The role instance is tied to its PreScene sPre; thus each
transition instance is different due to a different sPre.

The intricate patterns DATA Episode, DATA Transition in [18] demonstrate the in-
herent complexity of the data interrelations, localised and thus manageable.

6. Domain Expert Perspective: Configuration Patterns

In Fig. 8 the pattern EPISODE is instantiated to the Table Setting scenario. We specify,
what kind of agent, items, environment, and tasks are admissible in this scenario: e.g.
for Agent[TableSetting], only items of class NaturalPerson or AutonomousRobot
are allowed; this could be made more specific, if desired. These constraints are passed
along in the parameters and give rise to corresponding checks for “typing”. Consider e.g.
the specialisation of DATA Episode to DATA Episode TableSetting: DATA Episode
is partially instantiated by these constraints as arguments (while others such as a or
env are still left as parameters), such that future instantiations of DATA Episode via
DATA Episode TableSetting will e.g. require agents a to be of Types XAgent, i.e.
Agent[TableSetting] (cf. Fig. 8, and SCENE in Fig. 4 above).

Other patterns are analogously specialised to this scenario, such as the set-up of the
initial scene in DATA Initial TableSetting (Fig. 8). Similarly, we may configure other
scenarios, e.g. for cooking in a Kitchen with Cookware etc.13

13For other application scenarios, more objects in focus like Item will have to be introduced, e.g. the cooking
container or preparation device, or the cooking utensil as a tool.



pattern TASK KIND ItemS
[ Class : XItem SubClassOf : Phys ica lOb jec t ; %% kind of i tem
{ObjectProperty : t } : : tS ; %% ancestor task r e l a t i o n s
{Class : A SubClassOf : XItem} : : As ] %% l i s t o f i tems

given Foundation =
l e t pattern TASK SubKindS [ Class : B : : Bs ] =

TASK KINDS [ Task [ t ] ; Pre [ t ] ; Post [ t ] ; t ; [ t [B ] ] ] and TASK SubKindS [ Bs ]
in TASK SubKindS [A : : As ] and TASK KIND ItemS [ XItem ; tS ; A : : As ]

ontology EASE Data Task TeaForTwo log = EASE TableSett ing log
and TASK KINDS [ Task [ Tab leSet t ing ] ; Pre [ Tab leSet t ing ] ; Post [ Tab leSet t ing ] ;

t r ansac t [ Tab leSet t ing ] ; [ fetchFrom , t ranspor tTo , place ] ]
and TASK KINDS Spatial [ Spa t ia lRe la t ion3D ; [ t ranspor tTo ] ; [ f r o n t , back ] ]
and TASK KINDS Spatial [ Spa t ia lRe la t ion3D ; [ place ] ; [ on , t o p r i g h t ] ]
and TASK KIND ItemS [ DesignedContainer ; [ fetchFrom ] ; [ CrockeryCupboard ] ]
and TASK KIND ItemS [ DesignedContainer ;

[ t ranspor tTo [ f r o n t ] , t ranspor tTo [ back ] ] ; [ Table ] ]
and TASK KIND ItemS [ DesignedContainer ; [ p lace [ on ] ] ; [ Table ] ]
and TASK KIND ItemS [ Crockery ; [ p lace [ on ] ] ; [ Saucer ] ]

Figure 9. TASK KIND ItemS and Log of Tasks for TableSetting

7. End-User Perspective: Dedicated Data Patterns

In the same way, we are now able to set up dedicated development tasks for the end-user.
In EASE Data Task TeaForTwo log a scenario for Table Setting is initialised provid-
ing the necessary tasks (cf. Sect. 6); in Fig. 9, a hierarchy of vocabulary is configured for
increasingly specialised operations, such as

transportTo
transportTo[front] transportTo[back]

transportTo[front][Table] transportTo[back][Table]
from which the user may choose appropriate ones when annotating an episode or when
defining a coherent episode template. Fig. 9 not only defines the task vocabulary, but
also configures and constrains e.g. the allowed spatial relations. The larger example at
[18] with Cutlery, a CutleryDrawer, etc., includes also the requisite PastryFork and
TeaSpoon; and tasks such as place[top][DessertPlate][PastryFork].

The pattern TASK Kinds (see Fig. 1) declares corresponding information for a
given list of task relations, and links it to ancestors in the resp. hierarchies. Simi-
larly, TASK KIND ItemS (Fig. 9) creates sub-relations for a list of items, e.g., fetch-
From[CrockeryCupboard]. TASK KIND SpatialRelationS analogously creates simi-
lar sub-relations for spatial relations, e.g. transportTo[front], place[topright].

Parameterised Episode Tea For One. The vocabulary of tasks is utilised in the
pattern DATA Episode TeaForOne (Fig. 10); e.g. transportTo[spr][Table] denotes a
task for transporting an item to the table in position spr; spr is the last parameter of
DATA Episode TeaForOne, denoting a spatial position.

Episode Tea For Two. DATA Initial TableSetting in Episode TeaForTwo log
(Fig. 10), sets up BKB as agent, BKBsTea s0 as initial scene, and EASE Lab as en-
vironment. Two instantiations of DATA Episode TeaForOne result in episodes BKBs-
TeaForOne front and BKBsTeaForOne back, as indicated by their first arguments;



pattern DATA Episode TeaForOne
[ Ind iv idual : e ; Ind iv idual : a ; Ind iv idual : env ; Ind iv idual : s0 ;

Ind iv idual : spr Types : Spa t ia lRe la t ion3D ] %% s p a t i a l p o s i t i o n
given EASE Data Task TeaForTwo log =

DATA Episode TableSett ing [ e ; a ; env ; s0 ;
[ fetchFrom [ CrockeryCupboard ] [ Desser tP la te ] , t ranspor tTo [ spr ] [ Table ] ,

p lace [ on ] [ Table ] ,
fetchFrom [ CrockeryCupboard ] [ Saucer ] , t ranspor tTo [ spr ] [ Table ] ,

p lace [ t o p r i g h t ] [ Desser tP la te ] ,
fetchFrom [ CrockeryCupboard ] [ TeaCup ] , t ranspor tTo [ spr ] [ Table ] ,

p lace [ on ] [ Saucer ] ] ]

ontology Episode TeaForTwo log = EASE Data Task TeaForTwo log
and D A T A I n i t i a l T a b l e S e t t i n g [ BKBsTea s0 ; BKB; EASE Lab ]
and DATA Episode TeaForOne [ BKBsTeaForOne front ;

BKB; EASE Lab ; BKBsTea s0 ; f r o n t ]
and DATA Episode TeaForOne [ BKBsTeaForOne back ;

BKB; EASE Lab ; post [ BKBsTeaForOne front ] ; back ]
and CONC Episodes [ Tab leSet t ing ; Episode [ Tab leSet t ing ] ;

BKBsTeaForOne front ; BKBsTeaForOne back ; BKBsTeaForTwo ]

Figure 10. DATA Episode TeaForOne and Instantiations in Episode TeaForTwo log

their last arguments, front and back, denote the corresponding position on the table; the
initial scene BKBsTea s0 and the post-scene of the first episode are given as further ar-
guments. Finally, the two episodes are concatenated with the pattern CONC Episodes
to the complete episode BKBsTeaForTwo (see [18]).

The expanded instantiations of the patterns in the examples have been successfully
checked for consistency with standard OWL reasoners.

8. Episode Data Consistency

We will now look at how the proposed GODP based approach assists the various stake-
holders in an ontology engineering process to create and maintain a consistent, well-
structured database. For our use case, this is a database of episodes recording agents’ ac-
tivities in the household domain. We use “consistency” in the “semantic integrity” sense
from database research [21]: the data we have about an episode describe an episode that
could have happened. There are constraints on what is a logically coherent episode that
must be enforced upon the data, either via structuring how episodes can be added to the
database, or by checking conformance of new episodes to formalized specifications.

Logically Consistent Episodes from an Ontology and Domain Expert Perspec-
tive. Logical constraints on the structure of an episode come from the definition of
an Episode; records not obeying such constraints cannot correspond to any possible
episode and thus must contain some error. We defined episodes as linear sequences of
transitions between scenes: thus a transition cannot be its own successor, even indirectly.
We show how to enforce this in Sect. 4, and Sect. 5 for data. Episodes may also relate
to each other (e.g. by specialisation when instantiating a pattern, by concatenation, re-
finement, projection, etc.), imposing further constraints. Constraints may also be more



domain specific: e.g. for a robot doing manipulation, certain actions are only available
for objects it has in hand.

The more extensive example [18] includes an additional role for items in the envi-
ronment; it illustrates how the roles an item plays change depending on whether it is
manipulated by the robot during a task, or placed again into the background. Constraints
preserve objects between pre- and post-scenes, e.g. a fetch task can only affect an object
already present in the environment in its pre-scene, and can only place that same object
in its post-scene at some location. The fact that the individual item participating in the
pre-scene is identical to one in the post-scene cannot be expressed in OWL, requiring a
heterogeneous solution.

All episodes in a database must obey logical constraints on episode structure,
achieved by restricting how data are entered, e.g. entry forms that impose constraints of
identity, and/or checking data before adding it to the database.

Domain Expert Perspective: “Well-Performed” Episodes. Closely related to consis-
tency is the question whether an episode describing activity performance is completed
successfully. Criteria for this are domain and task specific, but can often be logically
described. A transport task is successful, if it ends with the transported item at the tar-
get location. We can also express the constraint that a transportTo task should maintain
hasVerticalOrientation for the handled item, important when transporting a drink in a
cup!

Episodes of activities that do not follow “good performance” constraints are not nec-
essarily invalid; in fact it may be very interesting to keep episodes of activities performed
poorly in a robot’s database as well, if only to learn from mistakes. However, it becomes
important in such cases to distinguish what is a mistake or not, hence it must be possi-
ble to query whether stored episodes obey some constraints on what a well-performed
activity of a particular kind looks like.

We have shown how such constraints can be formalized and used via GODPs. It
will be a subject for future work how to treat episodes of failure precisely.

End-User Perspective: Easy and Safe Population of Episode Records. We ensure the
coherence and consistency of data through logical modelling of concepts by setting up
the interrelation of data and checking their consistency upon data entry. The end-user
should be relieved from such details as much as possible, to focus on the task at hand,
while safe population with data is assured.

9. Conclusion

The robotic episodic memory provides a very interesting testbed for ontology and
database solutions. On the one hand, the task itself of implementing such an episodic
memory is complex, for reasons pertaining to the heterogeneity of contents that is caused
by the variety of sensor and actuator combinations available on robots, to the logical
characterization of what is an episode, and to the formal description of what is a log-
ically sane, or qualitatively good, episode of a particular kind. On the other hand, the
people who work with such robotic episodic memories have different goals and differ-
ent levels of experience with ontological modelling, and in particular the users of such
a knowledge-driven system, robotics engineers, will need as much as possible of the
inferential and consistency checking work to be encoded in the ontology itself.



To this end, we have implemented GODPs to model episodes, scenes, and transi-
tions, in such a way that constraints on logical consistency or task conformity are en-
coded in the patterns, and constrain what can be entered into a database of episodes to
avoid error. These patterns also allow definitions of sanity checks on already existing
databases. Our discussion has been organized by looking at what the different stakehold-
ers in an ontology development process—ontology experts, domain experts, end users—
are expected to contribute to the process and how the GODPs benefit them. Foundational
GODPs created by ontology experts constrain domain-specific ontological extensions,
which in turn constrain the data that end users manipulate, allowing each group of stake-
holders to focus on their own expertise and aims. These foundational GODPs generalise
from episodes of a particular kind, and allow safe specialisation (cf. Sect. 6).

We would like to emphasise that we gained a lot of insight into the proper modelling
of foundational concepts from DUL and its associated ODPs. We believe that GODPs
make such ODPs practical; thus GODPs provide means for specifying patterns for (large
amounts of) data and manifold, extensive applications.

GODPs share many objectives with Parameterised OTTR Templates with macro
expansion [22,23,24]. Generic DOL provides more comprehensive list parameters with
recursion, parameterised names, and ontology parameter constraints.

The pattern ROLE is ubiquitously used in this paper. It allows for good structuring;
its use to tie in tasks with transitions (cf. Sect, 4 and 5) was a revelation even for us:
the pre-scene provides the necessary distinctive context to define a specialised (data)
manifestation of a task in its role when executed in a transition.

The patterns EPISODE, TRANSITION, SCENE, and in particular their data coun-
terparts, show the diligence and inherent complication when taking data seriously in
modelling. One cannot avoid the distinction between objects and their diverse roles.14 On
the other hand it is no wonder that this is often glossed over, since the modelling becomes
rather intricate and large—it seems quite impossible to manage without the generative
approach of GODPs.

It was very instructive to see during our own development, how the different levels
of checking assist the debugging (which was quite extensive for this rather complicated
example): at the first level, the structural check for mismatch of parameter versus argu-
ment kinds (e.g. Individual instead of Class, or vice versa) occurred on the order of
20 times. Most notably, an interesting and quite fundamental oversight was uncovered
this way: originally, DATA Role was instantiated in DATA Transition, where the object
property t was mistakenly used as an Individual parameter; this led to the introduction
of the analogous pattern DATA RoleTransition, cf. Sect. 5.

It will be an interesting future research issue to investigate, to what extent consis-
tency checks, expressed as pre-conditions on parameters generating proof obligations
on arguments, may be delegated to the development phase and become obsolete once a
coherent modelling has been obtained (including data patterns).15 Then one might want
to move axioms, which “only” relate to consistency, from the body to parameters in
Generic DOL as much as possible (cf. [11]); this view offers interesting perspectives for

14We took some inspiration from [19,20], realising eventually that their notion of “manifestations” is in
effect an application of the ROLE pattern.

15Proof obligations generated by instantiations are checked with an automated OWL reasoner. The actual
proof may be deferred; then the expansion is generated but may be ill-formed because semantic pre-conditions
do not hold; a change requires to redo the proofs.



efficiency of deduction in “production runs”, say in robotics applications, helped by the
use of GODPs.

More applications, e.g. for configuration (cf. [10]) or the cooking domain (cf. [8]),
will follow. A recipe is a workflow, essentially a prescription for an episode in which
it is executed. We expect a workflow to be a rather straightforward generalisation of an
episode to a directed graph of transitions, where the function succ is generalised to a
relation next.

Safe Scaling of Data. The modelling of the example has been a non-trivial and siz-
able effort. The extended example (see [18]) generates ca. 800 axioms in OWL, ca. 1
axiom per dense line of original Generic DOL (not counting ca. 450 lines of Founda-
tion). On this basis, 15 tasks (i.e. 6 more than the 3*3 in DATA Episode TeaForOne
and Episode TeaForTwo log (Fig. 10)) generate ca. 750 axioms and 165 individu-
als, thus about 50 axioms each; we can expect a similar scaling factor for each task. It
seems quite impossible to effect an error-free construction by hand, whereas the input of
such tasks can be entrusted to an end-user with a suitable interaction interface (e.g. for
DATA Episode TeaForOne).

It will be interesting to see in a (planned) user study, how domain experts cope with
ready-made GODPs, and end-users with GODPs supporting data input.

Acknowledgments. We are grateful to Till Mossakowski and Fabian Neuhaus for their
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ton A, Seppälä S, Porello D, editors. Proceedings of the Joint Ontology Workshops 2019 Episode
V: The Styrian Autumn of Ontology, Graz, Austria, September 23-25, 2019; (CEUR Workshop Pro-
ceedings; Vol. 2518). CEUR-WS.org; 2019. Available from: http://ceur-ws.org/Vol-2518/
paper-BOG2.pdf.

[13] Object Management Group. The Distributed Ontology, Modeling, and Specification Language (DOL) ;
2016. OMG standard at omg.org/spec/DOL. See also dol-omg.org.
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