
Compilation of Aggregates in ASP:

Preliminary Results ?

Giuseppe Mazzotta, Bernardo Cuteri, Carmine Dodaro, and Francesco Ricca

University of Calabria, Italy

Abstract. Answer Set Programming (ASP) is a well-known problem-
solving formalism in computational logic. Among the knowledge mod-
eling constructs that make ASP e�ective in representing complex prob-
lems are aggregates. Aggregates operate on sets of literals and compute
a single value (e.g., count, sum, etc.), thus, making the expression of con-
straints in ASP programs very concise. Traditionally, ASP systems are
based on the ground&solve approach that su�ers an intrinsic limitation
known as grounding bottleneck: the grounding (variable elimination) can
�ll all the available memory and then the program cannot be evaluated.
This happens also in programs that use aggregate functions. Recently, an
alternative approach to evaluate ASP programs that avoids the ground-
ing bottleneck has been proposed that is based on ASP program compila-
tion. In this paper we present an extension of ASP program compilation
that supports constraints containing the aggregate count. Preliminary
experimental results demonstrate the viability of the approach.

Keywords: Answer Set Programming · Aggregates · Grounding Bottle-
neck.

1 Introduction

Answer Set Programming (ASP) [7] is a well-known problem-solving formalism
in computational logic that is based on the stable model semantics [24]. ASP
systems, such as clingo [20] and dlv [1, 3], made possible the development of
many real-world applications. In the recent years, ASP has been widely used for
solving problems of game theory [5], natural language processing [28], natural
language understanding [13], robotics [18], scheduling [16], and more [17].

A key role in the development of applications is played by system perfor-
mance, and thus, the improvement of ASP systems is an interesting research
topic in computational logic. Traditional ASP systems are based on the ground
& solve approach [25], in which a grounder module transforms the input program
(containing variables) in its propositional counterpart, whose stable models are
subsequently computed by the solver module, which implements an extension
of the Con�ict Driven Clause Learning (CDCL) algorithm [25]. The traditional

? Copyright c© 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

2 G. Mazzotta, B. Cuteri, C. Dodaro, F. Ricca

ASP implementations are e�ective in many contexts [17] but su�er from an
intrinsic limitation: the combinatorial blowup of the grounding of some rules,
known as grounding bottleneck. The grounding bottleneck is often due to one or
few constraints that model the (non) admissibility of problem solutions [27, 9].

Several attempts have been made to solve the grounding bottleneck prob-
lem [22], including language extensions (such as constraint programming [27, 6],
and di�erence logic [20, 29]) and lazy grounding techniques [14, 26, 30]. Hybrid
formalisms are e�ciently evaluated by coupling an ASP system with a solver for
the other theory, thus circumventing the grounding bottleneck. Lazy grounding
implementations instantiate a rule only when its body is satis�ed to prevent
the grounding of rules which are unnecessary during the search of an answer
set. Albeit lazy grounding techniques obtained good preliminary results, their
performance is still not competitive with state-of-the-art systems [22].

Recently a di�erent approach was proposed that is based on the compilation

of problematic constraints as propagators [10, 11]. In this latter approach, prob-
lematic constraints are removed from the non-ground input program and the
resulting program is provided as input to an extended version of a CDCL-based
solver, where the presence of problematic constraints is internally simulated.
There are two alternative strategies for implementing such an extension, namely
lazy instantiation and propagators. In the lazy instantiation strategy, the solver
computes a stable model of the program without problematic constraints. If this
stable model satis�es also the omitted constraints, then it is also a stable model
of the original program. Otherwise, the violated instances of these constraints
are lazily instantiated, and the search continues. The other strategy relies on an
extension of the propagation function by adding custom propagators, whose role
is to perform the inferences of missing constraints during the search. Basically,
Cuteri et al. [11] proposed to translate (or compile) some non-ground constraints
into a dedicated C++ procedure, which is used by the system to generate prop-
agators in an automatic way. This approach keeps the declarativity of ASP and
is e�ective when the problematic constraints are likely to be satis�ed by a can-
didate model (i.e., whenever lazy instantiation is e�ective cfr. [10]). Approaches
based on compilation revealed to be very promising, outperforming traditional
systems in many comparisons [11, 12] However, a signi�cant number of prob-
lems, especially hard combinatorial problems from ASP competitions [9] exploit
an advanced language feature that is not supported: aggregates [19]. Aggregates
are among the standardized knowledge modeling constructs that make ASP ef-
fective in representing complex problems [8, 23]. Indeed, aggregates operate on
sets of literals and compute a single value (e.g., count, sum, etc.), thus, making
the expression of constraints in ASP programs very concise.

In this paper, we push forward the idea of [10�12], and we present a novel
strategy for translating (compiling) non-ground constraints containing #count

aggregates into dedicated C++ procedures that are used as propagators during
the search of the CDCL algorithm. We have implemented our extension on top of
wasp [4, 2, 15] and conducted an experimental analysis on hard benchmarks from

Compilation of Aggregates in ASP: Preliminary Results 3

ASP competitions [9, 23]. Results are encouraging, indeed our implementation
improves the performance of wasp in all tested scenarios.

2 Preliminaries

2.1 Answer Set Programming

An ASP program π is a set of rules of the form:

h1| . . . |hn : −b1, . . . , bm. with n+m > 0

where h1| . . . |hn is a disjunction of atoms and is referred to as head, instead,
b1, . . . , bm is a conjunction of literals and is referred to as body. In particular, if
n = 0 the rule is called constraint, instead if m = 0 the rule is called fact.

An atom a is an expression of the form p(t1, . . . , tk) where p is a predicate
of arity k and t1, . . . , tk are terms. A term is an alphanumeric string that could
be either a variable or a constant. According to Prolog, if a term starts with a
capital letter is a variable otherwise is constant. If ∀i ∈ {1, . . . , k}, ti is a con-
stant the atom a is said ground. A literal is an atom a or its negation ∼ a where
∼ denotes the negation as failure. Given a literal l it is said positive if l = a,
negative if l =∼ a. Given a positive literal l = a, we de�ne the complement,
l =∼ a, instead, for a negative literal l =∼ a, l = ∼ a = a. However ASP
supports also aggregate atoms. An aggregate atom is of the form f(S) � T ,
where f(S) is an aggregate function, �∈ {=, <,≤, >,≥} is a prede�ned com-
parison operator, and T is a term referred to as guard. An aggregate function
is of the form f(S), where S is a set term and f ∈ {#count,#sum} is an ag-
gregate function symbol. A set term S is a pair that is either a symbolic set or
a ground set. A symbolic set is a pair {Terms : Conj}, where Terms is a list
of variables and Conj is a conjunction of standard atoms, that is, Conj is of
the form a1, . . . , an and each ai(1 ≤ i ≤ n) is an atom. A ground set, instead,
is a set of pairs of the form (t : conj), where t is a list of constants and conj
is a conjunction of ground atoms. Given a program π, we de�ne Uπ, the Her-

brand Universe, as the set of all constants appearing in π and Bπ, the Herbrand
Base, as the set of all possible ground atoms that can be built using predicate
in π and constants in Uπ. B denotes Bπ ∪Bπ. Given a rule r and the Herbrand
Universe Uπ, we de�ne ground(r) as the set of all possible instantiations of r
that can be built assigning variables in r to constant in Uπ. Given a program
π, instead, ground(π) =

⋃
r∈π ground(r). An interpretation I is a set of literals.

In particular, I is total if ∀a ∈ Bπ(a ∈ I∨ ∼ a ∈ I) ∧ (a ∈ I →∼ a /∈ I).
A literal l is true w.r.t I if l ∈ I, otherwise it is false. A ground conjunction
conj of atoms is true w.r.t I if all atoms in conj are true, otherwise, if at
least one atom is false then conj is false w.r.t. I. Let I(S) denote the multi-
set [t1|(t1, . . . , tn) : conj ∈ S ∧ conj is true w.r.t. I]. The evaluation I(f(S))
of an aggregate function f(S) w.r.t. I is the result of the application of f on I(S).

For example letA be an aggregate atomA = #count{(1 : p(1, 1)), (2 : p(2, 1)), (3 :

4 G. Mazzotta, B. Cuteri, C. Dodaro, F. Ricca

p(3, 1))} > 1 and let I = {p(1, 1), p(2, 1),∼ p(3, 1)}. I(S) = [1, 2], I(f(S)) = 2
since f = #count so the aggregate atom A is true w.r.t. I.

I is amodel for π if ∀ r ∈ ground(π)(∀ l ∈ body(r), l ∈ I)→ (∃a ∈ head(r) : a ∈ I).
Given a program π and an interpretation I, we de�ne the FLP − reduct of π,
denoted by πI , as the set of rules obtained from π deleting those rules that has
body false w.r.t I. Let I be a model for π, I is also a stable model for π if
6 ∃ I ′ ⊂ I such that I

′
is a model for πI . Given a program π, π is coherent if it

admits at least one stable model otherwise is incoherent.

2.2 Classical CDCL Evaluation

The solving approach for ASP is implemented as con�ict-driven clause learning

for SAT but with ad-hoc extensions for ASP that ensure that the model built
is also stable. In particular, the idea behind this approach starts from an empty
interpretation I and step-by-step will add to I all the deterministic consequences
starting from true literals in I. Once all consequences are inferred if the inter-
pretation is not total we will choose heuristically some literals and propagate
their deterministic consequences. If we reach the empty clause we come back
(con�ict resolution) to the last non-deterministic choice and will propagate it
deterministically and go forward until I is total and then we have a model or
we have no choice and then the program is incoherent. To better understand, let
suppose we have the following ground program π:

r0 : a(1).
r1 : a(2).
r2 : a(3)|a(4).
r3 : b(1, 1)|nB(1, 1).
r4 : b(1, 2)|nB(1, 2).
r5 : b(2, 2)|nB(2, 2).
r6 : b(2, 1)|nB(2, 1).
r7 : : −a(1),#count{1 : b(1, 1), 2 : b(1, 2)} > 1
r8 : : −a(2),#count{1 : b(2, 2), 2 : b(2, 1)} > 1
r9 : : −b(1, 1), b(2, 1), a(3).

The algorithm starts with I = ∅. Then a(2) is inferred from r1, and a(1) is
inferred from r0. Let suppose that from r3 is heuristically chosen b(1, 1). Let
consider its deterministic consequences:

� From r3 is inferred ∼ nB(1, 1) since, by property of stable models, this is
the only way to support b(1, 1)

� From r7 is inferred ∼ b(1, 2) since it is the unique way to satisfy r7
� From r4 is inferred nB(1, 2) because it is the unique way to satisfy r4 since
∼ b(1, 2) has been previously added to I

At this point let suppose that heuristically is chosen b(2, 1). As consequences we
have:

� From r6 is inferred ∼ nB(2, 1) to ensure that the model will be also a stable
model

Compilation of Aggregates in ASP: Preliminary Results 5

� From r8 is inferred ∼ b(2, 2) since it is the unique way to satisfy r8
� From r5 is inferred nB(2, 2) because it is the unique way to satisfy r5 since
b(2, 2) has been previously added to I

Let suppose that from r2 is chosen a(3). At this point, the algorithm propagates
∼ a(4) and �nd a con�ict in r9. Since a con�ict is detected last deterministic
consequences are unfolded until the last choice and propagate ∼ a(3) and its
consequences, in this case only a(4) from r3. Now, I is total so we have found
a stable model. Thanks to the external interface of WASP, we can customize
the CDCL evaluation by de�ning propagators, which are procedures intended to
compute the deterministic consequences of a true literal. In particular, in our
approach, we take as input an ASP constraint, possibly containing an aggregate,
and create a propagator that computes the deterministic consequences of a true
literal w.r.t. the ASP constraint in input.

2.3 Normalization Procedure

In order to simplify the compilation of constraint containing an aggregate literal
we normalize the aggregate literals, without losing generality, in such a way that
the di�erent comparison operators are uni�ed to one of them that is ≥ operator.
Let C be a constraint with an aggregate A of the form count(S) � g with
�∈ {<,≤, >,≥,=}, the normalization procedure is the following:

� If � equal to ≥ then A remains as it is;
� If � equal to > then A will be mapped into #count(S) ≥ g + 1;
� If � equal to < then A will be mapped into ∼ #count(S) ≥ g;
� If � equal to ≤ then A will be mapped into ∼ #count(S) ≥ g + 1;
� If � equal to = then A will be mapped into the conjunction of two aggregate
literals:
• A1 = #count(S) ≥ g;
• A2 =∼ #count(S) ≥ g + 1.

� If � equal to = and A is negated then C will be mapped in two di�erent
constraints as follow:
• C1 =: −body(C),#count(S) ≥ g + 1;
• C2 =: −body(C),∼ #count(S) ≥ g.

For example given constraint C =: −#count{X : a(X)} = 3, it will be normal-
ized as follow:

C
′
=: −#count{X : a(X)} ≥ 3, ∼ #count{X : a(X)} ≥ 4

Note that this normalization is often used in real implementations [21].

3 Constraints with aggregates as propagators

In this section, we present our strategy for evaluating constraints with aggre-
gates using propagators that are automatically generated by a compilation-based
approach. Hereafter, to simplify the presentation, we assume w.l.o.g. that the
bodies of constraints never contain two literals with the same predicate name
and constraints contain at most one aggregate literal in the body.

6 G. Mazzotta, B. Cuteri, C. Dodaro, F. Ricca

Some notation and code conventions. Let C be a constraint with an aggregate
of the form:

: −b1, ..., bk,#count{V1, . . . , Vn : l1, . . . , lm} ≥ g.
where g is a constant.

we de�ne :

� Given an ASP expression (term, literal, body, rule, etc.) e, vars(e) as the
set of variable terms appearing in e;

� Given an ASP expression (term, literal, body, rule, etc.) e, pred(e) as the
set of all predicate name appearing in e;

� Given a literal l, trm(l) as the list of terms appearing in l;
� trm(l)[i] with 1 ≤ i ≤ |trm(l)| as the i − th element of the list trm(l) (e.g.
let trm(l) = [X,Y, 3], trm(l)[2] is equal to Y);

� σ : vars(C) → Uπ as a possible variable assignment from the variables of
the constraint to the constants in Uπ;

� Given an ASP expression e, σ(e) as the substitution of the variables appear-
ing in e with the constants which their are mapped to;

� match(l1, l2), where l1 is a literal and l2 is a ground literal, as a function
that checks if ∃σ | σ(l1) = l2;

� body(C) as the set {b1, ..., bk};
� aggregate(C) as the aggregate literal in the constraint C;
� aggregateV ars(C) as the set of variables {V1, ..., Vn};
� aggrLit(C) as the set {l1, ..., lm};
� sharedV ars(C) as the set of variables v such that v ∈ vars(body(C)) ∩
vars(aggrLit(C));

� Given an interpretation I, joinTuples as the set of all tuples of the form
(t1, . . . , tm) such that following conditions are true:
• (ti ∈ I+ ∨ (ti ∈ (B \ I)+ ∧ ti /∈ I)) ∀i ∈ {1, . . . ,m} where I+ denotes the
set of positive literals in I.

• ∃σ | ∀i ∈ {1, . . . ,m} match(σ(li), ti) where σ is a possible variable as-
signment such that ∀v ∈ vars(aggrLit(C)), σ(v) is de�ned.

� Given an interpretation I and a join tuple (t1, . . . , tm) ∈ joinTuples
projOnSharedV ar((t1, . . . , tm)) = (trm(ti)[j] : trm(li)[j] ∈ sharedV ars(C)
with 1 ≤ j ≤ trm(ti) and 1 ≤ i ≤ m);

� Given an interpretation I and a join tuple (t1, . . . , tm) ∈ joinTuples
projOnAggrV ar((t1, . . . , tm)) = (trm(ti)[j] : trm(li)[j] ∈ aggregateV ars(C)
with 1 ≤ j ≤ trm(ti) and 1 ≤ i ≤ m).

In the algorithms that we present in this section and in the appendix we
follow the same pseudo-code convention that is used in [22] to ease readability.
In particular, the underlined code is produced by the compiler, instead, the not
underlined one (e.g., variables and references) represents the code in the scope
of the compiler. If a line contains an underlined part closed between ��, it means
that the code inside will be �rst interpreted by the compiler (e.g. variables are
substituted by their run-time value) and then is printed in the propagator code.
For example, given the constraint : −a(X), c(X,Z),#count{Y : b(X,Y)} > 2
then Algorithm 1 at line 6, prints "case a" and "case c".

Compilation of Aggregates in ASP: Preliminary Results 7

Algorithm 1 CompilePropagateConstraintWithAggregate

Input : A constraint C
Output: Prints the propagator for C.

1 begin

2 Il = ∅
3 buildAggregateJoin(C)
4 switch pred(l)

5 forall the c ∈ body(C) do
6 case �pred(c)�:

7 CompilePropagateConstraintStartingFromLiteral(c,C)
8 break

9 if pred(l) ∈ �pred(aggrLit(C))� then

10 CompilePropagateConstraintStartingFromAggregate(C)
11 return Il

Algorithm 2 CompilePropagateConstraintStartingFromLiteral

Input : A constraint C, a literal c ∈ C
Output: Prints an algorithm that is performs the unit propagation of C

starting from a ground literal whose predicate is the same of c
1 σ = ε
2 forall the k = 1, . . . , |trm(c)| do
3 if trm(c)[k] is variable then

4 σ = σ ∪ {�trm(c)[k]� 7→ trm(l)[�k�]}

5 B = printNestedJoinLoop(C, c)
6 propagateUndefined(B,C)
7 forall the i = |B|, . . . , 1 do

8 σ = σ�i�
9 if u = b�i� then

10 u = ⊥
11 }

8 G. Mazzotta, B. Cuteri, C. Dodaro, F. Ricca

Compilation procedures. Given a constraint C, Algorithm 1 prints the propaga-
tion procedure for C starting from a true literal l. It starts declaring an empty
implication list Il, which will be in charge of accumulating the result of the
propagation of a literal l, and then prints the code that builds the set of join
tuples by executing Algorithm buildAggregateJoin. This algorithm declares dif-
ferent sets that store join tuples, and are used to evaluate the truth value of the
aggregate literal (pseudo-code and more detailed description in the appendix,
algorithm 6). At this point the propagation procedure, as is shown in Algorithm
1 (lines 4-8), continues with a switch on the predicate name of the literal l. In
particular, this switch block has a case for each literal c belonging to body(C) in
which is printed, by executing Algorithm 2, the code that evaluates �rst all body
literal starting from c and at the end the aggregate literal. Instead, if the pred(l)
belongs to the set of predicate name that appears inside the aggregate literal
the evaluation of C starting from the aggregate literal is printed by executing
Algorithm 5. Algorithm 2 starts printing the code that builds a variable substi-
tution σ that maps all variables belonging to c to constant in l (Algorithm 2 lines
1-4). Then, executing algorithm 7, di�erent nested join loops that iterate over all
possible ground instantiations of body literals are printed (detailed description
and pseudo-code algorithm in appendix Algorithm 7). Once all nested blocks
are printed, we can evaluate the aggregate literal and make some inferences. In
particular, by executing Algorithm 3, the code for unit propagation is printed. It
starts declaring a list of values "sharedVarTuple" that contains values to which
shared variables are mapped, in order to consider only those join tuples that
match the value of shared variables (lines 2-6). Then we declare the reason R in
order to accumulate all true literals that are causing propagation (Algorithm 3

lines 7-13). Once the reason is built, if u 6= ⊥ then we have exactly one unde�ned
body literal that can be propagated if the aggregate is true (Algorithm 3 lines
14-19). Otherwise u = ⊥ then all body literals are true and so if the propagation
condition for the aggregate literal is true (Algorithm 3 lines 20-24) we could infer
something on the aggregate literal. Since the aggregate literal in our example is
positive, if the size of truekeys is exactly g − 1 then we can propagate as false
those join tuples having exactly one literal li with i ∈ {1, . . . ,m} unde�ned, that
is li ∈ (B \ I)+ ∧ li /∈ I (algortihm 4 lines 6-7). In this way, we ensure that we
do not reach the upper bound g and so the constraint is not violated. In the
end, we need to roll back the aggregate join structures by executing algorithm

8. Algorithm 5, instead, prints the code that executes a constraint evaluation
starting from the aggregate. In particular, the propagator iterates over possible
variables assignment for variables belonging to sharedV ars(C) line 3. For each
variable assignment, �rst of all, we should update the previously declared ag-
gregate join structures in order to discard those join tuples that do not share
the values of the shared variables by executing algorithm 8 and then check if
the aggregate literal is true (lines 9-12). If the aggregate is true the propagator
has to build body joins, and so, as is shown in Algorithm 2, nested join loops
are printed by executing algorithm 7. Once the last join loop is reached, if there
is a body literal unde�ned (algorithm 5 lines 26-27) it will be propagated and

Compilation of Aggregates in ASP: Preliminary Results 9

Algorithm 3 propagateUnde�ned

Input : List of body literals B, and a constraint C
Output: Prints code for unit propagation.

1 A = aggrLit(C)
2 sharedV arTuple = (

3 forall the v ∈ sharedV ars(C) do
4 σ(�v�)

5)

6 updateAggregateWithSharedV ars(C, true)
7 R = {l}
8 forall the i = 1, . . . , |B| do
9 R = R ∪ {b�i�}

10 R = R \ {u}
11 for (l1, . . . , l|�A�|) ∈ trueJoin
12 for j = 1, . . . , |�A�|
13 R = R ∪ {lj}
14 if u 6= ⊥ then {

15 if aggregate(C) is positive then

16 if |trueKey| ≥ g then

17 else

18 if |trueKey ∪ undefKey| < g then

19 Il = Il ∪ (u,R)

20 if aggregate(C) is positive then

21 }else if |trueKey| = g − 1

22 else

23 }else if |trueKey ∪ undefKey| = g

24 propAggregate(C)
25 updateAggregateWithSharedV ars(C, false)

10 G. Mazzotta, B. Cuteri, C. Dodaro, F. Ricca

Algorithm 4 propAggregate

Input : A constraint C
Output: Prints code to propagate aggregate atom

1 A = aggrLit(C)
2 for (l1, . . . , l|�A�|) ∈ undefJoin
3 if projAggrV ars((l1, . . . , l|�A �)) /∈ trueKey then
4 forall the i = 1, . . . , |A| do
5 if aggregate(C) is positive then

6 if l�i� ∈ (B \ I)+ ∧ {{l1, . . . , l|A|} \ {l�i�}} ∩ (B \ I)+ = ∅ then
7 Il = Il ∪ (l�i�, R)

8 else

9 if l�i� /∈ I then
10 Il = Il ∪ (l�i�, R)

then we can close each join loop. Now what we need is an else if block where the
propagator enters if the aggregate literal is false and the propagation condition
is true (algorithm 5 lines 36-40). In this else-if block, since we want to make
inferences on the aggregate, we need to verify that the body without aggregate
is true. In order to do this, we need nested join loops, which are printed again
by executing algorithm 7, to build possible body join. In the last join loop, if all
body literals are true (line 29-30) then the propagator makes inferences on the
aggregate atom by executing algorithm 4. In the end, before passing to the next
shared variables values, aggregate join structures are restored by executing again
algorithm 8. Note that both algorithm 2 and 5 remain as it is for constraints
with one aggregate literal but as we describe in section 2.3 there is one special
case in which the aggregate literal is transformed into two aggregate literals and
their conjunction is equivalent to the original aggregate literal.

The case aggregates with equality guard. The algorithms presented above can
be easily updated to handle aggregates of the form A = #count{V1, . . . , Vn :
l1, . . . , lm} = g. Indeed, during normalization this aggregate literal is trans-
formed in

: −A1, A2

where

A1 = #count{V1, . . . , Vn : l1, . . . , lm} ≥ g,

A2 = not #count{V1, . . . , Vn : l1, . . . , lm} ≥ g + 1

Thus, to support this form of aggregate literal, Algorithm 2 changes as fol-
lows. The code remains identical for processing A1 but the following lines have
to be modi�ed to compile A2:

� At line 18 and 24 we will print an if block to ensure that also A2 is true.

Compilation of Aggregates in ASP: Preliminary Results 11

Algorithm 5 CompilePropagateConstraintStartingFromAggregate

Input : A constraint C
Output: Prints an algorithm that performs the unit propagation of C starting

from a ground literal whose predicate is the same of c
1 A=aggrLit(C)
2 σ = ε
3 for sharedV arTuple ∈ sharedV arKey {

4 forall the i ∈ {1, . . . , |sharedV ars(C)|} do
5 σ = σ ∪ (�sharedVars(C)[i]�, sharedV arTuple[�i�])

6 updateAggregateWithSharedV ars(C, true)
7 propAggr = False
8 propBodyLit = False
9 if aggregate(C) is positive then

10 if |trueKey| ≥ g then{

11 else

12 if |trueKey ∪ undefKey| < g then{

13 while propAggr = False ∨ propBodyLit = False do
14 if propBodyLit = True then
15 propAggr = True

16 propBodyLit = True
17 B = printNestedJoinLoop(C,None)
18 R = {l}
19 forall the i = 1, . . . , |B| do
20 R = R ∪ {b�i�}

21 R = R \ {u}
22 for (l1, . . . , l|� A �|) ∈ trueJoin
23 for j = 1, . . . , |� A �|
24 R = R ∪ {lj}
25 if propAggr = False then
26 if u 6= ⊥ then

27 Il = Il ∪ (u,R)

28 else

29 if u = ⊥ then

30 propAggregate(C)

31 forall the i = |B|, . . . , 1 do

32 σ = σ�i�
33 if u = b�i� then

34 u = ⊥
35 }

36 if propAggr = False then
37 if aggregate(C) is positive then

38 else if |trueKey| = g − 1

39 else

40 else if |trueKey ∪ undefKey| = g

41 updateAggregateWithSharedV ars(C, false)
42 }

12 G. Mazzotta, B. Cuteri, C. Dodaro, F. Ricca

0 10 20 30 40 50 60
0

120

240

360

480

600

Number of instances

E
xe
cu

ti
on

ti
m
e
(s
) wasp

wasp-eager-aggr

(a) Combined con�guration.

0 20 40 60 80 100 120
0

120

240

360

480

600

Number of instances

E
xe
cu

ti
on

ti
m
e
(s
) wasp

wasp-eager-aggr

(b) Abstract dialectical frameworks.

Fig. 1: Experimental results.

� At the end is needed an other else if block in which evaluate if A2 can be
propagated and if it can be propagated, then, the propagator will check that
the A1 is true and �nally it makes propagation on A2.

at the same time, Algorithm 5 should be changed as follows:

� At line 27 and 40, an if block that check if A2 is true must be added;

� A copy of the code described so far must be duplicated so to check �rst A2

and then A1 (the entire algorithm 5 contains two twin parts obtained by
swapping the role of the two aggregates). This is needed because all possible
propagation paths have to be considered.

Compilation of Aggregates in ASP: Preliminary Results 13

4 Implementation and Experiments

4.1 Implementation

We started from the baseline system presented in [12] that has been extended
to support the compilation of the propagation of aggregates. In particular,
the implementation follows the execution presented in pseudo-code in algo-
rithms of Section 3. The resulting compiler has been implemented in C++,
and its output is also C++ code compliant to the wasp propagator interface,
and is loaded in the ASP solver as a C++ dynamic library. Moreover, even
though, in the compiler pseudo-code, we assumed that there is no repetition
of predicates names we explicitly handle the case of duplicated predicates in
the real implementation. Basically, when we have two literals with the same
predicate name, we have to distinguish the data structure that will be de-
clared for both literals in the nested join loops. The latest release is available at
https://github.com/WaspWithCompilation/WASP_C.

4.2 Experimental evaluation

We carried our an experimental evaluation to empirically assessed the perfor-
mance gain of the proposed approach w.r.t. the base solver wasp. Namely, we
considered two hard benchmarks of the ASP competitions [9] where there are
some constraints containing #count aggregates. The two considered benchmarks
are Combined Con�guration and Abstract Dialectical Frameworks.

In Combined Con�guration, the problem is to con�gure an artifact by com-
bining several sub-components in order to achieve some goals; whereas in Ab-

stract Dialectical Frameworks the problem is to �nd all statements which are
necessarily accepted or rejected in a given abstract argumentation framework.
In both benchmarks we compile all constraints with aggregates supported by
our implementation (i.e. constraints with exaclty one #count aggregate). The
experiments were run on an Intel Xeon CPU E7-8880 v4 @ 2.20GHz, time and
memory were limited to 10 minutes and 4 GB, respectively.

The results are presented in Figure 1a and Figure 1b as two cactus plots.
Overall, our approach is able to boost the performance of wasp, with the result
of obtaining smaller execution times, on average, and more solved instances (3
more instances for Combined Con�guration and 7 more for Abstract Dialectical
Frameworks). The results are very promising, also considering the fact that the
benchmarks in the ASP competitions are more oriented towards the evaluation
of solving techniques.

5 Conclusion

In this paper, we have extended the approach for the automatic compilation of
constraints into propagators by adding support for the #count aggregate and we
implemented it on top of the ASP solver wasp. Our tool has been empirically

14 G. Mazzotta, B. Cuteri, C. Dodaro, F. Ricca

validated on hard benchmarks from ASP competitions and demonstrate to be
e�ective on improving the base solver wasp both in terms of number of solved
instances and in raw speed. Concerning future work, we plan to extend our
implementation for supporting constraints containing more than one aggregate,
all the other aggregate functions of the ASP Core 2 standard, and possibly
aggregates in rules.

References

1. Adrian, W.T., Alviano, M., Calimeri, F., Cuteri, B., Dodaro, C., Faber, W., Fuscà,
D., Leone, N., Manna, M., Perri, S., Ricca, F., Veltri, P., Zangari, J.: The ASP
system DLV: advancements and applications. Künstliche Intell. 32(2-3), 177�179
(2018)

2. Alviano, M., Amendola, G., Dodaro, C., Leone, N., Maratea, M., Ricca, F.: Evalu-
ation of disjunctive programs in WASP. In: LPNMR. Lecture Notes in Computer
Science, vol. 11481, pp. 241�255. Springer (2019)

3. Alviano, M., Calimeri, F., Dodaro, C., Fuscà, D., Leone, N., Perri, S., Ricca,
F., Veltri, P., Zangari, J.: The ASP system DLV2. In: LPNMR. LNCS, vol.
10377, pp. 215�221. Springer (2017). https://doi.org/10.1007/978-3-319-61660-
5_19, https://doi.org/10.1007/978-3-319-61660-5_19

4. Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: LPNMR.
LNCS, vol. 9345, pp. 40�54. Springer (2015)

5. Amendola, G., Greco, G., Leone, N., Veltri, P.: Modeling and reasoning about
NTU games via answer set programming. In: IJCAI. pp. 38�45. IJCAI/AAAI Press
(2016)

6. Balduccini, M., Lierler, Y.: Constraint answer set solver
EZCSP and why integration schemas matter. TPLP 17(4),
462�515 (2017). https://doi.org/10.1017/S1471068417000102,
https://doi.org/10.1017/S1471068417000102

7. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92�103 (2011)

8. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwall-
ner, T., Leone, N., Maratea, M., Ricca, F., Schaub, T.: Asp-core-2 in-
put language format. Theory Pract. Log. Program. 20(2), 294�309 (2020).
https://doi.org/10.1017/S1471068419000450

9. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the �fth
answer set programming competition. Artif. Intell. 231, 151�181 (2016)

10. Cuteri, B., Dodaro, C., Ricca, F., Schüller, P.: Constraints, lazy constraints, or
propagators in ASP solving: An empirical analysis. TPLP 17(5-6), 780�799 (2017)

11. Cuteri, B., Dodaro, C., Ricca, F., Schüller, P.: Partial com-
pilation of ASP programs. TPLP 19(5-6), 857�873 (2019).
https://doi.org/10.1017/S1471068419000231

12. Cuteri, B., Dodaro, C., Ricca, F., Schüller, P.: Overcoming the grounding bot-
tleneck due to constraints in ASP solving: Constraints become propagators. In:
IJCAI. pp. 1688�1694. ijcai.org (2020). https://doi.org/10.24963/ijcai.2020/234

13. Cuteri, B., Reale, K., Ricca, F.: A logic-based question answering system for cul-
tural heritage. In: JELIA. Lecture Notes in Computer Science, vol. 11468, pp.
526�541. Springer (2019)

Compilation of Aggregates in ASP: Preliminary Results 15

14. Dal Palù, A., Dovier, A., Pontelli, E., Rossi, G.: GASP: answer set programming
with lazy grounding. Fundam. Inform. 96(3), 297�322 (2009)

15. Dodaro, C., Alviano, M., Faber, W., Leone, N., Ricca, F., Sirianni, M.: The birth
of a WASP: preliminary report on a new ASP solver. In: CILC. CEUR Workshop
Proceedings, vol. 810, pp. 99�113. CEUR-WS.org (2011)

16. Dodaro, C., Maratea, M.: Nurse scheduling via answer set programming. In: LP-
NMR. LNCS, vol. 10377, pp. 301�307. Springer (2017)

17. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI
Magazine 37(3), 53�68 (2016)

18. Erdem, E., Patoglu, V.: Applications of ASP in robotics. KI 32(2-3), 143�149
(2018). https://doi.org/10.1007/s13218-018-0544-x

19. Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive ag-
gregates in answer set programming. Artif. Intell. 175(1), 278�298 (2011).
https://doi.org/10.1016/j.artint.2010.04.002

20. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with clingo 5. In: ICLP TCs. OASICS, vol. 52, pp.
2:1�2:15 (2016)

21. Gebser, M., Kaminski, R., König, A., Schaub, T.: Advances in gringo series 3. In:
LPNMR. LNCS, vol. 6645, pp. 345�351. Springer (2011)

22. Gebser, M., Leone, N., Maratea, M., Perri, S., Ricca, F., Schaub, T.: Evaluation
techniques and systems for answer set programming: a survey. In: IJCAI. pp. 5450�
5456. ijcai.org (2018)

23. Gebser, M., Maratea, M., Ricca, F.: The seventh answer set programming com-
petition: Design and results. Theory Pract. Log. Program. 20(2), 176�204 (2020).
https://doi.org/10.1017/S1471068419000061

24. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Comput. 9(3/4), 365�386 (1991)

25. Kaufmann, B., Leone, N., Perri, S., Schaub, T.: Grounding and solving in answer
set programming. AI Magazine 37(3), 25�32 (2016)

26. Lefèvre, C., Nicolas, P.: The �rst version of a new ASP solver: Asperix. In: LPNMR.
LNCS, vol. 5753, pp. 522�527. Springer (2009)

27. Ostrowski, M., Schaub, T.: ASP modulo CSP: the clingcon system. TPLP 12(4-5),
485�503 (2012)

28. Schüller, P.: Modeling variations of �rst-order horn abduction in answer set pro-
gramming. Fundam. Inform. 149(1-2), 159�207 (2016)

29. Susman, B., Lierler, Y.: SMT-based constraint answer set solver EZSMT (system
description). In: ICLP TCs. OASICS, vol. 52, pp. 1:1�1:15. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2016)

30. Weinzierl, A.: Blending Lazy-Grounding and CDNL Search for Answer-Set Solving.
In: LPNMR. LNCS, vol. 10377, pp. 191�204 (2017)

16 G. Mazzotta, B. Cuteri, C. Dodaro, F. Ricca

A Detailed description of all algorithms

A.1 Algorithm 6

Algorithm 6, declares di�erent sets, that accumulate the aggregate conjunctions
(lines 1-5), and an empty variable substitution function σ. In order to build
possible ground conjunctions of the form l1, . . . , lm, we need a nested join loop
for every lj . Given the nesting level j, the propagator iterates over ground literals
aj that are true or unde�ned w.r.t I and update the variable substitution σ
mapping variables in A[j] to constant in aj (lines 17-19). Once the last nested
join is reached (line 20), the propagator has to store new values for:

� Shared variables (lines 20-23);
� Aggregate variable and join tuple (lines 25-42) respectively for true and
unde�ned aggregate conjunctions. Note that an aggregate conjunction is
unde�ned if ∃aj such that aj is unde�ned, otherwise is true.

At the end of each join loop, we roll back the variable substitution σ to its
previous state and close nested join loops(lines 43-46).

A.2 Algorithm 7

Algorithm 7,prints the code that computes all possible body joins. In order to
do this,�rst reorders body literal with the function computeBodyOrdering that
returns a new list B where negative literals are always at the end of B, and c is
not in B if c is not None. Once the list of literals B is computed, the algorithm
prints a nested join loop for each B[j] such that B[j] is positive and a nested if
for each B[j] such that B[j] is negative. Each nested join loop iterates on true
literals belonging to I+ that match σ(B[j]) and on unde�ned literals that match
σ(B[j]) (lines 6-10) and update the variable substitution σ with variables in B[j]
(lines 13-15). For each nested if, since positive literal was already evaluated and
so we have a bound for every variable in negative literals (safeness), checks only
if σ(B[j]) is true or unde�ned (lines 17-20).

Compilation of Aggregates in ASP: Preliminary Results 17

Algorithm 6 buildAggregateJoin(C)

Input : A constraint C
Output: Prints code that builds join tuples and their projection over aggregate

and shared variables
1 trueJoin = ∅
2 undefJoin = ∅
3 sharedV arKey = ∅
4 trueKey = ∅
5 undefKey = ∅
6 σaggr = ε

7 uaggr := false

8 �A = aggrLit(C)�

9 forall the j = 1, . . . , |A| do
10 σ

�j�
aggr = σaggr

11 A�j� = {a ∈ I+ | match(σaggr(�A[j]�), a)}
12 UA�j� = {p ∈ (B \ I)+ | match(σaggr(�A[j]�), p) ∧ p /∈ I}
13 for a�j� ∈ (A�j� ∪ UA�j�) {
14 if a�j� ∈ UA�j� then

15 uaggr = true

16 u
�j�
aggr = uaggr

17 forall the k = 1, . . . , |trm(A[j])| do
18 if trm(A[j])[k] is variable then

19 σaggr = σaggr ∪ {�trm(A[j])[k]� 7→ trm(a�j�)[�k�]}

20 sharedV arKey = sharedV arKey ∪ {
21 forall the v ∈ sharedV ars(C) do
22 σaggr(�v�)

23 }

24

25 if uaggr is false then

26 trueKey = trueKey ∪ {
27 forall the v ∈ aggregateV ars(C) do
28 σaggr(�v�)

29 }

30 trueJoin = trueJoin ∪ {(
31 forall the z = 1, . . . , |A| do
32 a�z�

33)}

34 else

35 undefKey = undefKey ∪ {
36 forall the v ∈ aggregateV ars(C) do
37 σaggr(�v�)

38 }

39 undefJoin = undefJoin ∪ {(
40 forall the z = 1, . . . , |A| do
41 a�z�

42)}

43 forall the j = |A|, . . . , 1 do

44 σaggr = σ
�j�
aggr

45 uaggr = u
�j�
aggr

46 }

18 G. Mazzotta, B. Cuteri, C. Dodaro, F. Ricca

Algorithm 7 printNestedJoinLoop

Input : A constraint C, a literal c ∈ C that can be also None
Output: Return the list of body literals ordered starting from c

1 B = computeBodyOrdering(C, c)
2 u := ⊥
3 forall the j = 1, . . . , |B| do
4 σ�j� = σ

5 if B[j] is positive then

6 T�j� = {t ∈ I+ | match(σ(�B[j]�), t)}
7 U�j� = ∅
8 if u = ⊥ then

9 U�j� = {p ∈ (B \ I)+ | match(σ(�B[j]�), p) ∧ p /∈ I}
10 for b�j� ∈ (T�j� ∪ U�j�) {
11 if b�j� ∈ U�j� then

12 u = b�j�

13 forall the k = 1, . . . , |trm(B[j])| do
14 if trm(B[j])[k] is variable then

15 σ = σ ∪ {�trm(B[j])[k]� 7→ trm(b�j�)[�k�]}

16 else

17 b�j� = σ(�B[j]�)

18 if b�j� ∈ I ∨ (u = ⊥ ∧ b�j� ∈ (B \ I)){ then
19 if u = ⊥ ∧ b�j� ∈ (B \ I) then
20 u = b�j�

21 return B

Compilation of Aggregates in ASP: Preliminary Results 19

A.3 Algorithm 8

Algorithm 8, instead, prints the code that discards those join tuples that do not
share the values of the shared variables or rolls back the join tuple structures to
their previous state. In particular, lines 2-20 are printed if we want to discard
join tuples. In this case, �rst, we save the previous state in fresh structures lines
2-6 and then we modify the existing ones line 7-20. Otherwise, if we need to roll
back join tuples we assign previous state structures to the current ones (lines
22-26).

Algorithm 8 updateAggregateWithSharedVars

Input : A constraint C, a boolean value d
Output: Prints code to discard those join tuples that don't match a value of

shared variables or restore the initial set of join tuples
1 if d is true then

2 trueJoinPrevious = trueJoin
3 undefJoinPrevious = undefJoin

4 sharedV arKeyPrevious = sharedV arKey

5 trueKeyPrevious = trueKey

6 undefKeyPrevious = undefKey

7 trueKey = ∅
8 for t ∈ trueJoin {

9 if projOnSharedV ars(t) 6= sharedV arTuple then

10 trueJoin = trueJoin \ {t}
11 else

12 trueKey = trueKey ∪ projOnAggrV ars(t)
13 }

14 undefKey = ∅
15 for t ∈ undefJoin {

16 if projOnSharedV ars(t) 6= sharedV arTuple then

17 undefJoin = undefJoin \ {t}
18 else

19 undefKey = undefKey ∪ projOnAggrV ars(t)
20 }

21 else

22 trueJoin = trueJoinPrevious
23 undefJoin = undefJoinPrevious

24 sharedV arKey = sharedV arKeyPrevious

25 trueKey = trueKeyPrevious

26 undefKey = undefKeyPrevious

