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Abstract. Equality and ordering are relatable concepts we use daily. As
they depend on the domain at hand, the programmer must eventually
code them. Empirical evidence points towards defects on code that mod-
els comparison on open source software written in object-oriented (OO)
languages. The main culprits are: comparison logic that spans multiple
methods; and, shortcomings of the message dispatch scheme found on
most OO languages. There are several proposals to mitigate these issues.
None, however, deals with the ordering aspect and some forbid objects
to be mutable. In this paper, we define a declarative, language-agnostic
way of comparing objects that handles equality, ordering, and hashing
aspects of comparison. We formalize it using Plotkin’s style operation
semantics and provide detailed proof of its soundness.

Keywords: Object-oriented programming · Computer languages · Com-
parison semantics

1 Introduction

Equality is an abstract concept that establishes ”when” two entities are similar
to each other. The natural ordering is a complementary concept that determines
”how” they differ. They depend on the domain at hand and constitute the com-
parison semantics of an entity. However, writing code that compares objects is
complex [7, 22, 23, 26]. Baker [1] argues that such a task should be simpler
(recently, C++20 plans to add the spaceship operator with this intent [14]).

One of the culprits is that comparison usually spans several methods that
must be consistent with each other [3]. The developer must enforce such consis-
tency by hand. Automatic checking is not feasible, since it is reducible to the
program-equivalence problem (and thus undecidable [25]). Static code analysis is
also not an option, since it is notoriously prone to false positives [11]. Inheritance
further escalates the issue. Bruce et al. [4] noted that it precludes the mainte-
nance of symmetry in languages that employ simple message dispatch (which is
the case of most mainstream OO languages). A valid equivalence relation must
be symmetric.

The goal of this paper is to devise, in the theoretical level, a way of comparing
objects where the developers use metadata to encode semantics. Our proposal
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mons License Attribution 4.0 International (CC BY 4.0).
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handles both aspects of comparison – equality and order. We specify how to
use this metadata to compare objects and which information it contains. Both
languages and libraries may use our proposal as a foundation on how to compare
objects.

The benefits of our approach are two-fold: it shields the developer from the
complexity of writing code that correctly compares objects in single-dispatch,
OO languages; and, it restores orthogonality, as a single element - the metadata
- is used instead of several methods.

There are proposals [10, 21, 26] in the literature that employ different degrees
of declarative programming. None deals with the ordering aspect of equality.
Also, some of them [1, 10, 26] push that objects must be immutable, since some
collections fail when its items change after inclusion. We feel, however, that
such constraints forbid common programming idioms and hinder adoption. For
instance, ORMs1 frameworks usually rely on mutability to track changes to
entities. We think that it would be better if the collections themselves enforce
such constraints. Discussing the intricacies of such an approach is out of the
scope of this paper.

We employ Plotkin‘s [20] Structural operational semantics (SOS) to formal-
ize our proposal. We also use both Featherweight Java (FJ) [12] and Cardelli
and Mitchell’s record calculus [5] in the formalization process (Section 7). This
approach allows us to define our proposal without tying it to any language and
also provides us a framework to prove its soundness.

The remainder of this paper is structured as follows. Section 2 lays down
the mathematical aspects of comparison. Next, Section 3 outlines the impacts
of inheritance on comparison. Section 4 describes how the comparison is coded
in two distinct OO languages, while Section 5 introduces the hash concept. Sec-
tion 6 describes our proposal informally and lays the foundations for the formal
description on Section 7. Section 8 proves the the soundness of our proposal.
Finally, in Sections 9 and 10, we review related work and provide some final
insights.

2 Equality and Ordering Semantics

From a set-theoretic point of view, equality and order can both be expressed as
binary relations between elements of a set. Two elements are said to be equal
whenever an equivalence relation exists between them. Order is modeled by
another kind of binary relation known as strict-total order (Zermelo [27] demon-
strates that at least one ordering scheme can be found on every set, albeit some-
times without any meaningful semantics).

The OO paradigm is built upon the notion of modeling real-world elements
onto constructs called objects. We access them via their references2. Multiple
references can point to the same object. In this case, we say they have the same

1 An object-relation mapping (ORM) framework maps objects into tables in a rela-
tional database. An example of ORM is the Hibernate framework.

2 Through this paper, we use the terms object and reference interchangeably.



Towards a Declarative Approach to Object Comparison 3

identity. The identity of an object can determine if two objects are similar3. In
such a case, only references to the same physical object are equal. Often, only
a subset of properties determines if two objects are equal (e.g., in a particular
context, persons are equal when their Social security number match, regardless
of any other properties). We call this minimum subset of properties the object’s
equality state.

Regardless of its semantics, equality must observe a well-known set of rules
to be valid. Bloch [3] stated that failure to observe them leads to subtle bugs
that are hard to pin-point. Definition 1 describes those rules.

Definition 1. A well-formed equivalence relation must be: reflexive – ∀x[(x =
x)] –, symmetric – ∀x∀y[(x = y)⇐⇒ (y = x)] – and transitive – ∀x∀y∀z[(x =
y) ∧ (y = z) =⇒ (x = z)].

Ordering relations also have well-formedness rules that must hold, regardless
of the underlying ordering semantics. Definition 2 describes them.

Definition 2. A well-formed order relation must be: asymmetric – ∀x∀y[(x <
y) ⇐⇒ (y > x)] –, transitive – ∀x∀y∀z[(x > y) ∧ (y > z) =⇒ (x > z)] – and
trichotomous – ∀x∀y[(x 6= y)⇐⇒ (x > y) ∨ (x < y)].

3 Symmetry with Single Dispatch and Inheritance

Coding comparison is complex. There is, however, a particular scenario presented
by Bruce et al. [4] that challenges developers the most. Let us assume two classes:
Point and ColorPoint (Figure 1). Point has two attributes – x and y – that
holds its coordinates within a cartesian plane. It also defines the == method,
which checks if both operands’ coordinates match. ColorPoint includes a new
attribute – color – that stores the color of a point. It also extends == to check
colors (as such, two instances of ColorPoint are only equal if their coordinates
and colors match).

-x : double
-y : double

Point

-color : Color

ColorPoint

Powered By�Visual Paradigm Community Edition

Fig. 1. Point/ColorPoint hierarchy (Bruce et al. [4])

Given two objects – a : Point and b : ColorPoint –, that shares the same
coordinates. Invoking a == b triggers the Point′s implementation of == (yield-
ing true, since it only checks the coordinates of each operand). Invoking b == a,

3 Matter of fact, this models the Leibniz’s Identity of Indiscernibles Principle.
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however, triggers the ColorPoint′s implementation, which requires the coordi-
nates and color of both operands to match. Since a does not have a color, b == a
yields false, which is a violation of symmetry.

Therein lies the issue: languages based on single-dispatch are unable to main-
tain symmetry when inheritance is present [4]. There are techniques to simulate
multiple dispatch on simple-dispatch languages [8, 13]. They, however, have neg-
ative impacts4 on both encapsulation and modularity.

At first glance, this problem seems trivial: we could assume that equal objects
must be instances of the same concrete class: Rupakheti and Hou [22] calls this
type-incompatible equality. However, this is not the only kind of equality.
Rupakheti and Hou describes another strategy – type-compatible – that does
not require the objects to have the same concrete class.

To better explain the results of supporting only type-incompatible equality,
let us imagine a drawing software that allows the user to draw, among other
shapes, square and rectangles. Each of those shapes has its own class. A viable
criterion to decide if two shapes are equal is the congruency: equal shapes must
have the same form and size. By that rule, a square and a rectangle whose sides
are the same are equal. Such modeling is only possible if we use type-comparison
equality.

4 Implementing comparison in OO Languages

Eventually, the programmer must implement comparison semantics, since it
varies according to the domain at hand. How to do it, however, depends on
the language we are using, with each one having its quirks. Thus, to build an
agnostic solution, we must first find common ground between them. To do that,
we analyzed two languages: Java [9] and Ruby [6].

Many popular languages (e.g., Python and Smalltalk) follow the same ap-
proach of Java and Ruby. Two notable exceptions are JavaScript and C++.
JavaScript does not have a standard way to compare objects. C++ does, but it
misses a general-purpose hash function.

Java is a statically-typed OO language whose execution model allows it to
run on a variety of devices without modifications. On Java, comparison spans
three distinct methods: equals, hashCode, and compareTo. The equals method
checks if two operands are equal (by default, that is only the case if they share
the same identity). The hashCode method is a general-propose hash function
that some kinds of collection use internally. According to Bloch [3], an informal
contract requires both methods to be consistent with each other (Section 5).

In Java, objects are not comparable by default. They must realize the Com-
parable interface to be comparable. Comparable declares a single method – com-
pareTo – that models the Trichotomy Law. The results of compareTo must
be consistent with the results of equals (i.e., if x.equals(y) returns true, then

4 According to Muschevici et al. [17], those impacts occur even in languages that
support multiple-dispatch natively.
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x.compareTo(y) yields zero). As with hashCode, the programmer must enforce
this consistency themselves.

Ruby is an OO language that is heavily influenced by Smalltalk. Ruby is used
as both a scripting language and in web development (alongside with the Rails
framework). Like Java, Ruby defines5 both an equality and a hash operation
(== and hash). Their semantics are also identity-based by default. Ordering is
also optional on Ruby. In such a case, it is required that the object includes
the Comparable mixin, which requires the developer to implement the spaceship
operator (⇔). The⇔ operator carries the same semantics as compareTo in Java.

Ruby’s approach differs from Java’s in the sense that the Comparable mixin
incorporates implementations for every other comparison operation, minus the
hash operation. They rely on the ⇔ operation and are guaranteed to be consis-
tent with each other. That frees the developer from the burden of ensuring their
consistency (sadly, they still have to ensure that hash is consistent).

5 Hashing

Despite not being strictly necessary to model comparison, Java defines a general-
purpose hash function. An important type of collection – the equality collections
[18] – relies heavily on it. These collections usually provide better performance in
selected operations, such as element lookup. Hash tables and sets are examples
of them.

Hash functions are directly linked to equality. According to Bloch [3], a hash
function h is correct if ∀x∀y[(x = y) =⇒ (h(x) = h(y))]6 (as a corollary,
two different objects may have (or may have not) the same hash). An erroneous
hash function may lead to subtle bugs that are hard to pin-point. Tantamount
to their correctness is their efficiency. A badly written function severely hinders
performance while still correct7. The efficiency of a hash function is based on how
it yields distinct hashes to distinct objects. Achieving an optimal hash function
can be a daunting task (and is often not needed).

6 Evaluating comparison-related operations with
comparison records

We informally describe our solution before dwelling into its formal system. This
informal description is useful to understand the formalization’s intricacies.

5 Ruby defines two more operations – === and eql?. The former is used within
switch/case statements, whereas the latter is used inside hash tables to compare
keys. For the sake of argument, let us consider their semantics the same as ==.

6 At first, it looks like a tautology. Yet, this is true only when following a stricter
sense of equality (i.e., identity-based equality), which is not the case. It is trivial to
implement Point in such a way that only x is checked by equals while every attribute
composes its hash. In that case, a : Point and b : Point having the same value of x
and different values of y will be considered equal despite having distinct hashes.

7 A constant hash function (e.g., h(x) = 42) is especially bad. It degrades the lookup
of elements in a hash table from O(1) to O(n) (akin to a regular, linked list).
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The process of evaluating comparison operation is divided into two phases. In
the first phase, a comparison record is built. The comparison record encapsulates
the context on which a comparison operation is evaluated. In the second phase,
the newly-created comparison record is evaluated.

6.1 Comparison records

Comparison records are the backbone of our proposal. They are built upon the
Cardelli and Mitchell [5] record calculus and provide context to compute com-
parison operations. There is a key difference between them and regular records.
On regular records, fields are not traversed in any particular order. Fields on
comparison records are ordered based on their order of evaluation (which is
domain-specific).

Informally, a comparison record is a collection of fields. Each field has two
components – x and y – that store the value associated with the first and second
operand. Values are extracted via the extraction operation (e.g. r.x extracts the
value x from record r). Extraction operations can be chained.

6.2 Denoting comparison semantics

We made a conscientious choice of not committing to any particular form of
denoting comparison semantics. Doing so would bias our proposal towards a
language and hurt its agnosticism. Different languages have different ways of
embedding metadata. Java, for instance, uses annotations (both Rayside et al.
[21] and Grech et al. [10]. use them). A Ruby programmer, on the other hand,
may employ metaprogramming techniques instead. A new language (such as the
Java extension proposed by Vaziri et al. [26]) could use keywords to convey the
same information.

Regardless of ”how” this information is embedded, we can define ”what” we
must include. To be able to denote semantics, we must be able to specify: a)
if a field belongs to the equality state of its underlying object; b) what is its
evaluation order.

6.3 Record building phase

At first glance, it might appear that comparison records do not bring further
development to the equality state concept. Their differences, however, become
more clear as we describe how they are built. Firstly, we collect the fields that
compose the equality state of each operand. Then, we fetch the values of each
one of those fields within each operand, and include them in the newly-built
comparison record.

Some scenarios pose an extra challenge. When there is a sub-type relation
between the operands, a particular field may appear in just one of them. For
instance, if we compare a : Point and b : ColorPoint, looking up for field color
on a would fail, as Point does not declare the color field. In that case, we expect
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the field lookup operation to yield a special element – the unknown element
(henceforth denoted by t) – instead.

For example, a comparison record built to compare a : Point and b : Point
has the fields x and y. Yet, a record built to compare b : Point and c : ColorPoint
has three fields – x, y, and color (in that case, the component bound to b within
color stores t). Notably, b yields different values, depending on the object against
it is compared: a striking difference from the equality state concept.

At first glance, t and null seems to share the same semantics. Yet, there is a
fundamental difference: null usually represents the absence of value, whereas t
denotes that even such an assertion is not feasible at the time (if the field does
not exist, we cannot determine whether it holds a value or not). In a sense, t
shares the same semantics as unknown on Kleene’s KS

3 Logic [15] and is different
to any other value (including itself). Concerning its order, t should always be
considered the lesser of two values.

A corner-case worth mentioning deals with how to use comparison records to
compute hashes. Hashing is a unary operation, yet, two operands are required
to create a comparison record. In that case, we use the hash operation’s single
operand as both the first and second operand of the record building procedure.

6.4 Record evaluation phase

After we build the comparison record, we can proceed to evaluate it. The eval-
uation is carried out by one of three specialized functions. These functions map
directly to the three aspects of equality outlined in Section 4 – equality, order,
and hashing.

Checking equality is straightforward. We iterate through every field within a
comparison record, checking if their values are different. In that case, we deem
the operands as different and stop the process. If no discrepancies were found
after all fields have been checked, then we consider the operands equal.

Determining the order between two operands is similar. We iterate through
every field, checking if one of the values within the current field is greater than
the other. In that case, the operand bound to the greater value is deemed greater
and the process stops. If the iteration ends without finding any discrepancies,
the operands are equal.

The algorithm to compute hashes also iterates over every field of a comparison
record. For each field, it calculates the field’s hash and aggregates it on a single
value, which will be the hash of the whole comparison record by the end of the
process. Unlike the other operations, hashing does not allow short-circuiting.

Dwelling into the optimal form to aggregate hashes is out of the scope of this
paper. Still, the rewriting rules described in Section 7 (and their proofs in Section
8) depend on the aggregation function ⊕ to follow a single well-formedness rule:
(Z,⊕) must be a semi-group8.

8 A semi-group is an algebraic structure composed of a set S and an associative binary
operation ⊕.
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Table 1. Notation summary

Construct Description

〈〉 Denotes an empty record
r = 〈x = 0〉 Creates a record r with field x, whose value is 0
〈r|x = 0〉 Adds field x = 0 to the record r, returning a new record
r.x Fetches the value associated to field x on r
r\x Removes field x from record r, returning a new record
A\B Removes every element within set B from set A (e.g.,

{1, 2, 3}\{1, 4} = {2, 3})
x Shorthand to sequences such as x0 . . . xn (x may be re-

placed by any other letter or symbol)

class C C D { C f ; K M} Defines class C extending from class D. C is composed of
fields f , the constructor K and methods M .

o : C Denotes an object o which is an instance of class C
fields(C) Obtains all fields defined on C and its super-classes
es fields(C) Obtains all fields on C’s (and its super-classes) equality

state
> Represents true
⊥ Represents false
t Represents unknown value (as described in Section 6.3)

7 Formal Semantics

The given formalization uses both Cardelli and Mitchell [5] record calculus (Table
1) and Featherweight Java [12] (FJ). One may argue why we used FJ, as it
focuses on type safety (which is not a concern of our proposal). Shortly, we use
FJ’s definition of classes and its field lookup semantics. These constructs are
similar to those found on the majority of OO languages. As such, we feel that
they do not make our proposal less agnostic.

7.1 metadata access

Neither Cardelli‘s record calculus nor FJ defines the es fields function. Its role is
to obtain which fields compose the equality state of an object based on supplied
metadata (Section 6.2). To prevent bias, we choose not to commit to any form of
metadata. Instead, we treat es fields as a black box. Given a class C, it returns
the fields f that compose the equality state of C, ordered by their evaluation
order (Definition 3).

7.2 Comparison record

Definition 3 formalizes comparison records, as described in Section 6.1.

Definition 3 (Comparison record). A comparison record r is a record 〈f0 =
〈x = x0, y = y0〉, f1 = 〈x = x1, y = y1〉 . . . fn = 〈x = xn, y = yn〉〉. For each
field fi = 〈x = xi, y = yi〉, x stores the value bound to the first operand while y
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CR-BUILD
o1 : C class C C D {C f ; K M} o2 : C

′
class C

′
C D

′
{C

′
f
′
; K

′
M

′
}

build(o1, o2)→ cpBuild(o1, o2, es fields(C) ∪ es fields(C
′
)))

CR-EMPTY
f → ∅

cpBuild(o1, o2, f)→ 〈〉

CR-SINGLE
f → {f0}

cpBuild(o1, o2, f)→ 〈x = fetch(f0, o1), y = fetch(f0, o2)〉

CR-MUTIPLE
f → {fo . . . fn}

cpBuild(o1, o2, f)→ 〈cpBuild(o1, o2, f\{fn}) | cpBuild(o1, o2, {fn})〉

FETCH-EXISTS
o : C class C C D {C f ; K M} f ∈ f

fetch(f, o)→ o.f

FETCH-DOES-NOT-EXIST
o : C class C C D {C f ; K M} f /∈ f

fetch(f, o)→ t

Fig. 2. Record building semantics.

stores the value bound to the second operand. The iteration of the fields f within
r follows the LIFO9 style (e.g. fn, fn−1 . . . f0).

Fields of comparison records may store the t value. As stated in Section 6.1,
any comparison having t as one of its operands states that the operands are
different (t being the lesser one). Definition 4 formalizes its semantics.

Definition 4 (t comparison semantics). The value t denotes an unknown
value and is considered to be different from any other value (including itself). As
such, (∀x)(x 6= t) holds. When deciding the order of two values, t will always
be the lesser10 one. Hence, (∀x)(x > t) and (∀x)(t < x) hold.

7.3 The Record Building Semantics

The first phase of computing comparison operations is the record building stage.
The build function is the entry point to the record build process. It receives
two objects as operands and returns a corresponding comparison record. Rule
CR-BUILD formalizes the build function. As shown in Figure 2, CR-BUILD uses
es fields to fetch the fields that are part of the equality state of each operand.
It calls then cpBuild, which recursively builds comparison records.

Rules CR-EMPTY, CR-SINGLE, and CR-MULTIPLE formalize cpBuild. CR-SINGLE
calls fetch to obtain the value associated with a given field f in the context of
an object o. FETCH-EXISTS and FETCH-DOES-NOT-EXIST formalize fetch. The
former fires when the class hierarchy of o defines the field f . In that case, it
returns o.f . Otherwise, the latter fires, and it returns t instead.

9 Acronym for last in, first out. LIFO is the form of iteration of stacks.
10 At first, this may seem like an oversight, as it blatantly violates asymmetry. However,

having a field f storing t on each component is not possible. It implies that f does
not exists on both operands. In that case, f would not be part of the comparison
record in the first place.
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EQ-EMPTY
r → 〈〉

cr eq(r)→ >
EQ-SINGLE

r → 〈f0 = 〈x = x0, y = yo〉〉
cr eq(r)→ eq(x0, y0)

EQ-MULTIPLE-EQ
r → 〈f0 = 〈x = x0, y = y0〉 . . . fn = 〈x = xn, y = yn〉〉 cr eq(r.fn)→ >

cr eq(r)→ cr eq(r\fn)

EQ-MULTIPLE-NEQ
r → 〈f0 = 〈x = x0, y = y0〉 . . . fn = 〈x = xn, y = yn〉〉 cr eq(r.fn)→ ⊥

cr eq(r)→ ⊥

EQ-UNKNOWN
x = t ∨ y = t
eq(x, y)→ ⊥ EQ-KNOWN

x 6= t ∧ y 6= t
eq(x, y)→ x = y

CP-MULTIPLE-EQ
r → 〈f0 = 〈x = x0, y = y0〉 . . . fn = 〈x = xn, y = yn〉〉 cr cp(r.fn)→ 0

cr cp(r)→ cr cp(r\fn)

CP-MULTIPLE-NEQ
r → 〈f0 = 〈x = x0, y = y0〉 . . . fn = 〈x = xn, y = yn〉〉 cr cp(r.fn) 6= 0

cr cp(r)→ cp(r.fn)

CP-SINGLE
r → 〈f0 = 〈x = x, y = y〉〉

cr cp(r)→ cp(x, y)
HC-SINGLE

r → 〈f0 = 〈x = x0, y = y0〉〉
cr hc(r)→ hc(x0)

CP-UNKNOWN-LT
x = t

cp(x, y)→ −1 CP-UNKNOWN-GT
y = t

cp(x, y)→ 1

CP-EMPTY
r → 〈〉

cp(r)→ 0
CP-KNOWN

x 6= t y 6= t
cp(x, y)→ x⇔ y

HC-EMPTY
r → 〈〉

cr hc(r)→ 0

HC-MULTIPLE
r → 〈f0 = 〈x = x0, y = y0〉 . . . fn = 〈x = xn, y = yn〉〉

cr hc(r)→ cr hc(r\fn)⊕ hc(r.fn)

Fig. 3. Record evaluation semantics.

7.4 The Record Evaluation Semantics

The evaluation stage is the second phase of computing comparison operations.
A distinct set of rules evaluates each comparison operation. Figure 3 describes
them.

The function cr eq evaluates the equality of the comparison record r, us-
ing EQ-MULTIPLE-EQ and EQ-MULTIPLE-NEQ to iterate recursively through the
fields of r. Having different values fn.x and fn.y on the last field fn trig-
gers EQ-MULTIPLE-NEQ, ending the process and returning ⊥. Otherwise, rule
EQ-MULTIPLE-EQ is triggered. It acts as the recursive step of the equality check-
ing procedure. Eventually, EQ-SINGLE is triggered when only a single field f0
remains on r. Its result depends on whether f0.x and f0.y are equal. The func-
tion eq determines if f0.x and f0.y are equivalent. EQ-UNKNOWN and EQ-KNOWN

model the semantics of eq. If one of the given operands is t, EQ-UNKNOWN is
triggered and ⊥ is obtained (Definition 4). Conversely, EQ-KNOWN is triggered if
neither is t. If the given operands are primitives11 , their equivalence is checked
by their native implementation (otherwise, a comparison record is built from
f0.x and f0.y and is subsequently evaluated). Regardless of the approach, either
> or ⊥ is returned, depending on whether f0.x and f0.y are equal.

The function cr cp evaluates the order of a comparison record r. Its main
rules are CP-MULTIPLE-EQ and CP-MULTIPLE-NEQ, which operate under the same

11 We use the term primitive in a broader sense. Here, any type that provides compar-
ison operations is primitive. According to that, Java’s strings are primitive.
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rationale as EQ-MULTIPLE-EQ and EQ-MULTIPLE-NEQ. CP-EMPTY handle empty
comparison records while EQ-SINGLE uses the cp function to determine the
order of two operands (in this case, f0.x and f0.y). Rules CP-UNKNOWN-LT,
CP-UNKNOWN-GT, and CP-KNOWN model the semantics of cp. CP-UNKNOWN-LT and
CP-UNKNOWN-GT deal with the scenarios described by Definition 4 and fire, re-
spectively, when t is the first or the second operand. In the former case, the first
operand is the lesser one whereas, in the latter, it is the greater one. CP-KNOWN
fires when neither operand is t. To obtain the order of the given operands, it
uses the ⇔ operator. Its implementation can be either native (if the operands
are primitive) or based on comparison records.

The function cr hc evaluates the hash of a comparison record r. If r has
more than one field, HC-MULTIPLE triggers. HC-MULTIPLE divides r into two sub-
records – r1 and r2 – containing the last field and the remainder fields. The
hash of both sub-records are obtained and then combined by the ⊕ operator (as
stated in Section 6.4, (Z,⊕) must be a semi-group). Eventually, only a single
field f0 remains on r. That triggers HC-SINGLE, which entails that r’s hash is
the same as of f0.x. Function hc computes the hash of f0.x.

8 Soundness of comparison-related properties

After we formalize our proposal, we can proceed to prove its correctness based
on the rules outlined by Definitions 1 and 2 and the rules defined in Section
5, regarding hash functions. The proofs have two premises: the operands do
not change while the operation executes; and, the values on their fields have
themselves correct comparison procedures.

Lemma 1 (Equality symmetry). Given two objects – x : C and y : C
′

–,
then x = y ⇔ y = x.

Proof. By applying CR-BUILD, EQ-MULTIPLE-EQ, EQ-SINGLE, and EQ-EMPTY, we
infer that (x = y) =⇒ [(∀f ∈ f)(x.f = y.f)], where f = (es fields(C) ∪
es fields(C

′
)) . Assuming y 6= x implies that either the set union is not com-

mutative or [(∃f ∈ f)((x.f = y.f) ∧ (y.f 6= x.f)). The latter case implies that
the values on each field (primitives or objects) are not symmetric themselves.

Corollary 1 (Equality reflexivity). Given one object o : C, then o = o.

Proof. CR-BUILD yields r = 〈f0 = 〈x = fetch(f0, o), y = fetch(f0, 0)〉 . . . fn =
〈x = fetch(fn, o), y = fetch(fn, o)〉〉. Since eq is reflexive and assuming that
fetch returns the same result when given the same parameters. We conclude that
eq(fetch(f, o), fetch(f, o)) will always return > for every field f . By applying
EQ-MULTIPLE-EQ repeatedly, we eventually trigger EQ-SINGLE, returning >.

Corollary 2 (Equality transitiveness). Given three objects – x : C, y : C
′

and z : C
′′

–, then (x = y ∧ y = z)⇔ x = z.

Proof. Similar to the proof of Lemma 1.
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Lemma 2 (Order transitiveness). Given three objects – x : C, y : C
′

and
z : C

′′
–, then (x > y ∧ y > z)⇔ x > z.

Proof. Assuming that x > y and y > z and analyzing CP-MULTIPLE-NEQ, we
infer that two fields – f

′
and f

′′
– are determinant to conclude that indeed x > y

and y > z. Based on that, we divide this proof into three scenarios.
When f

′
= f

′′
, transitiveness is trivially proven as ⇔ is transitive itself.

When f
′

is evaluated before f
′′

, we conclude that y.f
′

= z.f
′

(since otherwise
f

′
would have greater evaluation order). By replacing y.f

′
on x.f

′
> y.f

′
we have

x.f
′
> z.f

′
, thus, x > z.

Finally, when f
′

is evaluated after f
′′

, we conclude that x.f
′′

= y.f
′′

(other-
wise, f

′
would have a lesser evaluation other). Replacing y.f

′′
on y.f

′′
> z.f

′′

yields x.f
′′
> z.f

′′
, thus, x > z.

Corollary 3 (Order asymmetry). Given two objects – x : C and y : C
′

–,
then (x < y)⇔ (y > x).

Proof. Having x < y implies that a field f where x.f < y.f exists. Having y > x
implies either: cp is not asymmetric; the traversal order of f

′
= (es fields(C) ∪

es fields(C
′
)) or f

′′
= (es fields(C

′
) ∪ es fields(C)) is not based on the

evaluation order of their fields; or, f
′

and f
′′

do not have the same elements.
Any of which is contradictory.

Corollary 4 (Order trichotomy). Given two objects – x : C and y : C
′

–,
they must be either x = y, x < y or x > y.

Proof. By analyzing CP-EMPTY, CP-UNKNOWN-LT, CP-UNKNOWN-GT, and CP-KNOWN,
alongside with the premise that ⇔ is trichotomous. We conclude that the com-
putation ends and yields either 0, -1, or 1, and it is thus trichotomous.

Lemma 3. Given two objects – x : C and y : C
′

–, (x = y) =⇒ hc(x) = hc(y).

Proof. By analyzing CR-BUILD, EQ-MULTIPLE-EQ, EQ-SINGLE and EQ-EMPTY, we
deduce that (x = y) =⇒ [(∀f ∈ f)(eq(x.f, y.f))], being f = (es fields(C) ∪
es fields(C

′
)). Inspecting HC-MULTIPLE and HC-SINGLE, we conclude that hc(x) 6=

hc(y) entails that either (∃f ∈ f)((x.f = y.f) ∧ (hc(x.f) 6= hc(y.f)) or the ⊕ is
not associative, and thus (Z,⊕) is not a semi-group, which is a contraction.

9 Related Work

Common LISP (CLOS) [13] follows the functional paradigm. However, some of
its issues also plague OO languages. Among them is the impact of the lack of
orthogonality on the programmers. Baker highlights its importance and proposes
the EGAL predicate: a uniform way of comparing values in CLOS.

Vaziri et al. [26] extend FJ to include a new construct called Relation Type
(RT). An RT may declare a special kind of field – key field – that tags which
information forms its equality state. A key field must not change after the ini-
tialization of an RT. Two instances of RT with the same equality state always
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have the same identity. That makes it possible to compare them by their memory
addresses. Vaziri et al. argue that RTs could replace about 70% of comparable
objects. Contrary to Vaziri et al., our proposal does not require language changes
and allows objects to be mutable.

Like our proposal, Rayside et al. [21] fully embrace mutability. Unlike ours, it
is not fully declarative and requires imperative code when inheritance is present.
That makes it prone to the same issues of coding comparison by hand. After
testing, correctness and easiness of use improved, whereas performance degraded
by about 21%.

Grech et al. [10] describe a fully declarative approach to object comparison.
It presents a novel approach that sensibly improves performance: statements are
reordered based on how well they detect distinct objects. Sadly, we could not
employ such an approach, as order evaluation is non-commutative. Grech et al.
also requires objects to remain immutable after their initialization.

Modern IDEs provide wizards to create the source-code of comparison opera-
tions. Project Lombok [24] uses metadata to generate such code in compile-time.
Due to their static nature, it is not possible to model type-compatible compar-
isons and maintain symmetry at the same time using them. The dynamic nature
of our proposal mitigates that issue.

It is worth noting that, unlike ours, none of the proposals we analyzed deals
with the ordering aspect of comparison.

10 Conclusion

Implementing comparison semantics on an OO language is tricky. It usually
spans multiple methods that depend on each other. Failure to observe such de-
pendencies leads to bugs that are hard to track. Since program equivalence is
uncomputable, it is impossible to create a procedure that checks if these depen-
dencies hold. Another issue is that most OO languages rely on simple message
dispatch, on which symmetry (a mandatory property of equivalence relations)
is not attainable. Our proposal restores orthogonality by embedding the com-
parison semantics on metadata instead of writing it by hand. We formalized the
comparison procedure and demonstrated that it is correct. We showed that it is
also possible to compute order using the same metadata.

The next step of this research is to build a prototype to check the impacts
of our proposal on readily-available software. We plan to use the corpus defined
by the DaCapo Benchmark Suite [2] and implement it in Java.

Cycle handling is a shortcoming of our proposal. Parnas [19] argues that
cycles are a bad practice. Still, they occur on production code [16]. Preliminary
analysis shows it is possible to extend our proposal to handle cycles transparently.
More work is, however, necessary in its formal aspects.

Another research opportunity is to check if a solution that prevents the in-
clusion of mutable elements into equality collection at compile-time is viable. At
first glance, it seems that an alternative collection framework combined with a
type capable of identifying mutable objects, would suffice.
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