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Abstract. Branching Algebra is the natural branching-time generaliza-
tion of Allen’s Interval Algebra. Its potential applications range from
planning with alternatives, to automatic story-telling with alternative
timelines, to checking version systems with several branches. As in the
linear case, the consistency problem of Branching Algebra is computa-
tionally hard, and, in particular, NP-complete. Recently, tractable frag-
ments of it have been studied, but the landscape of tractability of frag-
ments is far from being complete. In this paper, we identify three interest-
ing fragments of the Branching Algebra: the Horn fragment, which was
already known, the Pointsable fragment, and the Linear fragment. We
study their tractability as well as their tractability via Path-Consistency,
and we discuss their maximality.

Keywords: Constraint programming · Consistency · Branching time ·
Tractability of fragments

1 Introduction

When dealing with automated temporal reasoning, one of the most prominent
formalisms is certainly Allen’s Interval Algebra [1] (IA). Applications of the IA
encompass a large number of fields, including scheduling, planning, database the-
ory, natural language processing, among others. Events in the IA are represented
as intervals on a linearly ordered set, and can be related to each other through
one of the thirteen basic relations (IAbasic). A relation is a constraint that spec-
ifies which basic relations may hold between a pair of intervals, so the IA has a
total of 213 relations. A constraint network is a pair formed by a set of interval
variables and a set of constraints between them; the fundamental reasoning task
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that arises when dealing with constraint networks is the consistency problem,
that is, the problem of establishing whether it is possible to satisfy all given con-
straints, asserting the existence of a realization of the network. This problem,
which is archetypical for the class of Constraint Satisfaction Problems (CSP),
is NP-complete for generic IA networks, as shown by Vilain and Kautz [17],
and therefore, in general, solutions can only be found by exploring the tree of all
possible assignments. For this reason, in the nineties and early two thousands the
research has focused towards finding the tractable fragments of the IA, that is,
subsets of relations for which the consistency problem is tractable. The tractabil-
ity landscape of the IA is completed by listing all maximal tractable sub-algebras
of it, that is, all tractable fragments that cannot be further extended without
losing the tractability. After [9], such a landscape is fully known, and it encom-
passes 18 incomparable, maximal, tractable fragments of the IA. Some tractable
fragments, even non-maximal, are noteworthy because of the technique used to
show their tractability, the naturalness of their relations, and their applications:
the convex fragment [16] (IAconvex, 82 relations), the pointisable fragment [17]
(IApoint, a superset of IAconvex with 182 relations), and the ORD-Horn frag-
ment [13] (IAHorn, also known as IApreconvex [10], with 868 relations, which
extends IApoint and is maximal).

The Branching Algebra (BA) [14] is the natural generalization of the IA
to tree-shaped orderings. Its potential applications, additional to the classical
ones, range from planning with alternatives, to automatic story-telling with al-
ternative timelines, to checking version systems with several branches. The set
of basic branching relations (BAbasic) contains all of the 13 IAbasic relations,
plus six new ‘branching’ basic relations, which take into account the possible
incomparability of interval endpoints, for a total of 19 basic pairwise-disjoint
and jointly-exhaustive relations. Quite obviously, the consistency problem for
the BA is still NP-complete [14] and therefore, just like in the linear case,
we are interested in finding tractable fragments, in particular the maximally
tractable ones. Unlike the linear case, however, the landscape of tractability in
BA is still far from being complete. Only two tractable fragments are known: the
convex (BAconvex) fragment [8], which resembles its linear counterpart, and the
TORD-Horn fragment (BAHorn) [3], inspired by the ORD-Horn fragment of
the IA.

In this paper we focus on the tractability of fragments of the BA, and we
study both tractable fragments and PC-tractable ones, that is, tractable by
Path-Consistency (PC-tractability is a desirable property which is not guaran-
teed by tractability). In particular, we show that BAHorn is maximally tractable
(its PC-tractability was already known from [3]), we introduce two new tractable
fragments, called BAlin (the linear fragment of the BA) and BApoint (the pointi-
sable fragment of the BA), and we discuss both their PC-tractability as well as
their maximality.
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Fig. 1. A pictorial representation of the four basic branching point relations, where
a = b, a < c, d > c, and d||e (left-hand side), and an example of two situations that
require quantification to be distinguished in the language of endpoints (right-hand
side).

2 Preliminaries

Notation. Let (T , <), often denoted by T , a right-branching tree-order, i.e. a
partial order where:

∀x, y, z ∈ T : (x < z) ∧ (y < z)⇒ (x R y).

When variables are interpreted as time points, (T , <) is called a future branching
model of time (or, simply, a branching model). Elements of T are denoted by
a, b, . . ., and a ‖ b (resp., a R b) denotes that a and b are incomparable (resp.,
comparable) with respect to the ordering relation <. We use x, y, . . . to denote
variables in the domain of points, and x ≤ y to denote x < y ∨ x = y. There are
four basic relations that may hold between two points on a branching model:
equals (=), incomparable (‖), less than (<), and greater than (>); the first two
are symmetric, while the last two are the converse of each other. These relations
are depicted in Figure 1 (left-hand side), and are called basic branching point
relations. The set of basic branching point relations is denoted by BPAbasic. In
the linear setting, the set of basic relations has only three elements, <,= and >,
and it is called PAbasic (basic point relations).

An interval in T is a pair [a, b] where a < b, and [a, b] = {x ∈ T : a ≤
x ≤ b}. Intervals are generically denoted by I, J, . . . For an interval I, we use
I−, I+ to denote its endpoints. Following [7], one can describe 24 basic branching
relations based on the possible relative position of two pairs of ordered points
on a branching model, that is, by directly generalizing the universally known set
of 13 basic interval relations [1] (IAbasic). Some of these relations require first-
order quantification to be defined: for example, in Figure 1 (right-hand side) we
see that, in order to distinguish the two situations, we need to quantify over the
existence, or non-existence, of a point between a and c. This problem becomes
relevant when we study the behaviour of branching relations in association with
the behaviour of branching point relations (that is, by studying the properties of
their point-based translations); to overcome it, Ragni and Wölfl [14] introduce
a set of coarser relations, characterized by being translatable to point-based
relations using only the language of endpoints, without quantification. These 19
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b (bi) I before J I+ < J− I− I+ J− J+

m (mi) I meets J I+ = J− I− I+
J−

J+

o (oi) I overlaps J I− < J− < I+ < J+
I− I+

J− J+

d (di) I during J J− < I− < I+ < J+
J− J+

I− I+

s (si) I starts J I− = J− < I+ < J+
J− J+

I− I+

f (fi) I finishes J J− < I− < I+ = J+
I− I+

J− J+

e I equals J I− = J− < I+ = J+
I− I+

J− J+

ib (ibi) I init. before J I− < J− ‖ I+ I−

I+
J−

J+

im (imi) I init. meets J I− < J− < I+ ‖ J+ I− J−
I+

J+

ie I init. equals J I− = J− < I+ ‖ J+ I−

J−

I+

J+

u I unrelated J I− ‖ J−

I−

J−

I+

J+

Fig. 2. A pictorial representation of the nineteen basic branching interval relations.
In this picture, in which I = [I−, I+] and J = [J−, J+], we assume I− < I+ and
J− < J+. Solid lines are actual intervals, dashed lines complete the underlying tree
structure. We use a R1 b R2 c as a shorthand for a R1 b and b R2 c.

relations are depicted in Figure 2, and form the set of basic branching interval
relations (BAbasic); for each relation, the symbol in parentheses corresponds to
its converse, if the relation is not symmetric. A relation in the set BAbasic is
either a linear relation, or the relation u (unrelated), or it corresponds to the
disjunction between a pair of finer relations from the set of 24 [7]. For example,
the relation ib is the disjunction of the two relations in Figure 1.

Operations and algebras. Given the basic relations r1, . . . , rl, we denote by
R = {r1, . . . , rl} the disjunctive relation r1 ∨ . . . ∨ rl; thus, a relation is seen
as a set, and a basic relation as a singleton. As the set IAbasic contains 13
elements, the set IA of all interval relations in the linear setting encompasses
213 elements, including the empty relation; similarly, the set BAbasic of 19 basic
relations entails 219 interval relations in the branching setting. A constraint is
an object of the type x R y, where x, y are interval variables and R is a relation.

There are three basic operations with relations: (Boolean) intersection, con-
verse, and weak composition (often called simply composition). The converse of
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a basic relation is defined as:

∀x, y, r : x r^ y ⇔ y r x,

and the converse of a relation is simply the union of the element-wise converse of
its basic relations. In our notation, for example, bi (after) denotes the converse
of the basic relation b (before), and {imi, u, o} is the converse of the relation
{im, u, oi}. The weak composition of two basic relations is defined as follows:

∀x, y, r, s : x (r ◦ s) y ⇔ ∃z | x r z ∧ z s y.

Again, the composition of relations is defined by the union of element-wise com-
position of its basic relation. Intuitively, weak composition is the application
of transitivity of relations, and it is usually computed via a composition table.
For example, given three intervals I, J,K for which I {s} J and J {o} K, then
we know that I ({s} ◦ {o}) K = I {b,m, o} K. The composition table for the
IA is shown in [2], and for the BA in [15]. Converse, intersection, and weak
composition are classical operations in the literature; however, we can define a
new operation that is interesting for us, called strong composition, by combining
weak composition and intersection. For basic relations we have that:

∀x, y, r, s, t : x (�(r, s, t)) y ⇔ t ∈ (r ◦ s),

and for relations, that:

∀x, y,R, S, T : x (�(R, S, T )) y ⇔ x (R ◦ S) y ∧ x T y

(recall from the preliminaries that basic relations are represented with lower-case
letters, while relations are represented with upper-case letters).
Back to the previous example, suppose we also knew that I {m, s} K; the rela-
tion I {b,m, o} K could still be refined without using any new variable: indeed,
by strong composition, we have that I (�({s}, {o}, {m, s})) K = I {m} K, which
is in fact a stronger result. Strong composition associates three relations, and
its fix-point application provides Path-Consistency.

Given a relation algebraA, if a set of relations S ⊆ A is closed under converse,
intersection, and weak composition, we say that it is a strong subalgebra of A,
while if it is closed only under converse and strong composition, then it is a
weak subalgebra. Obviously, every strong algebra is also a weak algebra, but the
converse is not true in general; a special case occurs when the unknown relation>
(i.e. the relation formed by the union of all basic relations, sometimes denoted by
“?”) is an element of S: then, if S is a weak algebra it must also be a strong one.
Following [13], we can define a closure operator Γπ1,π2,...() that maps any given
set (fragment) S to its algebraic closure, by repeatedly applying the operations
π1, π2, . . . until a fixed point is reached. In particular, Γ^,∩,◦(S) (or simply Γ ),
computes the generated (strong) subalgebra of S.

Decision problems. Given a fragment S of a relation algebra A, an instance Θ
of S is a pair 〈V,R〉 where V is a set of variables (e.g., points or intervals) and R
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is a set of relations between the variables. Instances are usually represented by
labelled direct digraphs, where the vertices represent the variables and the labels
on the edges represent the relations. An interpretation I of Θ is an assignment
R 7→ Abasic such that:

∀r ∈ R : r → r′ | r′ ⊆ r ∧ r′ ∈ Abasic.

A non-contradictory interpretation, that is an interpretation whose constraint
can all be satisfied by at least one set of concrete elements in the underlying
order, is called a model. Finally, if an instance has at least one model is said to
be consistent. The problem of determining whether an instance of S has a model
or not is the consistency problem A-SAT(S), and the problem of determining
whether all of the basic relations in each relation of an instance can appear in at
least one model is the minimal labels problem A-MIN(S); since the tractability
of A-MIN depends on the tractability of A-SAT (see [17]), we can focus solely
on the latter. In particular, we say that a fragment S is tractable if and only if
A-SAT(S) is tractable; a tractable fragment S ⊆ A which cannot be extended
without losing its tractability, is said to be maximally tractable, or, simply, a
maximal fragment.

Assuming that A is NP-complete, as it is the case for both the IA ([17])
and the BA ([14]), and that P 6= NP, we are interested in finding all the max-
imal tractable subalgebras of A, because the tractability of any fragment de-
pends on the tractability of its generated subalgebra [13]. Finally, a fragment
is said to be PC-tractable if its consistency problem is decided by the so called
path-consistency algorithm (which is a special case of the local consistency al-
gorithm [11]). PC-tractability of a fragment is a desirable property, as a PC-
tractable fragment S can be used as an heuristics to speed up a consistency
checking brute force algorithm for a non-polynomial algebra A (see, e.g. [5]).
The path-consistency algorithm has also a fixed complexity: O(n3), where n is
the number of distinct variables of an instance, and being a very well-known
algorithm, optimized implementations abound. Studying the PC-tractability of
tractable fragments is therefore an interesting problem.

3 Some Tractable Fragments of the Branching Algebra

Tractable fragments of the IA. In the linear case there are 18 tractable
fragments of the IA [9]. Three of them are noteworthy: IAconvex, IApoint, and
IAHorn. In particular, IApoint is characterized by the fact that every instance
of IApoint can be polynomially translated to an instance of the PA, effectively
reducing the interval-based problem to a point-based one. In general, for any
intervals-based relation algebra A, there always exists a pointisable fragment
Apoint whose relations can all be exhaustively expressed only by conjunctive
constraints between intervals endpoints: this allows us to create a point mapping
operator ξ which translates any interval algebra instance Θ into an equisatisfiable
point algebra instance Θ′ in polynomial time. IApoint is obtained by applying
the operator ξ on IA. IAconvex [16] is a fragment of IApoint that uses only



On (Maximal, Tractable) Fragments of the Branching Algebra 7

convex point-based relations; while in both cases, Path-Consistency decides the
consistency of an instance, in IAconvex it also decides its minimal labels problem,
unlike IApoint [17]. IAHorn [13] includes IApoint as a fragment, and is PC-
tractable as well. The common characteristics to these three fragments, besides
the fact that they all are strong algebras, is that they have been studied via their
point-based translation. In the case of IAHorn, unlike IApoint and IAconvex, an
interval-based instance cannot be simply translated to a point-based one; yet,
its PC-tractability is a consequence of developing a Horn point-based logical
theory (known as the ORD-Horn theory [13]). The remaining 15 other tractable
fragments have been studied mostly in [6] and [9], in a rather systematic way,
and the problem of their PC-tractability has not been posed; their importance
relies in the fact that they complete the tractability landscape of the fragments
of the IA, more than the naturalness of their definition or their actual practical
implications.

The Convex and the Horn Fragment of the BA. In the branching case,
only two tractable fragments are known so far. The BAconvex fragment [8] is
the natural branching counterpart of IAconvex. Unlike the latter, however, it
is only a weak algebra; yet it is PC-tractable and, as it is for IAconvex, Path-
Consistency decides the minimal label problems as well. The BAHorn fragment,
which extends BAconvex, and that has been introduced in [3], has been proven to
be PC-tractable by developing a tree-order point Horn theory (TORD-Horn),
in a way similar to the linear counterpart. The question we pose now is: which
additional fragments of the BA can be discovered by a systematic analysis of
their translations to the branching point-based framework?

The Point and the Linear Fragment of the BA. In [4], Broxvall introduces
the branching disjunctive point algebra, which extends the standard (conjunc-
tive) branching point algebra by allowing disjunctive constraints in its instances;
for example, in a disjunctive algebra, a constraint such as:

(x < y ∨ y ≥ z) ∨ (x ‖ y ∨ z = t),

inadmissible in a classical algebra, is allowed. Formally, given a conjunctive point
algebra A and two fragments S1,S2 ⊆ A, we can build the derived disjunctive
fragment S1

×
∨S2 which contains the relations given by binary disjunctions over S1

and S2. Furthermore, we have that S1 = S and Si = Si−1 ×
∨S, so Sk means that

relations are k-disjunctions of the relations in S. Finally, S∗ =
⋃∞
i=0 Si, indicates

that we can use an arbitrary amount of disjunctions for our relations. Besides
their naturalness, disjunctive fragments in the point-based case are interesting
because they allow to define non-pointisable fragments in the interval case. In
the linear setting, for example, IAHorn can be translated to a certain disjunctive
fragment of PA∗ (although the disjunctive point-based fragments have not been
explicitly studied in the linear case). An analysis of the disjunctive fragments of
the BPA led Broxvall to determine that there are exactly five maximal tractable
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Table 1. Broxvall’s basic tractable fragments.

ΓA ΓB ∆B ∆C ΓD ∆D ΓE ∆E

< X X X
≤ X X X X
≶ X X X X
Q X X X X X
‖ X X X X

=‖ X X X X
= X X X X X
6= X X X X X X X
<‖ X X X X
≤‖ X X X X

subalgebras of BPA∗, which are:

TA = ΓA TB = ΓB
×
∨∆∗B TC = ∆∗C

TD = ΓD
×
∨∆∗D TE = ΓE

×
∨∆∗E .

The definition of the Γ and ∆ ‘base fragments’ is provided in Tab. 1. The
tractability of these fragments if proven by devising a specific algorithm; it does
not imply their PC-tractability, and, as a side note, the complexity of their
consistency algorithm is slightly worse than O(n3).

Given any two fragments S1 and S2 of BPA, we can compute Γ (ξ−1(S1
×
∨S∗2 )),

where ξ−1 is the inverse of the point mapping operator ξ extended to disjunctive
point algebras. Note that there is only a finite number of disjunctions which
can be allowed in BA; also, from an implementation perspective, instead of
systematically trying all possible combinations, ξ−1(S1

×
∨ S∗2 ) can be efficiently

computed by a slightly modified version of Γ∪(ξ−1(S1)∪ξ−1(S2)), which assures
that the relations of S1 (or their derived) are not combined between themselves
(by definition, we allow arbitrary disjunctions only of S2). By looking at Tab. 1,
we see that TC and TD can be immediately excluded from our analysis since they
do not contain the relation <, which is needed to state the natural constraint
∀I : I− < I+ (it is interesting to note that their mappings degenerate into the
whole BA). Also, it is the case that BAHorn = Γ (ξ−1(TE)): this equivalence,
which is also an alternative way to show the tractability of BAHorn (but not to
show its PC-tractability), becomes clear when comparing the definitions of TE
in Tab. 1 and those of TORD clauses given in [3]. By applying the mapping on
TA which, after closure by converse, is equal to BPA, we obtain the branching
equivalent of IApoint, that is, BApoint, which is a first new tractable fragment
of the BA. If, instead, we apply this mapping to TB , we get another previously
unknown fragment, which we called BAlin because all the relations contained
in TB are linear except one: the relation 6=. As the 6= relation is interpreted as
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< ∨ > ∨ ||, it is not linear, so BAlin is not a subset of IA, as its name may
suggest.

Theorem 1. The fragments BAHorn, BAlin and BApoint are tractable strong
subalgebras of the BA.

The fact that they are strong subalgebras can be proved by a systematic
computer-assisted check; we provide the proof of tractability.

Proof. It is easy to see that BAHorn = Γ (ξ−1(TE)), BApoint = Γ (ξ−1(TA)), and
BAlin = Γ (ξ−1(TB)), therefore it is possible to convert any instance of BAHorn,
BAlin and BApoint to an instance of (respectively) TE , TB and TA via ξ, which
operates in polynomial time. ut

Tractability and PC-tractability.BAHorn,BApoint, andBAlin are tractable;
their tractability, however, does not imply their PC-tractability. As a matter of
fact, BAHorn is PC-tractable, as shown in [3]. For the other two fragments,
unfortunately, we only have partial results; in particular, the following holds:

Theorem 2. The Path-Consistency algorithm is complete for checking the con-
sistency of instances of BAHorn. On the contrary, it is not complete for checking
the consistency of instances of BApoint.

The fact that the consistency of instances of BAHorn can be checked by
Path-Consistency has been shown in [3].

Proof. The fact that Path-Consistency is incomplete for checking the consistency
of instances of BApoint can be shown by proving the existence of at least one
inconsistent, but PC-consistent, instance. One such example is given in Fig. 3.

ut

Whether BAlin instances can be checked by Path-Consistency or not is an open
problem; extensive search for counterexamples gave negative results.

The known fragments of BA are reported in Fig. 4. As we can see, IAconvex
and BAconvex are the smallest tractable fragments different from the set of ba-
sic relations only; as we have already observed, however, IAconvex is a strong
algebra, while BAconvex is a weak algebra. Its strong closure, Γ (BAconvex), is
slightly bigger. The importance of BAconvex lies in the fact that, besides being
PC-tractable, the Path-Consistency is also complete for minimal labels. The
PC-tractability of its strong closure, instead, is a mere consequence of the PC-
tractability of BAHorn. IAHorn and its strong closure in BA are also, obviously,
PC-tractable, as they are both subsets of BAHorn. Finally, observe that BApoint
is not included in BAHorn, unlike its linear counterpart, and that BAlin does not
even have a linear counterpart, although it is a proper superset of IAHorn (and
its closure). While it cannot be seen in the figure, it is interesting to point out
that BAlin is the only set which does not contain any basic branching relation
(like u or ibi), and if we try to extend it by adding any one of them, we always
end up with a non tractable fragment of BA.
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Fig. 3. A path-consistent, but not consistent, instance of BApoint.

4 Maximality Results

The landscape of tractable and PC-tractable fragments of the BA is still in-
complete. Towards its completion, it is important to establish which tractable
(resp., PC-tractable) fragment is also maximally so. In [6], and earlier in [13],
the fundamental tool to check the (non) maximality of a certain tractable frag-
ment in the linear case is the introduction of the so-called corner sets, i.e. small
sets of relations which allow the construction of polynomial reduction of some
NP-complete problem (usually 3-SAT and 3-COLOR). The list of corner sets
emerge as a consequence of the systematic analysis of the fragments of the IA.
So, in the linear case, it holds that, given a certain tractable fragment S, it the
case that S is maximal w.r.t. tractability if and only if every possible extension,
that is, every set of the type Γ (S ∪ {R}) with R /∈ S, contains at least one of
the corner sets. The complete list of corner sets [6] is:

N1 = {{b, di, fi,m, o}, {b, d,m, o, s}, {d, di, fi, oi, si}}
N2 = {{b, di, fi,m, o}, {b, d,m, o, s}, {di, fi, o, oi, si}}
N3 = {{b, bi}, {o, oi}}
N4 = {{b, bi}, {m,mi, o, oi}}
N5 = {{m,mi}, {b, bi, f, fi, s, si}}
N6 = {{b, bi,m,mi}, {o, oi}}
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Fig. 4. An Euler-Venn diagram representation of the known tractable fragments in
BA. For each set, we also show the number of relations it contains.

To study the maximality of tractable fragments in the branching algebra, the
linear corner sets are a possible starting point. Indeed, if a fragment of the BA
contains a linear corner set and the relation {e, b, bi, d, di, f, fi,m,mi, o, oi, s, si}
(which we denote as l), that is, a relation that constrains two intervals to be in
some linear relation, then it is certainly not tractable: the reduction that proves
NP-completeness is precisely the same as in the linear case, with the addition
of the constraint I l J for each pair I, J of intervals that are not explicitly con-
strained. Since BAHorn, BApoint and BAlin all contain l, this argument can
be applied in all three subalgebras. On the other hand, the opposite does not
necessarily hold: if a certain fragment of BA does not contain any corner set,
then it is not necessarily tractable. Therefore, by applying the same strategy as
in the linear case, two outcomes are possible: (i) if all the possible extensions
of a tractable fragment S contain a linear corner set, then S is maximal w.r.t.
tractability, and (ii) if there exists an extension SR (=Γ (S ∪ {R})), for some
relation R that does not contain any corner set, then SR is a new candidate for
being tractable — in that case, it would also be a candidate to be maximally
tractable. In the latter case, the process can be recursively applied, resulting
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P

P3P2P1 P4 P5

Fig. 5. Extension graph of BApoint (denoted, here, by P).

in new, bigger subalgerbas, all potentially interesting, whose tractability is an
open issue. We call extension graph of a certain fragment S a directed graph
G = 〈V,E〉 that represents the set of algebras that one obtains by such a sys-
tematic search: vertexes represent algebras, and edges indicate that one set can
be extended into another, and may be optionally labelled by a relation which
brings such extension.

Theorem 3. The following results hold:

– BAHorn is maximally (PC-)tractable;
– BApoint has the extension graph shown in Fig. 5;
– BAlin has the extension graph shown in Fig. 6.

The result was obtained through computer-assisted enumeration. By computer-
assisted enumeration, one can see that BAHorn cannot be extended in any frag-
ment that is not a superset of some corner set. Also one can see that the every
extension of BApoint and BAlin that is not the superset of any corner set is
depicted in Fig. 5 and in Fig. 6. There are precisely five supersets of BApoint
whose tractability is unknown, and nine supersets of BAlin. While in the case of
BApoint such supersets form a chain w.r.t. set containment, in the case of BAlin
the situation is more complex, with six supersets that form three chains, and
three supersets formed by combinations of other supersets.

The maximality of both BApoint and BAlin is therefore an open issue, as so
are the PC-tractability of BAlin and the (non) existence of some other tractable
fragment of the BA.

One way in which the tractable fragments are exploited in the literature is to
speedup the task of checking the consistency of a network (see, e.g., [12] for IA
or [8] for BA). Instead of having a backtracking algorithm that assigns a basic
relation to each edge in the network, the search can stop as soon as all the edges
are assigned relations (possibly, non basic) that are in a fragment tractable with
PC. For this task, BAlin is very promising as it is the largest tractable known
fragment; if it was PC-tractable, then it could be exploited to possibly obtain
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Fig. 6. Extension graph of BAlin (denoted, here, by L).

a higher speedup than that obtained using BAHorn in [3]. However, as already
said, the PC-tractability of BAlin is an open issue.

5 Conclusions

The branching interval algebra (BA) is the tree order generalization of Allen’s
(linear) interval algebra (IA). Its potential applications include planning with
alternatives, automatic story-telling with alternative timelines, and checking ver-
sion systems with several branches. As in the linear case, the consistency problem
of Branching Algebra is NP-complete, and studying its tractable fragments is
a interesting problem. In the linear case, we know every tractable fragment of
the full algebra, while in the branching case the entire landscape of tractable
fragments is still unknown. In this paper we considered some of the results that
are known in the linear case and the branching case in the point-based setting;
by combining them we were able to add two new tractable fragments (BApoint
and BAlin) of the branching interval algebra to the one that was already known
(BAHorn). Also, we studied their maximality; we were able to prove BAHorn is
maximal w.r.t. tractability; as much as the maximality of BApoint and BAlin is
concerned, however, the problem is still open, although we proved some possibly
useful partial results in this sense. Finally, we considered the problem of the
tractability via Path-Consistency of these fragments, and proved that BApoint,
while tractable, is not PC-tractable; the PC-tractability of BAHorn was already
known, and the PC-tractability of BAlin is an open issue.

This paper is a stepping stone towards the complete classification of the
fragments of the BA, which is, obviously, the main open problem at the moment.
The techniques, and the algorithms, needed to perform this classification for an
algebra with 19 relations (much bigger than the IA, with 13 relations only) can
be certainly re-used for similar studies in other algebras, such as the rectangle
algebra, and similar formalism for spatial-temporal reasoning.
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