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Abstract. Modern systems for image processing and analysis are characterized 

by the active use of artificial neural networks, for training of which, as a rule, 

gradient methods are used, but their main limitation of the implementation is 

high computational cost. The use of the principles of hybridization of neural 

networks, fuzzy logic and evolutionary algorithms allows you to create new 

types of models that have a higher recognition quality while reducing the 

computational cost of training. A hybrid neuro-fuzzy recognition model is 

proposed, which consists of two modules: a convolutional module (CNN) and a 

neuro-fuzzy classifier module (NFC) built on the basis of a modified ANFIS 

network. The CNN module, which is trained by the method of back propagation 

error, acts as a kind of expert system for the NFC module. It is proposed to 

perform NFC training based on the use of artificial immune systems by 

presenting all adjustable parameters in the form of a structured adaptive multi-

antibody, and consists in adjusting the NFC parameters and structure. 

Experimental studies have been carried out on test samples, confirming the 

effectiveness of the proposed model for recognizing objects in an image. 

Keywords: object recognition, hybrid model, convolutional module, neuro-

fuzzy classifier, immune learning, multi-antibody. 

1 Introduction 

Today, one of the most rapidly developing scientific and technological areas is image 

processing and analysis. In recent years, a number of methods, models, and 

algorithms have been introduced to address these challenges [1], among which 

artificial neural networks (ANN) are the most effective [2]. There are a large number 

of standard ANN architectures, and the use of different types of ANN has proven to 

be quite effective in solving a wide range of problems. The emergence of a new type 

of ANN - the Convolutional Neural Network (CNN) [3, 4] gives a new impetus in this 

area of research, it is widely used in various fields, including image recognition, 

speech recognition, natural language processing, video analysis, etc. [5-12]. 

When solving applied problems in order to improve accuracy and reduce complexity, 

the task of finding the optimum neural network (NN) topology and according to it 
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structural (determining the number of hidden layers and neurons in them, interneuronal 

connections of individual NN) and parametric (adjusting the weight coefficients of NN) 

optimization. Typically, methods that require the calculation of the gradient of the selected 

functional are used for NN training [2, 13]. Methods for solving this problem include 

the organization of parallel and distributed computing on specialized hardware, which 

can significantly imcrease productivity in solving many practical problems, as well as 

the use of new evolutionary approaches to the learning of ANN, in particular artificial 

immune systems (AIS). 

 The construction of hybrid NN, consisting of different types of NN, each of which 

is trained by a specific algorithm in layers, in most cases can significantly improve the 

efficiency of their functioning. The study of the principles of NN hybridization, fuzzy 

logic and evolutionary algorithms allows us to create new types of models that have a 

higher quality of recognition in the case of simultaneous reduction of computational 

costs [14]. One such approach that proposed in this work is hybrid neuro-fuzzy model 

for recognizing objects in an image on the basis of the CNN and the neuro-fuzzy 

classifier (NFC), which is taught by AIS. 

2 Analysis of approaches to recognize object in the image 

The purpose of the recognition procedure is to answer the question: does the object 

described by the given characteristics relate to the grouping of objects that we are 

interested in, and if so, to which one. This is a fundamental problem in the computer 

vision and forms the basis for solving the other tasks, such as the detection, 

localization and segmentation of objects in the image [15]. Any recognition system 

includes both the process of synthesizing images, that is, forming descriptions of 

recognition objects and their classes, and the process of analyzing images, that is, the 

decision-making process itself. The current level of computing allows to combine in 

recognition systems both different approaches to describe images as well as methods 

used in the recognition process.  

The use of CNN, especially deep learning models, has influenced the development 

of methods for detecting and classifying objects in an image [16]. Deep learning 

models that use several levels of nonlinear information processing to extract and 

transform features, as well as analyze and classify patterns, have become the leading 

architecture for most image recognition, classification, and detection tasks [17, 18]. 

Deep CNN (DCNN), which use GPUs and large datasets for deep learning, have 

implemented technologies related to various aspects of their improvement [19-22]: 

1)  network architecture; 2) nonlinear activation functions; 3) mechanisms of 

regularization; 4) optimization methods, etc. However, the resulting models were 

often large and slow to calculate. 

The main limitations of the known methods and technologies currently in use arise 

from inefficiency of solving the problem of ANN training, adjusting and adapting to 

the problem area, processing incomplete and inaccurate source information, 

interpreting data and accumulating expert knowledge, uniform presentation of 

incoming information from different sources, etc. Therefore, one of the leading trends 



is the development of integrated, hybrid systems based on deep learning [6, 14]. Such 

systems consist of different elements (components), united in order to achieve the set 

goals. The integration and hybridization of different methods and technologies allows 

to solve complex problems that cannot be solved on the basis of individual methods 

or technologies. Today, there is a tendency for hybridization of neural network 

models and fuzzy logic systems, which combine the ability to represent and process 

fuzzy knowledge as a base of fuzzy production rules, and the ability to learn on a 

limited set of examples with a further generalization of the knowledge gained. 

This paper aims to develop and study a model that combines ANN, fuzzy logic and 

AIS technologies for effective image recognition in the image.The result of the 

research is the creation of a recognition system that, using the developed models as 

the base architecture, will perform the task of recognizing the objects in an image. 

3 Implementation of a hybrid neuro-fuzzy recognition model 

A combination of two modules was used to create the hybrid neuro-fuzzy model of 

recognition: the CNN convolutional module and the ANFIS-based NFC module. The 

general architecture of the neuro-fuzzy convolution network is presented in Fig. 1. In 

this hybrid model, the CNN module acts as a kind of expert system for the module 

with neuro-fuzzy output. CNN receives three channels of 174 x 174 pixel RGB image 

on its inputs. Thereafter, it goes through four stages of alternating convolution of the 

input matrix using the 3x3 coagulation kernel and the process of subsampling the 

maximum values using the 2x2 working matrix. As a result, each of the 4 layers, after 

completing the full lifecycle, will highlight certain features of the image objects, 

which as a result of the identifications will be presented as feature maps on the source 

layer CNN 9x9x128. 

 

 

Fig. 1. Hybrid neuro-fuzzy convolution network structure 

Each element of the resulting subsample is connected to the input layer of the 

NFC, where the next step is the phasing process. Each fuzzy signal creates three fuzzy 

membership functions that characterize the degree of signal saturation (low, middle, 

high). Based on the activation of production rules from the knowledge base of the 

NFC, the values of the signals with the highest value are selected, and then the final 

result of the system operation is formed on the layers of aggregation and dephasing. 

3.1 Convolutional module 

The CNN convolutional module consists of two types of layers: convolutional layers 

and subsampling layers. As they alternate, they form the input feature vector for a 

hybrid neuro-fuzzy classifier. CNN learning algorithm is based on backpropagation. 
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CNN can run quickly on a sequential machine and learn quickly by parallelizing the 

convolution process on each card, as well as the reverse convolution when spreading 

a network error. Compared to other algorithms for processing and synthesizing the 

features of the objects in the image, CNN uses relatively little preprocessing. For the 

hybrid pattern recognition model, the architecture of a 4-level convolutional CNN 

module with one input 3-channel RGB layer was taken (Fig. 1). For convolution 

feature kernels 3x3 size and subsample maps, the value of which is equal to 2x2 

elements were used on all network layers. 

 

Fig. 2.   Structure of convolutional module 

The convolutional layer is the main building block of CNN. The layer parameters 

consists of a set of filters (kernels) for training that have a small receptive field. In the 

direct pass, each filter performs convolution by rows and columns of the input matrix, 

calculating the scalar product of the filter and input data, forming a 2-dimensional 

excitation map of this filter. As a result, the network learns, with the filters activated 

when the network detects a particular specific type of feature in a particular spatial 

position at the input. The size of all maps of the convolutional layer is the same and is 

determined by the formula: 

  ( ) ( ), 1, 1r c f mC kC nR hR= − + − + ,  (1) 

where ( ),r c  is the calculated size of the convolution card; mC  is number of 

columns the previous map; nR   is number of rows of the previous map; kC  - 

number of core columns ; hR  – number of core rows. 

A kernel is a filter or window that slides across the input map area and finds certain 

features of objects. The kernel moves through the input map and performs the 

convolution operation used to process the images: 

  ( )  ( )
,

* ,   , 1 * [ , ]
k l

f g m n f m k n g k l= − − ,  (2) 

where f  – the basic image matrix; g  – convolutional kernel. A window of kernel 

size  g  passes through the specified step through all the image f , elementwise 

multiply the contents of the window by kernel g , the result is summed up and 



written to the original result matrix. In a simplified form, the convolutional layer can 

be described by the expression: 

   ( )1 *  l l l lx f x k b−= + ,    (3) 

where 
lx  – the output of layer l ; ()f  – the activation function;   lb  – the shift factor 

of layer l ; *  – convolution operation of input x  with kernel k . In this case, due to 

the boundary effects, the size of the output matrices decreases: 

   
1( * )l l l l

j i i i

i

x f x k b− 
= + 

 
 ,   (4) 

where 
l

ix  – map of the signs of the i-th card (input of layer l ); ()f  – the activation 

function; 
l

ib  – the shift factor of the i-th map of layer l ; 
l

ik  – the convolution kernel 

of the i-th map of layer l ; *  – convolution operation of input x  with kernel k . 

In order for the neural network to have good adaptive properties, it must have 

nonlinear components or perform nonlinear transformations. Given this, within CNN, 

the weighted sum of inputs (the result of the convolution operation) passes through 

the ReLU function [6], i.e., each element of the output convolution matrix is an 

artificial neuron with this type of activation function. Thus, the values in the final 

object maps are not really the sum of the product of values of the kernels of features 

and input matrices, but the result of the activation function applied to them.  

The subsample layer, like the downsample layer, has maps, but the number is the 

same as the previous convolutional layer associated with it. The purpose of the layer 

is to reduce the dimension of the original matrix of the previous layer. If some 

features have already been detected in the previous convolution operation, then such a 

detailed image is no longer required for further processing and is compacted to a less 

detailed one. In the process of scanning with the core of the subsample layer (filter) of 

the map of the previous layer, the selected areas of the scanning core do not intersect 

unlike the convolutional layer. Each of them does work related only to their own data 

area. Each card has a 2x2 size kernel, which allows you to reduce the previous 

downsample matrices by 2 times. The entire feature map is divided into 2x2 element 

area, from which the maximum value elements are selected. The work of the 

subsample layer is described by the formula: 

  ( )( )1*  l l l lx f a subsample x b−= + ,     (5) 

where 
lx – the output of the layer l ; ()f  – the activation function; 

la ,  
lb – the shift 

coefficients of layer l ; ()subsample –operation of selecting local maximum values. 

Like all direct signal propagation neural networks, CNN are well trained using the 

error propagation algorithm [2, 4]. However, the use of this approach in this type of 

network has its own characteristics. One of the biggest problems with CNN training is 

the calculation of the δ-error on the subsample layer. This process is represented in 

several variations within the network. The first case is when the subsample layer is in 



front of the output signal, then it has neurons and connections of the same type as in 

the associated layer, so calculating the δ-error is no different from calculating the δ-

error of the next layer. The second case is when the subsample layer is in front of the 

convolutional level. Then the calculation of the δ-error occurs by backward 

convolution. The purpose of a backward convolution (deconvolution) is to find  the 

equation of a direct convolution given in the form *f g h= , where h  - is the 

recorded signal and f  is the signal that need to be restored, and it is known that the 

first signal is obtained by convolution of the second signal with some known signal 

g . However, if we do not know g in advance, then we need to estimate it. This is 

usually done by using statistical estimation methods. 

Usually, the previous layer after the convolution layer is subsample layer, and 

according to the task we need to calculate the δ-errors of the current layer 

(convolutional) on the basis of knowledge about the subsample δ-errors. In fact, the δ-

error is not calculated but copied. When the signal is propagated directly, the neurons 

of the subsample layer are formed by nonoverlapping scan windows over a 

downsampling layer, in which the neurons with the maximum value are selected. In 

reverse propagation, the δ-errors are returned only to the neuron that was previously 

selected with the maximum output signal in its subgroup. Others get a zero δ-error. 

3.2 Neuro-fuzzy classifier with immune training 

The NFC structure is based on a modified ANFIS network, which is a multilayer 

network with direct signal propagation that implements the first-order Takagi-Sugeno 

fuzzy output algorithm for n  input variables described by  m  fuzzy sets [23, 24]:  

1  R :                        ,  i i i j ij m imIF x is A AND AND x is A AND AND x is A   

       1 1 0               ,  1, ,i ij j im m iTHEN y k x k x k x k i n= ++ ++ + =  ,    (6) 

where , 1  ,jx j m=  – input variables,   , 1  ,iy i n=  – output variables ijA – linguistic 

terms representing fuzzy sets;   ijk  – coefficients of arguments of function; 0ik  – shifts.  

The network consists of 5 structural layers (Fig. 3). The first layer is the entry 

level. It consists of n nodes, where n - the number of inputs to the system. The 

elements of this layer are combined with the output data obtained from the 

convolution module. This establishes a link between the two modules – from each 

element of the feature matrix a separate entry channel into the NFC is allocated. The 

second layer performs the function of fuzzification the input. The outputs of the neurons of 

this layer represent the values of the membership functions (MF) ( )
jiA jx  for input 

variables , 1  ,jx j m= . A Gaussian MF is used, which is described by the expression: 

        ( )
2

x c
x exp



 − 
= −  

   

 ,   (7) 



where parameter C denotes the center of the fuzzy set; parameter   – the coefficient of 

stretching of the function. The choice of a Gaussian MF is stemmed from its sufficient 

flexibility and simplicity, which reduces the dimension of the optimization problem when 

performing fuzzy model training. In this layer are m p  elements, where m  – the 

number of input variables, and p  – the number of membership functions. For 

fuzzification of the input variables, three membership functions are used, which 

describe the degree of signal saturation, which can vary from 0 to 255. 

 

Fig. 3. Structure of neuro-fuzzy classificator 

In the third layer, the input signals are multiplied and the weights of the rule 

(aggregation) are formed: 

( )
1

  ,   1  ,
ij

m
n

i A j

j

w x i p
=

= = ,   (8) 

where 
np  – number of fuzzy rules. 

Each i -th neuron in the fourth layer serves to calculate the ratio of the weight of the i-

th rule to the sum of the weights of all the rules (normalization): 

0

  ,   1  ,
n

ni
i m

ii

w
w i p

w
=

= =


.   (9) 

The fifth layer implements the function of activation of neurons (consequence), each 

neuron in it is described by the expression: 

( )0 1 1 2 2

1,     0,
      ...    

0,     0,

i

i i i i i im m i

i

if y
w f w k k x k x k x y

if y


= + + + + = =


 (10) 

where ,  1  , , 1  ,  n

ijk i p j m= = – parameters of i -th rule. The outputs of this layer are 

the outputs from the network, each result of which is the value of the ratio of the 

result to a particular class, which are predetermined according to the conditions set by 

the recognition task. 
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The second and fifth layers are adaptive, the settings of which are made during the 

training of the network. In the second layer, the MF parameters (centers of fuzzy sets C 

and stretching factors   are adjusted for the Gaussian MF), and in the fifth - the 

parameters of fuzzy rules ,  1  , , 1  ,  n

ijk i p j p= = . Some neurons in the NFC are 

adaptive, and each neuron output depends on the parameters related to that neuron. The 

learning rule determines how these parameters change to minimize the fuzzy output error. 

The NFC training represents the following optimization task: 

           ( )
2

1 1

1
,    min,

*

m n r

i j ii j P
y x P y

n m = =
 − 
      (11) 

where 
r

iy  – the required values of the NFC outputs; P  – the vector of NFC 

parameters, ijc ,   ij  and ,  1  , ,  1  ,    n

ijk i p j m= = are used as parameters, ( ),i iy y P  

– i -th output NFC value with inputs values jx , dependent from parameter P  . 

We will perform NFC training on the basis of AIS [25] in order to adjust the 

parameters of the MF input variables and fuzzy rules coefficients, as well as to 

synthesize NFC – to remove redundant rules and to corresponding change the 

network structure. The main idea of teaching NFC with the use of AIS is to present a 

solvable problem in the form of an antigen, and its possible solutions - in the form of 

antibodies [26]. We form a population of antigens from the training sample examples 

 1 2  , , , ,MAg Ag Ag Ag=  , where M  – the size of the antigen population 

corresponding to the number of examples in the training sample. Each antigen is 

represented by a fixed length vector: 1 2 1 2  , , , , , , ,i i i i i i

i n kAg x x x y y y=   , 1  , ,i M=  

where 1 2, , ,i i i

nx x x  – input variables, and 1 2, ,i i i

ky y y  – output NFC variables for 

i -th example of training sample. In one antibody, all configurable parameters of the 

NFC are encoded:   ijc , ij  and ijk , 1  , ni p= ,   1  ,j m= . 

To train the NFC, a model is used for representing all tunable parameters in the 

form of a structured adaptive multi-antibody [27, 28], presented in fig. 2 where ijc , 

ij , 1  , ni p= ,   1  ,j m=  – parameters of Gaussian MF for n  input variables, each of 

them has m  terms; svk , 1  ,s n= ,    0,v m=  – coefficients n  of fuzzy rules (6). 
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Fig. 4.  Multi-antibody structure 



The population of multi-antibodies can be represented as 

 1 2  , , , nmAb mAb mAb mAb=  , where  0 1 1, , ,i LmAb Ab Ab Ab −=  , 

1  ,i N= – i-th multi-antibody, which is a structured vector whose length L  changes 

during the execution of the immune algorithm; N  – multi-antibody population size. 

Each multi-antibody  , 1  ,imAb i N=  of the population is characterized by a full set 

of tunable parameters of NFC. In the structure of the multi-antibody shown in Fig. 4, 

separation of configurable parameters is used in two independent parts: part 1 with 

MF parameters ijc ,   ,  1  , ,  1  ,m

ij i p j m = = , and part 2 with the parameters of fuzzy 

rules , ,  1  , ,   0, .s vk s n v m= =   

Part 1 of multi-antibody represents a single antibody 0Ab , whose length is fixed, 

because the number of phase transitions for the input variables is constant. Part 2 of 

multi-antibody consists of ( 1L − )  independent antibodies 1 1, , LAb Ab − , each of 

them contains coefficients , ,  1  , ,   0,s vk s n v m= =  for one fuzzy input rule. Part 2 of 

the multi-antibody is adaptive because in the learning process, in addition to 

optimizing the coefficients of fuzzy rules contained in this part, their total number 

also changes, i.e. structural synthesis is performed. Structural synthesis, in turn, leads 

to a change in the number of neurons in the hidden layers of the NFС (Fig. 3).  

A structured method of forming multi-antibodies allows to increase the efficiency 

of the immune algorithm due to the separate use of immune operators to each part of 

the antibody - the immune operators are applied to the parameters of the MF and the 

coefficients of the fuzzy rules separately. The affinity calculation is performed for the 

multi-antibody as a whole, using both parts. The initial population of multi-antibodies 

is generated randomly. The size of the population of multi-antibodies is chosen small, 

because the use of a large number of multi-antibodies in a population leads to large 

computational costs. 

The immune algorithm that implements the training of NFC is based on the 

principle of clonal selection and the theory of the immune network [25, 26]. The 

adjustment of the NFC parameters is performed according to the principle of clonal 

selection. The clonal selection algorithm provides support for the diversity of multi-

antibodies in a population by globally viewing the range of tunable parameters, 

avoiding local minimum. The application of the provisions of the theory of the 

immune network allows us to evaluate the interaction of antibodies with each other 

and do a suppression, thus eliminating the redundancy of the fuzzy inference rules. 

Formally, the immune learning algorithm of NFC can be represented as follows: 

    ( ), , , , , , , , , , , , , , ,  L

c c netImmAlg P L mAb N Ag M Op n N d Alph A Aff gen t      (12) 

where 
LP  – the search range; L  – the search range dimension; mAb  –multi-

antibody population where  1 2, ,..., NmAb mAb mAb mAb= ; imAb  – i -th multi-



antibody of population mAb :  0 1 2 1  , , , ,i LmAb Ab Ab Ab Ab −=  ; N  – multi-

antibody population size; Ag  – antigen population:  1 2  , , , MAg Ag Ag Ag=  ; 

M  – learning sample size; Op  – set of used immune operators where 

 , , ,Op Clone Mutate Edit Suppress= ;   Cln  – number of multi-antibodies for 

cloning; 
ClN  – number of clones of one multi-antibody d  – the number of multi-

antibodies with the worst affinity to be replaced when editing the population of 

antibodies; net  – network compression ratio; Alph  – the alphabet with which 

antibodies are encoded; A  – the power of alphabet Alph ; Aff  – affinity function; 

gen  – work generation of immune algorithm; t  – algorithm termination criterion. 

NN training algorithm is an iterative procedure of the sequential identifying 

observations from the training sample. Antigens are examples of a training sample. 

Each antibody encodes one possible solution, and the amount of antibodies in the 

population corresponds to the number of examples in the training set. The training 

algorithm of NN is the following sequence of steps: 

1. Initialization of the initial population of multi-antibodies mAb  - performed 

randomly. Calculation of the affinity of each multi-antibody for antigen 

2. Affinity calculation 
mAb AgAff −

 of each multi-antibody for antigen:  

( )
1

 1  mAb Ag mAb AgAff d
−

− −= + ,   (13) 

where mAb Agd −  – Hamming distance between the obtained output values of NN 

, 1,  iy i n=  and desired 
r

iy  for all S  population antigens Ag : 

0

1,        
,      

0,     

r
n i i

mAb Ag i i ri
i i

if y y
d y where y

if y y
− =

 
= =

=
 .  (14) 

To calculate the affinity of a multi-antibody, it is necessary to substitute the 

parameters encoded in the multi-antibody into the NFC. The input features mx  are 

fed to the network input and the values of the output sy  variables are calculated. 

Thus, the affinity of each multi-antibody  imAb is calculated in relation to the entire 

population of antigens Ag . 

3. Cloning of multi-antibodies is proportional to their affinity and formation of a 

clone population Cl . The parameters of the cloning operator are the number of 

antibodies   Cln  clone and the cloning ratio of multi-antibodies  ClN . A fixed 

parameter value   Cln  is used. The cloning ratio of multi-antibody  ClN  is regulated 

during the operation of the immune algorithm, depending on the affinity of the multi-

antibody according to the ratio: 



( )  _ _    *  1 *Cl Cl min Cl maxN N N = + − ,   (15) 

where   ; 
best mAb Ag

best

Aff Aff

Aff


−−
= _Cl minN  and _Cl maxN  – minimum and maximum 

cloning ratio of multi-antibody; bestAff  – the best affinity value in the current 

generation. 

4. Clone mutation is inversely proportional to the affinity of multi-antibodies and 

the formation a population of mutated clones MC . Mutation of selected multi-

antibody parameters mAb  performed by adding a gaussian noise: 

( )1 0,i i imAb mAb N + = +    (16) 

To change the variance of a random variable i  the 

ratio  
best mAb Ag

i i

best worst

Aff Aff

Aff Aff
 

−−
=

−
 is used, where worstAff  – the worst affinity value 

in the current generation. 

5. Calculation the affinity of a population of mutated clones MC  in order to (13). 

If, as a result of a mutation, affinity improves, then replace with clones the 

corresponding multi-antibodies in the population  mAb . 

6. Calculation the affinity of antibodies within part 2 of multi-antibodies. 

Suppression of antibodies with affinity greater than a predetermined threshold net . 

The affinity calculation is performed in accordance to the expression: 

          ( ) ( )
1

21

1 2 1 20
1 | 1|

n

Ab Ab j jj
Aff Ab Ab k k

−
−

− =

 
= + − = + − 

 
  (17) 

Perform suppression by removing antibodies 1Ab  with affinity greater than a 

given threshold net , allows to reduce the number of neurons and connections 

between them in the hidden layer and eliminate their redundancy. 

7. Checking the stopping criterion. As a stopping criterion, either the achievement 

of a given affinity threshold or the achievement of a given number of generations of 

the algorithm's operation is used. The result of the algorithm will be a multi-antibody 

with the best affinity by the population, which determines the structure of the NFC 

and containing its configured parameters. 

Parts 1-5 of the algorithm correspond to the principle of clonal selection. At these 

stages, the algorithm works with both parts of the multi-antibody. Step 6 correspond 

to the principle of networking. If previously the multi-antibody was processed as a 

normal antibody, then at this step the work is performed only with part 2 of the multi-

antibody, which consists of individual antibodies representing the parameters of fuzzy 



output rules ijk , 1  , ni p= ,   1  ,j m= . The structure of the NFC (the number of 

neurons in the hidden layers) is set in accordance to the number of fuzzy rules 

encoded in the antibody. 

The result of the algorithm is an antibody with the best affinity by the population 

that contains the parameters of the fuzzy output rules and the MF of the input 

variables. 

4 Experimental results 

Ready-made architectural solutions (libraries) were used to build the models for 

each individual module. The generation of the CNN module was performed based on 

keras-sharp library which is used to generate deep learning networks. In its turn, the 

NFC module was based on the fuzzy-class-net software package. But its training was 

done using AIS. System that was obtained as a result of compilation of two modules 

was run on a computer that had the following characteristics:  

– ОS Windows 10; 

– the number of physical cores – 2; 

– RAM – 4 GB; 

– CPU – Intel core i5-3210M 2500МГц. 

For the objective analysis of the results, the obtained data of the investigated 

hybrid neuro-fuzzy model were compared with similar output values obtained using 

the standard CNN network. This approach makes it possible to evaluate the 

advantages and disadvantages of the proposed model. 

A set of 174 x 174 pixel images was selected for the training. Each image has one 

target object that needed to be identified during the test experiments. The entire 

sample of images is divided into two classes: class 1 - cats images and class 2 dogs 

images. Each set of test data images consists of 1000 instances. 750 copies of each set 

of test data were randomly selected to train the networks. And for testing the model - 

250 copies remaining in each of the sets, plus 250 were randomly selected from those 

that are already used for training in both classes. 

The results of the training are shown in Fig. 5, where the error values are on the Y 

scale and a number of epochs on the X scale. As we can see from Fig. 5, during the 

course of 1500 training epochs, the total error value produced by the hybrid NFN 

stopped at 0.2. For more accurate metrics, you need to increase the number of initial 

training sample and the number of training epochs. From the 350 epoch relatively 

correct answers began to form at the output of the classifier with an accuracy of the 

result in the range of 65 - 80%. In turn, for standard CNN, more accurate output 

values began to form from the 300 epoch, and their values ranged from 64 to 79%. In 

the last 1500 epoch, the value of network error was approximately the same. 

As a result of network training, one feature was noticed. The time to perform each 

training iteration of the hybrid NFN epoch was approximately 5 percent greater than 

time of a standard CNN network. This is due to the fact that during the training of the 

hybrid NFN, at the time of neuro-fuzzy classifier training, additional operations are 

performed to adjust the structure and parameters of the production rules. 



 
Fig. 5. Graph of training of hybrid NFN and standard СNN 

The next phase of the experiments was to test the trained systems on how they 

would recognize the test data set, which consisted of new, not involved in training and 

used images. Each model input received 500 images from each class. The following 

results were obtained as a result of the test. The accuracy of object recognition on the 

image for the hybrid NFN was 80%, and in the CNN network the ratio was fixed at 

78%. Detailed information on this parameter for each of the test classes is given in 

Table. 1. 

Table 1 – Comparison of the recognition accuracy of classes 

Image class Class 1 Class 2 

Model of 

recognition 

Standard 

CNN 

Hybrid 

NFN 

Standard 

CNN 

Hybrid 

NFN 

Recognition 

accuracy (in %) 

77.27% 80.12% 78.49% 79. 84% 

Number of 

recognized images  

372 398 374 388 

The other equally important indicator is the number of images on which object 

classes were correctly recognized. In order for an object to be recognized, the system 

must give an accuracy value greater than or equal to 65% in this test. As a result of 

the experiment, it was found that for the hybrid NFN, it was 786 precisely found 

objects, and for CNN this figure was 746 objects. The final indicator difference is 40 

images. 

From the results of the experiments, it follows that the hybrid NFN algorithm 

developed slightly slower than the CNN algorithm during the training. Because when 

you perform the training iteration, additional calculations are performed to set up 

production rules, which takes up to 5% of the time. But the proposed model did better 

in recognizing the objects in the image. It was found that the result of image 

recognition accuracy is greater than that of CNN by 1.5% and the number of correctly 

recognized images is greater by 40 elements, which is 8% of the total sample of test 

data. 



4 Conclusion 

The construction of hybrid NN, consisting of NN of different types, each of which is 

trained according to a specific algorithm, makes it possible to increase the accuracy 

and reduce the complexity of solving practical problems, including the problem of 

recognizing objects in an image. The use of NN hybridization principles, fuzzy logic 

and evolutionary computations allows the creation of new types of models that have a 

higher quality of recognition while reducing computational training costs.  

 To solve the task of recognizing objects in an image, it is proposed to use a hybrid 

neuro-fuzzy model, which consists of two modules: a convolutional module and a 

neuro-fuzzy classifier (NFC) module. The convolutional module is implemented on 

the basis of CNN, which is trained using the algorithm of back propagation error. The 

NFC module is implemented on the basis of a modified ANFIS network.  

It is proposed to train the neuro-fuzzy classifier on the basis of the immune 

approach by adjusting its parameters and structure. A model which is proposed for the 

representation of all tunable network parameters in the form of a structured adaptive 

multi-antibody, consisting of two parts. The structured method for the formation of a 

multi-antibody allows to increase the efficiency of immune algorithms due to the 

separate application of immune operators to each part of the multi-antibody and thus 

solve the task of synthesizing a neuro-fuzzy classifier. 

Experimental studies have shown that the proposed hybrid neuro-fuzzy model 

showed better performance in object recognition in an image than the standard CNN. 
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