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Abstract. The problem of constructing regression models is that it is necessary 

to specify the structure of the model, in addition, in models of large dimensions, 

poor conditioning of the matrices is possible, which leads to an unstable solu-

tion. The paper considers methods of self-organization (methods of group ac-

counting of arguments), which use an iterative procedure for the simultaneous 

synthesis of the structure of the model and the calculation of its coefficients. 

The advantages and disadvantages of the known methods of self-organization 

are analyzed. A self-organization method for the synthesis of a multiplicative 

model with linear private descriptions has been developed. The effectiveness of 

the method has been tested on test cases. 
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1 Introduction 

In the task of identifying objects, the model of the object is presented in the form 

of a “black box” in which the measured quantities are the vector of input actions 

}x...,,x{X n1=  and the output Y. Based on the measured values of the inputs and 

outputs of the object, a model of the object is constructed in the form of some analyti-

cal function )X(f'Y =  that best approximates the output Y in the best way (in the 

sense of the minimum of standard deviations) [1, 2]. 

As )X(f'Y = , the regression dependence in the form of the Kolmogorov – Gabor 

polynomial is usually used: 
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The concrete structure of the model (the number of factors and the maximum de-

gree of the polynomial) is determined by the researcher, and the calculation of the 

model coefficients from the experimental data is carried out by the least squares 

method (LSM) [3].  

The calculation of the coefficients of a polynomial by LSM is reduced to solving a 

normal system of linear algebraic equations with respect to unknown coefficients of 

the polynomial. With a significant number of input factors and an increase in the de-

gree of the polynomial, the number of coefficients in (1) grows like an avalanche, 

which imposes increased requirements on the volume of the training sample (for the 

implementation of LSM, the number of experimental points should be significantly 

larger than the total number of coefficients). 

In addition, in real data, as a rule, there are groups of strongly related features. In 

these conditions, the phenomenon of multicollinearity arises [2], which leads to poor 

conditioning and, in the extreme case, the degeneracy of the covariance matrix. 

Herewith, the solution of a normal system of linear equations is not stable or a so-

lution cannot be obtained.  

Therefore, in practice, they are usually limited to linear regression models, alt-

hough they are inaccurate and are used for a “rough” estimate in order to select the set 

of influencing factors of model X. 

For the synthesis of regression models from a small number of experimental data, 

inductive methods of self-organization (GMDH) are effectively used [4-6], which 

simultaneously determine polynomials and its coefficients. 

2 Literature review 

Self-organization methods use an iterative procedure for sequentially complicating 

a polynomial with choosing the best solutions at each step of the iteration. 

Inductive algorithms are also known as polynomial neural networks [7-9]. GMDH 

is used in such areas as data mining and knowledge discovery [10, 11], forecasting 

[12, 13], modeling of complex systems [6, 14], optimization and pattern recognition 

[15, 16] when solving various applied problems [17-22]. 

The methods of self-organization are based on the following principles of the theo-

ry of heuristic self-organization: the principle of the external criterion and the princi-

ple of non-final decision [4, 23]. 

The principle of the external criterion is that the quality control of the predictive 

model (the accuracy of the experimental data approximation by the regression equa-

tion) is estimated using a criterion that is external to the criterion by which the coeffi-

cients are determined.  

One of the options for the external criterion can be a breakdown of all experimental 

points into two parts, where the first of them, the training sample, is used to determine 

the coefficients using LSM, and the second part of the experimental points, the test 

(external) sample, is used to evaluate the accuracy of the regression equation.  

The use of an external criterion makes it possible to obtain a model of optimal 

complexity. 



The principle of inconclusiveness of the solution is borrowed from evolutionary 

and genetic algorithms and lies in the fact that at each step of the iteration remains a 

group of best solutions, that is, hopeless solutions are cut off, and only at the last step 

the only best (optimal) solution among all equal solutions is selected [5, 24]. 

The essence of self-organization algorithms is that a complete description of an ob-

ject of the form (1) is replaced by a set of private descriptions [4, 25]. As private de-

scriptions, two-factor polynomials of degree no higher than the second are used: 

Linear private description 
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where: lk x,x - factors that are included in the i-th model. 

With the number of factors n, the number of private descriptions is equal to the 

number of possible combinations of factors as 2 –
2

nC  

For each private description, the response values at all experimental points and the 

accuracy relatively to the external criterion are calculated. 

The complication of the model (an increase of the number of variables and the de-

gree of the polynomial) is performed during the transition to the next step of the itera-

tion, and the responses of the best models of the previous step (relatively to the exter-

nal criterion) are the initial factors of the next step of the iteration - a recursive substi-

tution of the results of the i-1- th step into i- th. 

Many self-organization algorithms are distinguished by the structure of private de-

scriptions, the external criterion (accuracy of the model in the points of the test se-

quence, balance of coefficients), the method of obtaining the resulting model, etc. [4, 

23, 25]. 

Thus, from the considered features of self-organization algorithms, we can con-

clude that each algorithm has its own field of application, but for all algorithms, an 

increase in the model dimension as a result of an iterative procedure automatically 

leads to a corresponding increase in the degree of the resulting polynomial. An excep-

tion is combinatorial algorithms with linear private descriptions, but they allow you to 

build only a linear multidimensional model. 

Therefore, the use of well-known self-organization algorithms for constructing 

non-linear models of multidimensional objects of low dimension is not very effective. 

As almost all types of private descriptions are used in well-known algorithms, an 

approach based on changing the iterative model complication procedure is promising. 



In this case, linear private descriptions of each iteration step can be obtained by a 

combinatorial algorithm, and the resulting model (instead of a recursive substitution) 

is synthesized in the form of a multiplicative model of linear partial descriptions of 

the previous i-1-th  and current i-th iteration steps. 

3 Formal problem statement 

Let there be a vector of input actions }x...,,x{X niii 1=  and an output iY of each i-

th instance N,i 1=  of a training sample of volume N. Build a model of regression 

dependence of the form (1) using the basic principles of self-organization methods. 

The aim of the work is to develop a method of self-organization in which the de-

gree of the resulting regression equation increased minimally (by one) when moving 

to the next step of the iteration, and the number of factors can be maximum already in 

the first step. To achieve this aim, the following tasks are solved:  

─ to develop a self-organization method for the synthesis of a multiplicative model 

with linear private descriptions; 

─ to develop computational procedures for implementing the method; 

─ to assess the effectiveness of the method on test cases. 

4 Development of a self-organization method for the synthesis 

of a multiplicative model with linear private descriptions  

In the developed method, all the principles of self-organization algorithms must be 

observed, therefore, in developing of the method, it is necessary to formalize the fol-

lowing stages of information conversion: 

• Generation of linear private description structures; 

• Calculation of the coefficients of a private description of a given structure at the 

experimental points of the training sample; 

• Calculation of responses of private descriptions at the points of the test sample 

and selection of the best solutions; 

• Transition to the next step of iteration and implementation of the model compli-

cation procedure; 

• Formation of a stopping criterion and selection of the optimal solution. 

4.1 Generation of linear private description structures 

As individual descriptions at any step of the iteration, linear polynomials from n 

variables (n is the dimension of the object) and the set of all possible polynomials 

from i variables 11 −= n,i with a different combination of non-repeating arguments 

are used. The number of possible polynomials is 
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which is significantly more than the number of private descriptions in known algo-

rithms. 

In the software implementation of the generation of structures, an integer array of 

length n is used, each element of which contains 0 or 1 and is used as a mask of the 

structure (1-given factor is present in the description; 0-missing). For each value of i 

11 −= n,i , i units are written to the beginning of the array, after which the last unit is 

shifted one position to the right, forming a new mask and so on until the end of the 

array. 

4.2 Calculation of the coefficients of a private description of a given structure 

at the experimental points of the training sample 

The calculation of the coefficients of private description of given structure at the 

first step of the iteration does not present any problems and is performed by the least 

squares method at the points of the training sequence of input ac-

tions }x...,,x{X n1= and output Y. 

The calculation of the responses of private descriptions at the points of the test 

sample and the selection of the best solutions are also carried out by known methods. 

For simplicity of the algorithmic implementation, the number of best solutions is cho-

sen equal to the number of input factors n. 

In order for the degree of the resulting regression equation to increase by one by 

passing to the next iteration step, the regression equation is constructed in the form of 

a multiplicative model of the form 
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where )(XP i
- is the linear polynomial of the i-th step of the iteration. 

It should be noted that in this method the polynomials of any iteration step use the 

input factor vector X as arguments. As was noted earlier, in the known methods, the 

vector X is used only at the first step of the iteration, at all other steps the input is the 

responses of the best decisions of the previous step. 

Expression (6) shows that, in the process of complicating the model, Np (deter-

mined by (5)) of the polynomials of the current k-th iteration step are “built in” over 

each of the best solutions of the previous k – 1 th step. The decisions of the previous 

step are the “parents” of the decisions of the current step - the “descendants”. Thus, at 

each step of the iteration (except the first), the number of particular descriptions is 

equal to the product of n by Np. Of this set of particular descriptions, only n best ones 

are skipped to the next step. 

The stop criterion is the “left corner” rule adopted in self-organization methods — 

an increase or stabilization of the error of the best private descriptions at the points of 



the verification sequence. In the last step of the iteration, the only model selected 

from the best is the result of the method. After opening the brackets in (6), a polyno-

mial is obtained in the form (1). 

Calculation of the coefficients of a private description of a given structure at the k-

th step of the iteration (k> 1). According to expression (6), the arguments of the poly-

nomials of the k-th step is the vector of input factors. Then, in the classical application 

of LSM, the coefficients of these polynomials will be determined from the condition 

of minimizing the standard deviations between the responses of the analytic func-

tion )(XP k
 and the output value of Y. In this case, )(XP k

 approximates Y inde-

pendently, without taking into account the results of the approximation of its “parent” 

in the previous step. 

And the multiplicative convolution of the “parent” and “descendant” will give an 

unpredictable result.  

Therefore, it is necessary to develop a system of linear algebraic equations for 

calculating the coefficients of polynomials by LSM taking into account the fact that in 

the expression (6) the coefficients of the “parents” of all the previous steps are already 

defined and their responses Y* are known. It is necessary to determine the coefficients 

of the last factor in (6). 

We write the functional of the LSM 
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where Xi, Yi are the values of the input and output actions, respectively; Ps
k(Xi) is the 

response of the multiplicative model of the current iteration step, which is determined 

by (6): the summation is carried out over the points of the learning sequence of vol-

ume Nl. 

We write linear polynomials of the current step in expanded  
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Taking into account (8), we replace the polynomials of the previous steps in the 

expression of the multiplicative model (6) with their responses Y* and substitute in (7) 
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This functional in the space of parameters (polynomial coefficients) is a convex 

function and has one global minimum. To find the minimum, it is necessary to take 

the private derivatives with respect to each coefficient and equate them to zero. As a 

result, we get  
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Having opened the brackets and performed simple arithmetic operations, we obtain 

a system of linear algebraic equations with respect to unknown coefficients 

m,iai 0= of the form: 
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Solving the system of equations (10) by any method, we obtain the coefficients of 

the polynomial, which gives a minimum of functional (7). 

It should be noted that at the first step of the iteration, the previous solutions are 

absent; therefore 1* Y , the system of equations (10) turns into the classical system 

of equations of the LSM method for linear multifactor regression, which confirms the 

correctness of the above transformations. 

5 Experiments and results 

To study the effectiveness of the developed method, test calculations were per-

formed. The calculations were performed using the mathematical package MATLAB 

[26]. Programs have been created to implement the developed method and the well-

known method with quadratic partial descriptions (4). 

For comparative analysis, three types of equations are taken: 

1) large dimension, small degree; 

2) small dimension, small degree; 

3) a large dimension, a large degree. 

The equations are given in Table 1.  

For each of the given equations, a table of initial data is generated. As values of the 

input vector, and also as values of the coefficients of the equations, pseudorandom 

numbers uniformly distributed over the interval [-2, 2] obtained using the standard 

function RAND. 

The sample size is 100 points (50-training sequence; 50-verification). 



Тable 1. Initial Functional Dependencies 

Type № Equations 

1 1 Y= 1,42–1,61x1+0,221x2–0,714x3+0,443x1x3+0,176x4+0,358x2x5 

2 Y= –1,33+1,25x1–1,83x2+1,42x3–1,61x4+0,225x5x1–0,714x5 

2 3 Y= 1,42–1,61x3
2+0,221x4

3 

4 Y= 1,25–1,83x5
2+1,45x5

4 

3 5 Y= –0,714+0,174x1
3+0,443x2

4+0,358x3
2–1,33x4

3+1,25x5 

6 Y= 0,358–1,33x1
3+1,25x2

3–1,83x3
2+1,42x4

3 

The external criterion for selecting the best solutions is the error at the points of the 

verification sequence, which is determined by the expression 
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where: Yi is the value of the output quantity; 

       )X(P i

k

s  – predicted value of the output value by the model. 

Further, according to the table of experimental data, the initial functional dependence 

is restored using the most common self-organization algorithm with quadratic quo-

tients of the form (4), hereinafter referred to as Algorithm 1, and the developed self-

organization algorithm for the synthesis of multiplicative models with linear private 

descriptions (Algorithm 2). A comparative analysis of the calculations is given in 

Table 2. 

Table 2. Comparison of effectiveness 
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1 1 2 5 3 8 4 6,603 2 2 5 1,34 

2 2 5 3 8 5 7,703 2 2 5 0,377 

2 3 3 2 1 2 2 0,148 2 2 2 3,34 

4 4 1 2 4 3 0,964 3 3 2 2,89 

3 5 4 5 3 8 4 4,234 2 2 5 6,44 

6 3 4 3 8 4 0,366 2 2 4 7,87 



From a comparative analysis of the data table. 2 by criteria  [27]: 

• error of the resulting regression equation εv; 

• number of iteration steps r; 

• dimension N of the resulting regression equation Y* 

• degree n of the resulting regression equation Y*, 

the preferred application of Algorithm 2 for the first type of equations is visible 

(equation of large dimension of a low degree). 

To the previously noted results of the comparative analysis, we should add the 

simplicity of obtaining the resulting regression equation obtained by Algorithm 2. 

The resulting regression equation in Algorithm 2 is the multiplication of linear pri-

vate descriptions of the various iteration steps, but to obtain the resulting regression 

equation in Algorithm 1, it is necessary to do the step-by-step operation of substitut-

ing private descriptions of the previous iteration steps in the subsequent ones until we 

obtain the dependence of the output function Y from the input vector X. 

As an example, we show the form of the best solution for approximating the output 

values of Y of the original equation 1, the form of which is shown in Table 1. 

In accordance with the data Table 2, the results are as follows: 

• Algorithm 1: 

• error εv = 6,603% 

• the number of iteration steps r = 3; 

• the type of analytical expressions (in the induced expressions, the results 

of the previous iteration steps are indicated by new variables). 

• 3-rd step of iteration: 

• Y(z) = –0,0407+0,53z4+0,481z7–1,26z4z7+0,649z4
2+0,616z7

2 

• 2-nd step of iteration: 

• z4(v) = 0,0349+0,938v1+0,16v6+0,283v1v6–0,077v1
2–0,288v6

2 

• z7(v) = –0,017+0,885v2+0,558v6+0,298v2v6–0,168v2
2–0,175v6

2 

• 1-st step of iteration: 

• v1(x) = 1,19–1,79x1+0,57x2+0,014x1x2+0,242x1
2+0,024x2

2 

• v2(x) = 2,91–2,79x1–0,92x3+0,78x1x3+0,369x1
2–0,09x3

2 

• v6(x) = –0,98+0,69x2–0,08x4–0,573x2x4+0,38x2
2+0,34x4

2 

• Algorithm 2: 

• error εv = 1.34% 

• the number of iteration steps r = 2; 

• type of analytical expressions 

•  1-nd step of iteration: 

• Y(x) = 0,49–1,24x1+0,67x2–0,19x3+0,23x4+0,33x5 

• 2-st step of iteration: 

• Y(x) = 1,12–0,01x1–0,25x3–0,04x4+0,11x5 

The change in the average error εv of the best private descriptions while complicat-

ing the model for the previously considered functional dependences is given in Ta-

ble3. 

Analysis of the results of the Table 3 shows: 



• compared with Algorithm 1 in Algorithm 2, the first step of the iteration 

makes a significant contribution to reducing the error εv, since already at the 

first step the algorithm selects the most significant factors. 

• to obtain the resulting regression equation, Algorithm 2 requires no more iter-

ation steps than Algorithm 1 for almost all types of equations. 

Table 3. The change in the average error of the best private descriptions  

№ 

equation 

Average error εv of the best private descriptions (%) 

Algorithm 1 Algorithm 2 

Iteration step  Iteration step 

1 2 3 4 1 2 3 4 

1 29,02 8,43 6,84 6,8 5,25 1,38 1,32 - 

2 17,9 11,4 8,6 8,51 4,17 0,345 0,336 - 

3 14,08 1,805 0,139 0,138 7,82 3,41 3,23 3,24 

4 19,14 1,191 1,175 1,2 34,2 4,65 2,91 2,76 

5 39,4 7,8 5,31 5,34 20,8 6,71 6,43 6,41 

6 45,5 17,3 9,89 9,51 16,0 8,91 8,66 9,61 

6 Conclusion 

A self-organization method is developed in the work for the synthesis of a multi-

plicative model with linear private descriptions, in which the degree of the resulting 

regression equation increases minimally (by one) when moving to the next iteration 

step, and the number of factors can be maximum already in the first step. This distinc-

tive property of the method cannot be implemented by well-known methods of self-

organization, it determines the area of effective use of the method for constructing 

non-linear regression multifactor models of low-dimensional multidimensional ob-

jects. The stages of information conversion are formalized and computational proce-

dures for the implementation of the noted stages are developed. The features of calcu-

lating the coefficients of polynomials of the current iteration step in the iterative pro-

cedure for the synthesis of the multiplicative model are considered, and analytical 

expressions are obtained for the first time to calculate the coefficients of linear poly-

nomials by least squares taking into account the noted features. A software implemen-

tation of the method using the MATLAB package has been performed. The developed 

program was tested using test examples, which confirmed its operability, determined 

its effectiveness and scope. The prospect of further work is the development of a full-

fledged software product and the processing of real data. 
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