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Abstract. The paper dedicates to development of an information technology for 

the design of Mamdani-type fuzzy systems derived from experimental datasets. 

The proposed information technology provides synthesis of accurate, compact 

and interpretable fuzzy rule bases. A distinctive feature of the information tech-

nology is the following four-stage operation scheme: 1) generating a list of ade-

quate candidate-rules; 2) selection of the rules; 3) reduction of the antecedents 

of the selected rules; 4) parametric tuning of a fuzzy rule base. The criteria of 

accuracy and interpretability are involved in the first and the fourth stages, and 

the criteria of accuracy and compactness are used in the second and the third 

stages. New models for interpretability protection of fuzzy rule bases during the 

tuning are also proposed. Examples of the application of this information tech-

nology for solving 7 identification problems with real experimental data are 

given.  

Keywords: fuzzy identification, rule selection, fuzzy rule base, accuracy, inter-

pretability, compactness, fuzzy inference, genetic algorithm, Pareto front.  

1 Introduction 

Fuzzy rule-based systems are a popular tool for modeling complex dependencies in 

engineering, agronomy, economics, ecology, medicine, biology, politics, sports and in 

other fields [1, 2]. The semantic part of a fuzzy system is a rule base, i.e. a set of if–

then rules that describes the relationship between inputs and outputs with usage of 

terms such as Low, Average, High etc. Those linguistic terms are formalized by fuzzy 

sets [3]. There are several types of fuzzy rule-based systems: Mamdani, Sugeno, Tsu-

kamoto etc. Among them, the most popular and human-friendly is Mamdani-type 

system. 

The paper dedicates to the design of Mamdani-type fuzzy systems based on utiliz-

ing experimental dataset. Such design usually is performed in two stages: fuzzy struc-

tural identification and fuzzy parametrical identification [4]. The structural identifica-

tion consists of determining the input and output variables of models, the formation of 
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term-sets for linguistic variables and describing the dependence by fuzzy production 

rules. The first two procedures are common to any identification method. The last two 

procedures are specific for fuzzy identification. As a result of fuzzy structural identi-

fication, we obtain a rough model, which outlines the target dependence. At the stage 

of fuzzy parametric identification, the model parameters are tuned, generally, the 

membership functions and weights of the rules are changed. 

The quality of the fuzzy rule bases is evaluated according to the criteria of accura-

cy, compactness, and interpretability [4–9]. There are a lot of research relating to 

extraction fuzzy rule base from datasets [4, 7, 9–14], but a question is still open how 

to guarantee obtaining an accurate, compact and reasonable (transparent) fuzzy rule 

base in expert-free regime. 

The aim of the paper is to develop an information technology that provides synthe-

sis from experimental data of accurate, compact and interpretable fuzzy rule bases. A 

distinctive feature of the technology is the following four-stage operation scheme: 1) 

generating a list of adequate candidate-rules; 2) selection of rules; 3) reduction of the 

antecedents of the selected rules; 4) parametric tuning of a fuzzy rule base. The first 3 

stages correspond to structural identification, and the fourth stage is parametric one. 

The criteria of accuracy and interpretability are involved in the first and the fourth 

stages, and the criteria of accuracy and compactness are used in the second and the 

third stages. New models for interpretability protection of fuzzy rule bases during the 

tuning are also proposed. The proposed information technology is tested on typical 

tasks from UCI Machine Learning Repository. 

2 Mamdani-type fuzzy rule base 

Antecedent and consequent in a Mamdani-type rule are represented by fuzzy sets. 

Each Mamdani-type rule can be interpreted as a zone with fuzzy boundaries in some 

factor space. For each fuzzy zone, the output variable takes a fuzzy constant value.  

Let us write the Mamdani-type fuzzy rule base as follows [10]: 

( )1 1 2 2 ... , ,i i n in i iif x a and x a and and x a then y d with weight w= = = =  (1) 

where ( )1 2, , , nX x x x=  and y  denotes the input variables and the output variable; 

ija  denotes the fuzzy term, for example, Low, Average, High, that assess a linguis-

tic value of jx  in the i-th rule, 1,i N= , 1,j n= ; 

N  denotes a number of the rules; 

id  denotes a consequent of the i-th rule in the form of a fuzzy term; 

[0;1]iw   denotes the weight of the i-th rule. 

Each fuzzy term ija  belongs to term-set  1 2, , ...,
jj j jkl l l , 1,j n= , jk N .  

Some rules in the base (1) may be short. For the short rule, arbitrary linguistic val-

ue of some variable does not influence on the consequent. In this case, the corre-



sponding variable is excluded from the rule antecedent or the term Don’t care is as-

signed to it [15]. 

Let us denote the membership function of terms ija  as ( )ij jx , ; jj jx x x 
 

, and 

of terms id  as ( )
id y , ;y y y 

 
. We use the Gaussian membership function: 
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where b  denotes the core of the fuzzy set, and 0c   acts as a concentration factor. 

The logical inference for the input vector ( )1 2, , , nX x x x   =  is carried out ac-

cording to Fig. 1. Firstly, membership degrees 
*( )ij jx  of the input values 

*

jx  to fuzzy 

terms ija  from rule base (1) are calculated by the formula (2). As a result, we obtain 

the input vector in the form of a bi-fuzzy set 1 1 2 2

1 2
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The support of a bi-fuzzy set is fuzzy [16]. In our case it equals to term-set 

 1 2, , ...,
jj j jkl l l , 1,j n= . 

 

Fig. 1. The logical inference with Mamdani-type fuzzy rule base  

(F – fuzzification, MFs – membership functions, DF – defuzzification) 

The inference machine outputs the result in form of the following bi-fuzzy set  
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where ( )1 1 2 2( ) min ( ), ( ), ..., ( )
id i i i in nX w x x x      =  , 1,i N= . 

Mapping the output bi-fuzzy set (3) to fuzzy set with support ;y y 
 

 is carried out 

in the following way: 



 ( )* imp , ( )
ii i dd d X = , 1,i N= , (4) 

where imp  denotes the implication, which is realized by the operation of the mini-

mum. The geometric interpretation of this implication is a cut of the graph of the 

membership function ( )
id y  at the level ( )

id X 
, 1,i N=  (Fig. 2). 

 

Fig. 2. Implication, aggregation and defuzzification in Mamdani inference 

The resulting fuzzy set is obtained by aggregation of fuzzy sets (4): 

 ( )* * *

1 2* , , ..., Ny agg d d d= , (5) 

which is implemented by the operation of maximum over membership functions. 

A crisp output value *y  corresponding to the input vector X 
 is found by defuzzi-

fying the fuzzy set (5) using centroid method: 
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To prevent the effect of narrowing the output range through centroid defuzzifica-

tion, we expand the support of fuzzy terms id , 1,i N=  as in [10]. 

3 Fuzzy identification quality criteria 

It is assumed that the dataset reflecting relation between features ( )1 2, , ..., nX x x x=  

and output y  is presented as follows: 

 ( ),r rX y , 1,r M= , (6) 

where rX  denotes the input vector in the r -th row of the dataset;  

ry  denotes the corresponding output value. 



The task of fuzzy identification is to extract the rule base (1) from dataset (6) with 

the best quality. We will evaluate the fuzzy model quality according to the criteria of 

accuracy, compactness, and interpretability. The accuracy and compactness of the 

model are traditional criteria for assessing the quality of identification. For fuzzy 

models, interpretability, i.e. ability to explain to customers in natural language how 

the model functions, is also important. The possibility of a meaningful interpretation 

is an important advantage of fuzzy models, allowing them to compete with other 

technologies for identifying complex dependencies. 

The accuracy of fuzzy model ( )F X  is assessed by the root mean squared error 

( )( )
2

1,

1
r r

r M

RMSE y F X
M =

= −  or normalized error 
RMSE

NRMSE
y y

=
−

. 

To assess the compactness of the model, we use the following indicators: N  – the 

total number of rules and A  – the total length of all antecedents, i.e., the number of 

terms in all the antecedents. 

Interpretability refers to the possibility of a meaningful explanation of the structure 

and parameters of the model. A fuzzy model is interpretable if the following 

conditions are satisfied [10]: 

• the rule base is not contradictory or redundant, that is, it does not contain rules 

with the same antecedents; 

• the rule base is consistent with the number of terms, that is, each term appears in 

at least one fuzzy rule; 

• an arbitrary input vector produces a non-empty output fuzzy set; 

• each term is represented by a normal and convex fuzzy set; 

• each term-set is meaningfully interpreted. 

A term-set is interpretable if the placement of fuzzy sets on the support is reasona-

ble. For example, the term Average is between the terms Low and High. At the same 

time, the height of Low-High intersection is lower than height of Low-Average 

intersection and also lower than height of Average-High intersection. As an example, 

Fig. 3 shows an uninterpreted term-set with the following problems: 

A) strong similarity of membership functions of neighboring fuzzy sets Low and 

Below Average, which may contradict the rule base; 

B) a loss of linear ordering of the term-set through different curve of membership 

functions, for example, on the interval (65; 82) fuzzy set Average is larger than fuzzy 

set Above Average, and on interval (0; 3) fuzzy set Below average is larger than fuzzy 

set Low, although it should be the other way around; 

C) a bias of the extreme term core – a decrease in the value of the variable x from 8 

to 0 reduces the membership grade to the term Low, although it should be the other 

way around; 

D) a cover spot – value (84;88)x   does not belong to any fuzzy set, hence, for 

any rule base, the result of inference for (84;88)x  will be an empty fuzzy set. 

Let us define a fuzzy term-set interpretability in the following linguistic form: Low 

lower Average, Average lower High, High lower Very High etc. In a more formalized 

form, we tie the term-set interpretability with the following three conditions. 



 

Fig. 3. Typical interpretability problems with a term-set 

1. The number of terms should not be too large so that the expert can match each 

fuzzy set with a reasonable linguistic assessment. In [4], the term-set cardinality is 

bounded above by a “magic” number 7 2  [17]. Based on our experience in the de-

sign of fuzzy systems, it is more expedient to use term-sets with cardinality up to 7. 

2. Fuzzy sets of different terms should not be equivalent or almost equivalent. 

Hence, the graphs of the membership functions of neighboring terms, for example, 

Low and Average should definitely differ by an eye. 

3. The-term set must be linearly ordered. Let us denote by il  a term with number i, 

1,i K= . This term is used as a linguistic assessment of variable x  over an interval 

;x x 
 

. Let term il  corresponds to fuzzy set il  with membership function ( )i x . 

Linear ordering condition for term-set  1 2, , ..., Kl l l  is written as follows: 
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 (7) 

To preserve the linear ordering of term-set  1 2, , ..., Kl l l  of the variable x  over the 

interval ;x x 
 

, let us introduce the following constrains on the parameters of mem-

bership functions (2): 
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b b i K

s x x s b b i K
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
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
  →  = −

, (8) 

where ( , )i ib c  denote the parameters of the Gaussian membership function (2) of the 

fuzzy set il , 1, 1i K= − ; 



is  denotes an abscissa of crossing point of the graphs of membership functions of 

neighboring fuzzy sets il  and 1il + , 1, 1i K= − . 

The first two lines in (8) determine that the cores of extreme terms are fixed at the 

variable boundaries. These conditions protect against C-type problem with interpreta-

bility. The third line provides the linear ordering of the cores of fuzzy sets 

 1 2, , ..., Kl l l . The first three lines (8) together hold the core of any fuzzy set into 

range [ ; ]x x . The fourth line (8) demands that any inside-interval crossing point of the 

neighboring membership functions locates between the cores of these fuzzy sets. The 

fourth line protects against B-type problem with interpretability. 

The crossing points of neighboring fuzzy sets are calculated by the following sim-

ple formulas: 
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One point of pair (9)–(10) locates into the range 1( ; )i ib b + . Let us denote it as iq , 

and another point of the pair as iv . It allows to simplify line 4 in (8) into the follow-

ing two lines: 

1 1 2 2 1... k Kb q b q q b−      ; 

( ; )iv x x . 

To protect against D-type problem with interpretability, we fix the minimal level of 

the height ih  of the intersection of neighboring fuzzy sets il  and 1il + , 1, 1i K= − . 

This height is calculated by formula (2) in case x= iq  as follows: 
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As a result, system (8) is transformed to the following form: 
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where *h  denotes the minimum permissible height of neighboring fuzzy sets intersec-

tion. 

4 Structural identification 

One of the most important tasks of structural identification is the selection of fuzzy 

rules from some pre-formed set of candidates. Candidate rules can be formed by an 

expert or obtained by processing relevant experimental data. Ideally, a fuzzy rule base 

should be interpretable, compact, and adequate. It is impossible to achieve this in real 

problems, because in practice it is rational to choose an interpretable rule base with 

the right balance between compactness and accuracy. A necessary condition for such 

balance is getting the interpretable rule base from the Pareto front in the coordinates 

“model compactness – model accuracy”.  

Let us introduce the following notations: R  is a candidate-list of rules and 

( ', )y F R X=  is a fuzzy model that ties inputs X  with the output y  with usage of 

R R   fuzzy rules ( R R  ). 

A typical approach to the rules selection [15, 18] is a choice of R R   that pro-

vides: 

 
( ) min

( ) *

RMSE R

N R N

 →


 
 (13) 

or 

 
( ) min

( ) *

N R

RMSE R RMSE

 →


 
, (14) 

where *N  and *RMSE  denotes the permissible levels of compactness and accuracy. 

The typical approach forms a large region of feasible solutions, a significant part of 

which is located far from the Pareto front (Fig. 4a and 4b). This slows down the 

search for optimal solution that locates at the Pareto front. To reduce the searching 

space, we proposed a method [19] for choosing the rule base in the vicinity of the 

Pareto front. We mark this vicinity by the following linear constraint that describes 

the compactness-accuracy trade-off: 

 0 1( ) ( )RMSE R k k N R  +  , (15) 

where 0 0k   and 1 0k   denotes the parameters, choosing which one can form the 

feasible region in the vicinity of the Pareto front. 

Taking into account (15), problems (13)–(14) are transformed to the following 

form:  



 
0 1

( ) min

( ) ( )

RMSE R

RMSE R k k N R

 →


  + 
; (16) 

 
0 1

( ) min

( ) ( )

N R

RMSE R k k N R

 →


  + 
. (17) 

  

Fig. 4. Feasible region: a) for problem (13); b) for problem (14); c) for problems (16)–(17) 

The reduction of the search space for problems (16)–(17) is illustrated on Fig. 4c.  

To match the coefficients in the linear constrains in (16)–(17) it is possible to use 

the endpoints of the Pareto front. They correspond to almost empty and to almost full 

rule bases. Also, it is easy to find out the upper estimation of the Pareto front (Fig. 5) 

using a greedy algorithm based on the ideas of the approximate Sahni method for 

knapsack problem [20]. The computational complexity of this greedy algorithm is 

quadratic. 

The search for optimal solutions is performed by a genetic algorithm with chromo-

some encoding according to the Pittsburgh scheme [21]. Each chromosome represents 

a fuzzy base with its own set of rules R  . Each gene of this chromosome corresponds 

to one candidate rule. A gene has the value 1, if the relative rule is picked up. If the 

rule is not selected, then the gene has the value 0. For example, the chromosome 



(1, 0, 1, 0, 0, 1, 0)  encodes a fuzzy knowledge base with three rules numbered 1, 3, and 

6. The initial population is randomly generated, but with the inclusion of suboptimal 

solutions found by the greedy algorithm. 

 

Fig. 5. Upper estimation of Pareto front by a greedy algorithm 

After obtaining the optimal set of rules, we carry out the reduction of antecedents. 

The goal of this procedure is to replace one or more terms in the antecedent with the 

term Don’t care. Such a replacement is equivalent to deleting the corresponding terms 

from the rule antecedents, i.e. transition from long rules to short rules. For example, 

the transition from rule  

( )1 2 3 ,If x Low and x Average and x High then y Low= = = =   

to rule  

2 ,If x Average then y Low= = . 

During this procedure the compactness of the rule base is improving by the criteri-

on A  – the total length of all the antecedents. Sometimes this leads to a reduction of 

the cardinality of term-sets, as well as to the merging the several rules into one. 

Antecedents’ reduction is also carried by the genetic algorithm. The gene takes the 

value 1, if the rule uses the term from the best fuzzy knowledge base, and the value 0 

if Don’t care term is used. The larger the number of Don’t care terms in a rule, the 

shorter and more compact the fuzzy rule base. Optimization is carried out according 

to a criterion RMSE  with a ban on conflicting rules. Conflicting rules mean rules 

with the same antecedents. After optimization, a special procedure cleans the rule 

base – it deletes the rules with only Don’t care terms and compresses the term-sets 

with inactive terms. 

5 Parametric identification 

A parametric identification is tuning the weights of the rules and parameters of mem-

bership functions that provide the minimum RMSE  on the test sample. From mathe-

matical point of view, the parametric identification is a kind of continuous optimiza-



tion task. Parametric identification does not change the structure of the model, there-

fore, the criteria of compactness is not used during optimization. However, uncon-

strained optimization can lead to an uninterpretable rule base.  

We form the vector of controlled variables ( )1 2, , , ..., ,n yP W P P P P= , where W de-

notes weights of the rules, ( )1 2, , ..., nP P P  denotes the parameters of membership 

functions of terms for the input variables ( )1 2, , ..., nx x x  and yP  denotes the parame-

ters of membership functions of terms for the output variable y . 

For a term-set t  1 2, , ..., Kl l l  of a variable x  on an interval ;x x 
 

, the following 

parameters are configurable: 

( )2 3 1, , ..., Kb b b −  – the cores of non-extreme terms 2 3 1, , ..., Kl l l − ; 

( )1 2 1, , ..., Kq q q −  – the crossing points of adjacent fuzzy sets on the interval ;x x 
 

; 

1c  – the concentration coefficient of the membership function for term 1l . 

Thus, for a variable x , the vector of tuning parameters is set up as follows: 

( )1 2 2 3 1 1 1, , , , ..., , ,x K KP q b q b b q c− −= . This allows to use the constraint for interpreta-

bility protection in a convenient form (12), in contrast to more cumbersome and sub-

jective expression in [5, 10].  

Based on xP , the concentration coefficients for the membership functions of il  are 

calculated as follows: 1

1

1 1

, 2,i i

i i

i i

q b
c c i K

q b

−

−

− −

−
=  =

−
. 

6 Information Technology 

The proposed models and methods are implemented in the form of fuzzy identifica-

tion information technology. Fuzzy identification is carried out in 4 stages, according 

to the concept of Generation – Selection – Reduction – Tuning.  

At the first stage Fuzzy Rules Generation, fuzzy rules are generated from experi-

mental data by the direct pass method. This method is based on the ideas of Wang–

Mendel method [22], so we only distinguish that the term chosen is not with the max-

imum grade for any one row of the data sample, but the term with the maximum aver-

age membership for all data from the corresponding zones of factor space. If the ana-

logue of the Wang–Mendel method is the fuzzy classification algorithm with a single 

winner rule, then the analogue of the propose method is the fuzzy classification algo-

rithm with voting rules [23]. Usually fuzzy classifiers with voting rule scheme pro-

vide better accuracy, therefore, a similar scheme is chosen to rule generation. 

The second stage is Fuzzy Rules Selection. It is implemented using a binary genetic 

algorithm with conditions (16)–(17). Optionally, constraint parameters can be esti-

mated from the learning curves that produced by the greedy algorithm. 

The third stage is Antecedents Reduction. It is implemented by the same binary ge-

netic algorithm using alternative coding of each rule with Don’t care terms. 



The last stage is Tuning. It changes rule weights and membership function using 

gradient and quasi-Newton optimization methods. For interpretability protection the 

optimization is carried out with constrains (12). 

7 Experiments 

Fuzzy identification experiments were carried out for 7 real tasks (Table 1). Each 

dataset was divided into training and test samples. The training set includes odd lines 

of source data, and the test set includes even lines. 

Table 1. Used data sets from UCI Machine Learning Repository 

№ Tasks Samples Inputs 

1 Auto-MPG 398 9 

2 Boston Housing 506 13 

3 Combined Cycle Power Plant 9568 4 

4 Condition Based Maintenance of Naval Propulsion Plants 11934 16 

5 Airfoil Self-Noise 1503 6 

6 SkillCraft1 Master Table 3395 20 

7 Physicochemical Properties of Protein Tertiary Structure 45730 9 

 

For rules generation, a linguistic partition was used with 3 terms per input and with 

5 terms per output. The fuzzy rule generation based on clustering by FCM was chosen 

as a concurrent. FCM synthesizes a compact but weak interpreted rule base. 

Genetic selection of rules was carried out according to (16) with the following co-

efficients: 0 0.3k =  and 1 0.0075k = − . These values produce a fuzzy rule base with 

less than 40 rules and with NRMSE below 0.3. The reduction of antecedents was car-

ried out according to (13) with the following constraint on the total length of the ante-

cedents – 
max

0.9
A

A
 . Quasi-Newton method is used as optimization routine for tun-

ing the rule base. The optimization lasted 150 iterations, and two cases are inspected – 

with and without interpretability protection. 

At first, large rule bases were generated; the number of rules for some tasks ex-

ceeded several hundred (Fig. 6). After selection, the number of rules was significantly 

reduced to a level comparable to FCM bases.  

During antecedents reduction the number of rules didn’t change, but some rules 

became short.  

To show the effect of antecedents reduction the red bars on Fig. 6 present the fol-

lowing scaled number of rules 
max

A N
Rules

A


 = . In some cases it was possible to halve 

the length of antecedents. For SkillCraft task, FCM was not used due to missing some 

data in the data set. 



 

Fig. 6. Results of fuzzy identification using the FCM method and the proposed method 

In general, after tuning, the fuzzy rule bases that synthesized by proposed method 

are a little more accurate than in the case of the FCM method (Fig. 6). Moreover, the 

proposed method produces not only accurate rule bases, but also interpretable. In 

addition, the rule bases that were synthesized by the proposed method, have a lot of 

short rules. For example, for CMB task, the length of the antecedents is reduced by 4 

times. Selection of rules and reduction of antecedents often reduce the total number of 

terms also (Fig. 7). The less terms are in the rule base, the simpler the task of mem-

bership functions tuning. A significant reduction in the number of terms took place 

for tasks with a large number of inputs: SkillCraft, Housing and CMB. 

 

Fig. 7. The traces of compactness of fuzzy rule bases 



The experiments showed that the proposed constraints for interpretability protec-

tion do not reduce the accuracy (Fig. 8). The difference between accuracy in the case 

of tuning with the constraints and without them is only a few hundredths for six tasks. 

This confirms that for a correctly synthesized fuzzy rule base, interpretability does not 

harm accuracy. 

 

Fig. 8. Accuracy of tuned fuzzy rule bases 

8 Conclusion 

The proposed information technology of fuzzy identification provides the synthesis 

of accurate, compact and interpretable rule bases. Information technology includes 4 

stages: the generation of reliable fuzzy candidate rules, selection of rules, reduction of 

antecedents and tuning the membership functions and rule weights. Computer exper-

iments on 7 tasks from the UCI Machine Learning Repository showed, that the pro-

posed information technology synthesizes fuzzy rule bases with accuracy and com-

pactness at the level of competitive technologies. At the same time, unlike competi-

tors, the proposed technology provides the interpretability of fuzzy rule bases. 
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