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Abstract. The relationship between the processes of forming classes of primes 

in the generalized Artin hypothesis based on the theory of randomized algo-

rithms of the probabilistic method is investigated. It is proved that probabilistic 

methods are the basis for constructing computer models of classes of primes in 

accordance with the generalized Artin hypothesis. Methods for calculating the 

Artin constants are developed and the convergence of the estimates of the con-

stants in probability to the limiting values is established. The foundations of a 

number-theoretic analysis of Artin's constants and related classes are created. 

Keywords. generalized Artin classes, Artin constants, class probabilities, stabil-

ity of estimates of the Artin constants, convergence in probability 

1 Introduction 

The solution of many problems in various fields of applied mathematics depends on 

the solution of a significant number of problems of pure mathematics, which are still 

not solved. Artin's hypothesis of primitive roots is one of these fundamental mathe-

matical problems.  

The solution to the Artin problem is important for investigating the relationship be-

tween the properties of natural numbers other than zero and plus or minus 1 and the 

properties of the classes of primes generated by recursive mappings based on Fer-

mat’s small theorem [1 – 3]. 

The numerical sequences of iterative models of cyclic fixed points of dynamical 

systems are determined by the properties of the primes with which they are represent-

ed.  

It is necessary to know the law of distribution of primes. Riemann proposed a zeta 

function in 1869: 
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where s  is a complex variable, P  is the set of all primes [1,2]. Concerning this 

Riemann function, a hypothesis was formed according to which all non-trivial zeros 

of this function are on line iy+21 , where 1−=i  and Ry .  

It follows that all primes lie on this line since 
y

 – takes values from a set that in-

cludes all primes P .  

Moreover, for any prime number 
p

 
( ) 021 =+ ip

. In essence, this was the 

first attempt to find the law of the distribution of primes. 

In 1896, independently, Hadamard and Vallee-Poussin proved that equality is true: 
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where ( )x  is the number of primes xp  , and the first term in the form of a loga-

rithmic smooth function determines the logarithmic law of the distribution of primes 

in asymptotic form. 

One of the ways to deepen the logarithmic law of the distribution of primes was the 

formulation in 1927 by the French mathematician Artin of the hypothesis of primitive 

roots of primes Pp  and, accordingly, of primitive roots of residue groups 

( )*pZZ  modulo prime p  [4 – 7]. 

Consider the definition of the primitive root of a prime number p . The numbers 

1a , 
2ka   is the primitive (antiderivative) root of the number p , if the follow-

ing relations are true: 
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Given the definition of a primitive root, Artin’s hypothesis is: 

 ( ) ( ) ( )xxacax  = ,,  (4) 

where ( )ax,  is the number of primes p  less than or equal to x , for which 

1a  and 
2ka   are according to (2) their primitive roots, ( )ac  is the Artin 

constant. More precisely, this hypothesis should be presented as follows: 
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But then ( )
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
=  and in probability converges to ( )ac , and therefore has 

a probability theory interpretation: ( )ac  is the probability of choosing from the set 

P  a prime number p  such that a  is its primitive (primitive) root. Note that the 

first relation in (5) is always satisfied if a  and p  are coprime numbers according to 

Fermat's theory [1]. 

It should be noted that Artin proposed his ratings for ( )ac  at 2=a . But as 

proved by Hooley [5], these estimates are not true. He also proved the validity of the 

relation: 
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12 , and an estimate of the value 

( ) ..373955813,02 =c . As will be shown later, this estimate is true only with the 

accuracy of the first two decimal places. 

It should be noted that any number 1a  and coprime to p  is the basis for con-

sidering the recursive function ( ) ( )pxaxf mod , which leads to a recursive 

iterative sequence. 

 ( ) 110 ==xf , ( ) ( )paxxxf nnn mod11 = ++  (7) 

According to Fermat's theorem [1,2], if a  is not a primitive root for p , then the 

process of recursive computations will continue for such m  that equality 

( ) ( ) 1mod1 == − paxmxf mn  is reached, i.e. 

 ( )pam mod1  and 1− pm  (8) 

From Fermat's theorem and the properties of the group of residues ( )*pZZ  modulo 

p  [1,2], it follows that in this case a  is a generating element of some subgroup of 

the group ( )*pZZ . Moreover, m  is the order of this subgroup, which is usually 

denoted by ( )pcard a , the number of adjacency classes for this subgroup is denoted 

by ( )pind a . According to the cyclic group theorem ( )*pZZ , the equality: 



 ( ) ( )pindpcardp aa =−1  (9) 

From the above analysis it follows that equation (9) allows us to study the Artin hy-

pothesis from a more general point of view, when any natural number 1a  can be 

used as a classifier of the set of all primes in the magnitude of ( )pind a , which is the 

object of further research. As will be established, Artin's hypothesis of primitive roots 

will be a frequent case of its more general formulation. 

2 Modeling the processes of generating dynamic information 

about the structure of classes of primes on a given basis 

Now we return to the logarithmic law of the distribution of primes [1,2] Information 

about the distribution of smooth primes [1] is important when solving the discrete 

logarithm problem and applying algorithms for solving it in the modern coding theo-

ry, modern cryptography. It is known that finding smooth large prime numbers is very 

difficult. This implies that it is of considerable interest to search for the laws of distri-

bution of primes not only with respect to their primitive roots, but also to the generat-

ing elements of the subgroups of the residue group modulo prime ( )*pZZ . Artin's 

hypothesis does not imply such detailed studies. Such tasks were not considered at all. 

The second circumstance is that simultaneously with this fact, the dynamics of 
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2  is investigated. In [7,8], the entropy of function 

( ) ( ) ( )xLixxf −=   was estimated and was proved that it has a fractal character.  

The first attempt was made by D. Zagier [8], but not completed. The results ob-

tained by the author confirm the very complex fractal behavior of this component. It 

follows that it is necessary to significantly improve the study of the depth of classifi-

cation of primes, taking into account all models for the formation of classes of primes 

for any given basis 1a . Further more detailed studies of this component confirm 

that although the logarithmic distribution law is fulfilled, nevertheless, complete in-

formation on the dynamic properties of primes and their relationships with their prim-

itive roots remains poorly studied. In the future we will consider any values of the 

base and large units. 

According to Artin's hypothesis [4 – 6], the set of such primes has the distribution 

law ( )ax,  as an expression: 

 ( ) ( ) ( )xacax  =,  (10) 

where ( )x  is the distribution of prime numbers, and ( )ac  is a constant dependent 

on a . Until now, despite numerous studies, this hypothesis has not been resolved. 

However, it is not known if this is true for any a  values. If the hypothesis is correct, 



then the question remains how to estimate the constant ( )ac  for each concrete a  and 

which properties of the number a  influence its value. Answers to these questions are 

still missing. In works [6,7] a detailed analysis of all the results of research in the field 

of solving the Artin hypothesis is given. 

It should be noted that the proof of Artin's hypothesis is important both from a the-

oretical point of view in number theory, and from an applied rhenium point, because 

it’s positive solution is important in cryptography, coding theory, and the theory of 

dynamical systems. In [6], a generalized Artin hypothesis was formed for any 1a , 

i.e. and at the same time a  may not be a primitive root. According to Artin’s general-

ized theory, the following equality is true: 

 ( ) ( ) ( )xiaxciax  = ,,,,  (11) 

where 1a , i  is the index of the subgroup of the group ( )*pZZ  of primes in the 

classification of prime numbers generated by the numbers a , ( )iac ,  is a constant. 

According to the classification built in [6]: 

 ( ) ( ) ( ) ipcardppia a =−= 1|, PP  (12) 

where ( )pcard a  is the length of the dynamic recursion ( )paxx nn mod1 +  at 

10 =x , P  is the set of all primes. 

It is not difficult to show that for any 1a  the equality: 
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This means that primes are evenly distributed in classes ( )ia,P  for any a . By uni-

formity is meant that within each class of primes ( )ia,P  a logarithmic law of the 

distribution of primes is preserved. The constant ( )iac ,  determines the measure of 

puncturing prime numbers, based on the value a . If 1=i  then a  is the primitive 

root of all primes ( )1,aP . For an arbitrary natural number x , the equality 

 ( ) ( ) ( )xxiaciax  = ,,,,  (14) 

Moreover, if →x , then ( )xiac ,,  tends to the limit value ( )iac , . If we put 

1=i  then ( )1,ac  will be Artin's constant for primitive roots. In this case 1a , 

and 
2ka   for none Nk  . This is true according to Fermat's theorem [1,2]. 

Wherein, a  is the primitive root of the group of residues ( )*pZZ  for any Pp  

such that ( ) ( ) ( ) 11|1, =−= pcardppa aPP . It is important to investigate 



the classes of primes ( )ia,P  for 1i  since in this case the positive integer a will 

be the primitive root for the subgroups of the group ( )*pZZ  with the index defined 

by the relations: 

 ( ) ( ) ( ) ( ) pindpcardppia aa =−= 1|,P  (15) 

where ( ) ipind a =  is the index of the subgroup of ( )*pZZ . The classes of primes 

( )ia,P  have not yet been studied and the distribution of primes in these classes is 

not known. In [1], an assumption was made that ( )ia,P  at 1i  is proportional to 

( )1,aP  with a factor of 
21 i . Since 1i  is considered, in this case it is important 

to know the distribution of prime numbers for the value 
2ka = . This is an important 

generalization of Artin's hypothesis. At the same time, the probability of: 

 ( )( ) ( ) ( )iaciaiap ,,, == PPP  (16) 

membership agrees exactly with the provisions of the theory of probability, and there-

fore, estimating ( )iac ,  on the basis of successive statistical tests and the law of large 

numbers is parity [9 – 12]. 

The determination of ( )iac ,  for any ia,  using analytical methods is unlikely in 

the near term. However, the formation and development of experimental mathematics 

[13 – 15] opens up another way to solve this problem by using computer simulation of 

nonlinear dynamic processes for the formation of classes of prime numbers. 

The process of modeling the distribution of primes in classes 

( ) ( ) ( ),...,,...,2,,1, kaaa PPP  was reduced to choosing a set of consecutive 

primes from a set of a sufficiently large sample of these classes. The number of 

primes analyzed at each interval of natural numbers was chosen to be 500,000. This 

choice was largely due to the fact that it was previously established that reducing this 

value leads to more significant fluctuations in estimates, although convergence to the 

limit over the entire set of any intervals, even if they are not placed consistently, has 

the same character. 

The process of statistical testing of Pp  primes for checking their belonging 

to class ( )ia,P  was reduced to calculating for the selected number p  the recursive 

procedure 10 =x , ( )paxx nn mod1 =+  until the pairs ( )paxl mod1  were 

reached at some step i . Then ( ) ipcarda =  and according to Fermat’s theory and 

the cyclic group theorem the number 1−p  is divisible by i  and then 

( ) ( ) ( ) ipcardppind aa =−= 1 , and therefore ( )iap ,P  and if 1=i , then 

a  is the primitive root of the cyclic group ( )*pZZ , and otherwise it is the primitive 



root of some subgroup. At 1i , we obtain the primitive roots of the subgroups of 

the ( )*pZZ  residue group with the index 1i . 

The study of the distribution law of prime numbers p  on their belonging to 

( )ia,P  had the character of consistent statistical tests on the set of natural numbers 

containing the first 500,000 primes. At the first stage, primes p  were chosen from 

the set  50000021 ,...,, ppp . With this 500000px = . 

For each  xn ,...,2 , we had to solve two problems: check n  for simplicity, 

and if P= pn , then 1−p  was decomposed into simple factors, i.e. systemati-

cally solved two non-simple problems of checking numbers for simplicity and de-

composition into simple factors. An effective algorithm for solving them was created 

based on probabilistic methods in the theory of elliptic curves. 

As a result of analyzing  xa ,...,2 , ( ) ( )laa ,,...,1, PP  sets were obtained 

for some xl   and absolutely exact values of their powers were calculated, i.e. 

( ) ( )laa ,,...,1, PP , and then estimates of: 

 ( ) ( ) ( ) ( ) ( ) ( )xxlaxlacxxaxac  ,,,,,...,,1,,1, PP ==  (17) 

while ( ) ( ) ( ) ( )lacxlaclacxac ,,,,...,,,1, →→  with →x  were obtained. 

At the next stage, work was also carried out for prime numbers from the 

 1000000500001,..., pp  interval and the values of the ( ) ( )lacac ,,...,1,  constants were 

calculated using the same scheme. At the same time l  increases. The 

 50000001 ,..., pp  and  1000000500001,..., pp  sequences were combined, and the 

estimates of the generalized Artin constants were again calculated and the process of 

their refinement was studied on the basis of the theory of large numbers in probability 

theory. In the process of estimating the ( )iac ,  constants, two important theorems 

were proved: 

Theorem 1. For any  ,...,...,3,2 ka  that is not a square, i.e. 
2ka   The 

number of non-empty classes of primes tends to infinity at →x . 

Theorem 2. For any  ,...,...3,2 ka  that is not a square, i.e. 
2ka   The num-

ber of prime numbers in ( )ia,P  tends to infinity at →x . 

These theorems are the basis of the convergence of a sequence of statistical tests to 

marginal values. Since for any Nx  it is obvious that:  

 ( ) ( )xia
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 ( ) ( ) =jaia ,, PP   (19) 



at ji  , it follows from this that:  

 ( ) 1,
1

=
=

k

i

iac  (20) 

and this is true for all values of →x . The review [5] provides an estimate of 

( )1,2c , which is identified by ( )1,2c  in our sense, but ( )1,2c  differs from the esti-

mate of ( )1,2c  starting from the fifth decimal place and this is a theoretical error of 

the survey works. 

For different  ,...11,10,8,7,6,5,3,2a , the behavior of the ( )iac ,  constants is 

complex group-theoretic and number-theoretic. The study of their dynamic properties 

is beyond the scope of this work. It should be noted that the results of computer simu-

lation of the processes of distribution of primes are calculated with an accuracy of the 

eleventh decimal place for estimates of ( ) ( ) ( ) ( ),...1,6,1,5,1,3,1,2 cccc  values. This 

cannot be asserted for classes by the 2i  index. To achieve the same accuracy with 

2i , it is necessary to significantly increase the number of prime numbers. With an 

increase in the i  class index ( )ia,P  more than three requirements and the volume 

of the analyzed primes increases in accordance with the unexplored laws. 

Probability-theoretic interpretation of the constant: 

 ( )
( )
( )x

ax
ac



 ,
=  at →x  (21) 

Consider the probability space ( )P,, F  based on:  

     P=== ,...,...,,...,..., 11 nn pp  (22) 

Obviously at →x  the numbers are ( ) →x , ( ) →ax, , but:  

 ( ) ( )xaax ,1,, P= , ( ) ( )xx P= , ( )
( )

( )x

xa
xac

P

P ,1,
,1, =  (23) 

and at →x  it is obvious that:  

 ( ) ( ) ( )1,,1, acxxa →PP  (24) 

is where Px , →P , 

 ( ) ( ) ( ) ipcardpxppxia a =−= 1&|,,P  (25) 



is at →x  ( ) ( )iaxia ,,, PP → . Thus: 

 ( ) ( ) ( )xaxac
x

 ,lim
→

=  (26) 

It follows from Artin's hypothesis that with ( )1,ac  there is precisely the probability 

of a random event ( )1,aP  consisting of a choice of  ,..,...,1 npp=  of a prime 

number p  for which a  is an original root of the cyclic group ( )*pZZ . To esti-

mate this probability, the law of large numbers and the method of successive statisti-

cal tests were used. The essence of the method is that the first test group was reduced 

and calculated for  50000021 ,...,, ppp  for each  16,...,3,2a  evaluation of the 

values of ( )xiac ,,  at 500000px =  for all possible values of  ,..,...,2,1 ki = , that 

is, ( ) ( ),...,,~,...,,1,~
11 xkacxac  was calculated on the next iteration, the same tests 

were performed for the second iteration on the set  1000000500001,..., pp . 

( ) ( ),...,1,~,...,,1,~
1 xacxac k  Estimates were obtained at the same time 

( ) ( ),...,,~,...,,1,~
1 xkacxac k , provided that the first and second samples were com-

bined and computed values and were determined by ( ) ( ) − xacxiac ,1,~,,~  for 

all x . The main focus was on ( )xac ,1, . As a result of some iterations, it was found 

that for all a  the estimates obtained: 

 ( )  xppx = |P  (27) 

 ( ) ( ) ( ) ipcardpxppxia a =−= 1&|,,P  (28) 

the order of the cyclic group of the subgroup ( )*pZZ . If 1−= pl , then a  is an 

original root, and if 1− pl  is the original form of the ( )ac  Artin measure, 

( )iac ,  is a measure of classes by ( )ia,P  in P . At that ( ) ( ) PP iaiac ,, =  

and at the same time: 

 ( )


=

=
1

1,
i

iac for all 1a  (29) 

This applies only to classes with indexes 1=i . For 2i  it is necessary to in-

crease the number of statistical tests. This is naturally due to the fact that the classes 

( )xia ,,P  for 2i  from numerical theorems contain less than prime numbers. In 

[1] it is stated that this decrease should be of the order of 
21 i  [15], but this is an 

erroneous assertion. This is clearly seen from table 1. The degree of decline essential-



ly depends on the properties of a  and requires a separate study. Case  16,9,4a  

requires separate investigations, because these numbers cannot be primitive roots of 

that number 
p

, in accordance with the Fermat theorem [3] cannot be generating ele-

ments of groups ( )*pZZ . However, they are generating elements of the subgroups 

of the group ( )*pZZ  with even indices. All classes with odd indices are empty sets. 

Table 1 shows the constants for ( )1,ac  for all a  except  16,9,4 . Analysis of the 

table. The table contains over a thousand columns. The analysis of these data is nu-

merically theoretical and group-specific and goes beyond the scope. 

The simulation process of the dynamics of the formation of prime numbers was 

constructed on the following assumptions. Suppose that an ordered set of prime num-

bers  ,...,...,, 21 kppp=P  is given, whose elements are ordered in ascending 

order. All this set was split into a subset of 500,000 primes. The number of 500,000 is 

due to the limitations of MS Excel, as a statistical analysis tool, on a number of char-

acteristics of the process of generating prime numbers. Only one restriction is im-

portant. We always select 500,000 consecutive primes of the set P . In the current 

version of Excel, this number can be increased to one million. If you use a powerful 

computer, you can choose a larger number instead of a million [16]. 

The implemented version of the study of dynamic processes for the formation of 

primes includes the following indicators: the number of a simple number in the p  in 

the ordered set of P , the value of a simple number of p , the value of the recursion 

length of the numbers ( )pcard a  at the same value of a  for all prime numbers P , 

the index ( )pinda  of the index of the class: 

 ( ) ( ) ( )pcardppind aa 1−=  (30) 

the value of the residues modulo any natural module 1n , for all classes and any 

other analytic properties of primes or factors of the decomposition of the number of 

1−p  into simple factors. For each simple multiplier ip  in the:  

 
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=−
n

i

i
ipp

1
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 (31) 

decomposition, one parameter of the dynamic process of generating primes is pre-

sented, with separate indicators that can be analyzed for any other indicators, the val-

ues for them are deducted by the modulus of the natural number 1n . The only 

exception is ( )pind a . The number of controlled indicators analyzed in the Excel 

environment can be expanded. 

The iterations process is continued until an analytically based solution of the gen-

erated hypothesis is obtained. Since the Artin generalized hypothesis is considered in 



the paper, we present the results of the estimation of the constant ( )iac ,  for the case 

4=a  and 2=i . The number 4=a  is a perfect square, and therefore it cannot be 

a primitive root. In terms of Artin's generalized hypothesis, this is as interesting and 

important as in the case when a  is an original root. 

Based on the data presented in [6], we obtained estimates for ( )iac ,  for 

 53,32,....,3,2a  and 10,...,2,1=i . It is shown that their values are stable for 

class ( )2,4P  i.e. class with ( ) 24 =pind  to within a fourth decimal place. The 

estimates for the ( )iac ,  constants given in table 1 have the unique 1=i  property, 

which is that for  53,32,...,2a  they coincide with the accuracy of the third dec-

imal place. The data in Table 1 allow us to make an important conclusion that there 

are many primitive roots for which the generalized Artin constant ( )1,ac  is equal to 

the same value ...3739.0 . The generalized Artin hypothesis for all classes 

( ) ( ),...,,...,1, iaa PP  will require additional studies based on probabilistic comput-

er simulation on the set of prime numbers of data beyond the limits of the first hun-

dred million. 

The results of experimental mathematics in table 1 of the first iteration confirm that 

Artin's hypothesis is correct. The estimates of the constants are obtained with the 

accuracy of the third decimal place. For  53,32,...,3,2a  the: 

 ( ) 1,
1

=


=i

iac  (32) 

and for  25,16,9,4a  all ( ) 012, =+iac  and:  

 ( )


=

=
1

12,
i

iac  (33) 

This is due to the fact that for all 
2ka =  this is true because they are primitive roots 

of ( )*pZZ  groups, but primitive roots of their subgroups with even indices [3]. 

The results obtained are the basis for constructing an analytical proof of Artin’s 

hypothesis and its general 

The ( )1,ac  ratings given in the table for the set of primitive roots  16,...,3,2  are 

obtained for the first time based on the results of computer simulation. The literature 

is known estimation ( )1,2c , which, starting from the fourth decimal place, is estimat-

ed analytically incorrect, due to the fact that the formula:  

 ( )
( )






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c

1
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is not true, because it includes all primes and among them those primes for which 

2=a  is not a primitive root [5]. An important result is the creation of a computer 

model of the process of forming classes ( ) ( ),...,,...,1, iaa PP . For any values of 

1a , the interactions between the classes Table 2 and Table 3 are investigated (as a 

continuation). The first estimates were ( )iac ,  for 2i , and it was established that 

the statement that ( )iac ,  is proportional to 
21 i  is absolutely false [1]. Obtaining 

the results is the basis for further deepening research on the Artin's hypothesis using 

analytical methods. 

3 Dynamic Properties of Formation of Classes of Prime 

Numbers in the Generalized Artin Hypothesis  

In accordance with the developed mathematical model for the formation of base clas-

ses of primes on the basis of 1a  and the calculated values of the generalized con-

stants ( )iac ,  for 1i , as a result of computer simulation it was established that the 

generalized hypothesis is true. Table 1 shows the values of the Artin constants, the 

relationship between classes, the dynamics of the formation of classes and its proper-

ties on the set of all primes P . 

Actually, the modeling of ( )ia,P  classes was carried out for many 

 53,32,...,2a . Numbers  25,16,9,4a  as squares of numbers according to 

Fermat’s theorem [2] cannot be primitive roots of Pp , and, accordingly, of resi-

due groups ( )*pZZ  modulo p . Particular attention was paid to the numbers 

 53,29,17,13,5  due to the fact that they belong to the class of numbers of the Che-

byshev type [1,2] that is, they have representations 14 += kp , while Pp , and 

the number n  is a natural number. According to Chebyshev’s assumption, the behav-

ior of these numbers in residue classes modulo a prime number should differ from 

other primes. 

To solve the problem of modeling classes of primes on a given basis and evaluat-

ing the generalized constants of Artin ( )iac , , an Excel-based software package was 

created that allows you to extend the modeling process to any natural numbers 1a , 

and any set of consecutive primes whose power is a multiple of 500,000. This is the 

number of primes was chosen for the reason that it is statistically represented and 

provides an accurate representation of the dynamic processes of the formation of clas-

ses ( )ia,P . Table 1 shows the results of the simulation process for 

 12,8,5,3,2a  values, 2=a  is included in this set for the reason that it can be 

verified that the estimate [5,6] is different from the exact value. The difference begins 

with the third decimal place. This fact is important due to the fact that expression (5), 



although from an asymptotic point of view is close to the exact value of ( )2c , never-

theless, it does not take into account all the features of the formation of classes 

( )1,aP  for 2=a . The number 5=a  is interesting because 1145 +==a  is 

the smallest Chebyshev number, which is as sensitive as possible to the established 

fact that all classes ( )510,5 +kP  for 0k  are empty. This is true for all Cheby-

shev numbers. The proof of this fact is of a theoretical number, and therefore, is not 

given. 

Table 1. The distribution of prime numbers in the generalized Artin hypothesis 

a P(a,1) P(a,2) P(a,3) P(a,4) P(a,5) P(a,6) P(a,7) P(a,8) P(a,9) 

2 0,3740 0,2805 0,0664 0,0467 0,0189 0,0498 0,0089 0,0351 0,0074 

3 0,3739 0,2992 0,0666 0,0561 0,0190 0,0332 0,0089 0,0140 0,0074 

4 0 0,5609 0 0,0935 0 0,0997 0 0,0701 0 

5 0,3937 0,2657 0,0700 0,0664 0 0,0473 0,0094 0,0166 0,0078 

6 0,3741 0,2805 0,0665 0,0748 0,0189 0,0498 0,0089 0,0140 0,0074 

7 0,3741 0,2827 0,0664 0,0684 0,0188 0,0503 0,0089 0,0170 0,0074 

8 0,2243 0,1683 0,1995 0,0281 0,0114 0,1496 0,0054 0,0211 0,0222 

9 0 0,5983 0 0,1122 0 0,0666 0 0,0281 0 

10 0,3741 0,2804 0,0665 0,0713 0,0189 0,0499 0,0089 0,0166 0,0074 

11 0,3741 0,2813 0,0664 0,0695 0,0189 0,0500 0,0089 0,0173 0,0074 

12 0,3740 0,2991 0,0665 0,0561 0,0189 0,0333 0,0090 0,0140 0,0074 

13 0,3764 0,2787 0,0670 0,0697 0,0191 0,0495 0,0090 0,0174 0,0074 

14 0,3739 0,2806 0,0665 0,0707 0,0189 0,0498 0,0089 0,0171 0,0074 

15 0,3739 0,2796 0,0665 0,0708 0,0189 0,0508 0,0089 0,0177 0,0074 

16 0 0,3740 0 0,1869 0 0,0664 0 0,1403 0 

17 0,3754 0,2794 0,0667 0,0698 0,0190 0,0497 0,0090 0,0175 0,0075 

18 0,3740 0,2805 0,0664 0,0467 0,0189 0,0498 0,0089 0,0350 0,0074 

19 0,3739 0,2808 0,0665 0,0700 0,0189 0,0499 0,0089 0,0175 0,0074 

20 0,3936 0,2657 0,0700 0,0664 0 0,0472 0,0094 0,0166 0,0078 

21 0,3722 0,2819 0,0681 0,0705 0,0188 0,0486 0,0107 0,0176 0,0076 

22 0,3740 0,2805 0,0665 0,0704 0,0189 0,0499 0,0089 0,0174 0,0074 

23 0,3741 0,2808 0,0664 0,0699 0,0189 0,0499 0,0089 0,0175 0,0074 

24 0,3740 0,2805 0,0665 0,0748 0,0189 0,0498 0,0089 0,0140 0,0074 

25 0 0,5708 0 0,1328 0 0,1015 0 0,0333 0 

26 0,3741 0,2805 0,0664 0,0702 0,0189 0,0499 0,0090 0,0174 0,0074 

27 0,2244 0,2244 0,1994 0 0,0113 0,0997 0,0054 0 0,0222 

28 0,3740 0,2828 0,0665 0,0684 0,0188 0,0503 0,0090 0,0171 0,0074 

29 0,3745 0,2801 0,0666 0,0700 0,0189 0,0498 0,0089 0,0176 0,0074 

30 0,3740 0,2805 0,0665 0,0699 0,0189 0,0499 0,0089 0,0178 0,0074 

31 0,3741 0,2806 0,0665 0,0701 0,0188 0,0499 0,0089 0,0175 0,0074 

32 0,2953 0,2214 0,0524 0,0369 0,0945 0,0394 0,0070 0,0277 0,0058 

53 0,3740 0,2804 0,0665 0,0701 0,0190 0,0498 0,0090 0,0175 0,0074 

The numbers 32,27,8=a  are interesting for the reason that the dynamic proper-

ties of the classes ( )i,8P  are radically different from the other classes studied. In 

particular, it was established that if 8=a  is the primitive root of Pp , then 



2=a  is also the primitive root of the same prime number. Conversely, if 2=a  is 

the primitive root of Pp , then 8=a  will be either the same primitive root of 

p  or ( )3,8Pp . This is completely new information about the generalized Artin 

constants. The developed approach allowed us to obtain fundamentally new results in 

modern number theory, and as a consequence of modern cryptography. 

In conclusion, look back at Table 1 from a different theory of vision. The essence 

of a fundamentally new fact is that wherever 500,000 primes Pp  are selected for 

any 1a , the number of primes in classes ranges from no more than 500, which is 

no more than a thousandth of them. This means that on any set of consecutive primes 

we obtain an estimate of the Artin constants up to the fifth decimal place. Statistical 

summation of values over the entire set of the first ten million primes made it possible 

to obtain estimates of the constants ( )1,ac  accurate to the eighth decimal place. 

It follows that the methods of computer modeling the processes of forming classes 

of primes ( ) ( ) ( ),...,,...,2,,1, iaaa PPP  and estimating constants 

( ) ( ) ( ),...,,...,2,,1, iacacac  are the basis for the development of information tech-

nologies in modern pure and applied mathematicians. 

An interesting result is the equality of constants: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )...1,531,311,301,281,261,24

1,231,221,191,181,151,14

1,121,111,101,71,61,31,2

cccccc

cccccc

ccccccc




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accurate to one thousandth, although ( )1,8c  and ( )1,5c  are radically different. On 

the basis of modern number theory and the theory of random processes, the validity of 

such results is proved. Evidence of these allegations of remoteness is built only on the 

basis of data obtained as a result of computer modeling. The dynamic properties of 

the values of other classical Artin’s constants confirm the assumption that there is no 

universal law of their formation. The generalized Artin’s constants ),( iac  for 1i  

obey even more complex laws and will be the subject of further research. 

4 Conclusion 

Based on the analysis of the processes of formation of classes of primes for any bases, 

fundamentally new information technologies were created for solving complex math-

ematical problems using methods of modern experimental mathematics. The correct-

ness of the developed approach and computational efficiency are proved. A general-

ized theory of Artin's hypothesis has been developed which its classical version is a 

very special case. Estimates of the Artin constants for bases greater than two are ob-

tained, and the statistical validity of the estimates obtained is proved. A detailed anal-

ysis of the classes of primes is carried out and the foundations of effective methods 

for the structural analysis of classes are created. It is proved that a new method for 



modeling the dynamics of the formation of classes of primes and a description of their 

properties creates the basis for constructing more advanced models of pseudo-prime 

number generators, the development of new methods of information protection in 

modern cryptography, opens up new possibilities for constructing models of nonlinear 

dynamic systems. 
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