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Abstract. The method for constructing joint distribution copula based models is 

proposed. The copula model parameters are estimated by the method of 

maximum likelihood which turned out to be effective according to the mean 

squared error criterion. The model for estimating risks of various types is 

proposed and constructed using copula function approach. Higher quality of the 

tail risk measures was achieved for the data samples selected that leads to the 

necessity of improvement formal description for the central part of 

observations. This is true when the model is used based on combined marginal 

distributions along with normal and generalized Pareto distributions. Results of 

computational experiments are also provided. 
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1 Introduction 

Risk estimation and management can be performed by changing the structure of 

financial instruments portfolio that requires adequate mathematical model 

constructing for multivariable processes. One of the possible approaches is based on 

separate modeling of marginal distributions and dependency structure between 

corresponding variables by using of special copula functions [1 – 4]. The adequacy 

criterion for such models is based on the quality of risk measures estimation [5 – 9] 
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that provide a quantitative characteristics of risk degree, and it is convenience for 

applying such traditional procedures for risk management as scenario analysis [10, 

11]. The complexity of constructing joint distribution for several variables that belong 

to different types of risks imposes restrictions on the procedures of analytical 

expressions development for estimating appropriate risk measure. It should be 

stressed that using of Monte Carlo procedures to obtain quality estimates of risk 

measures [12, 13] requires application of effective methods for generating appropriate 

pseudorandom numbers (PRN) by making use of such special functions as copula 

[13–16]. 

2 Problem statement 

In the frames of this study it is planned to solve the following problems: (1) to 

formulate systemic approach to risks analysis for multidimensional portfolio of 

financial instruments (PFI); (2) to determine possible applications of widely used risk 

measures when the portfolio under risk is composed; (3) to develop theoretically 

substantiated risk measures for the PFI risk measures on the basis of probabilistic and 

statistical modeling using the outlier theory and copulas; (4) to determine the 

possibility and effectiveness of practical application of proposed methods using actual 

statistical data. 

3 Mathematical model of risks distribution  

To perform statistical analysis of financial risk level the models are used on the basis 

of combined marginal distributions and copulas. The joint distribution for possible 

risks is considered in the following form: 

( ))()(][)( 11111 nnnnn xF…xFCxX…xXPx…xH ==
. 

Here, nF…F 1 , are marginal distribution functions for separate risks; C  is 

−n copula, that characterizes the dependency structure between the analyzed risks. 

Application of the model is oriented to elliptical copulas, Archimedes copulas, and 

extreme value copulas. The right tail of marginal distribution is formally described by 

the distribution of a threshold exceeding values in the form of generalized Pareto 

distribution (GPD) as follows:  
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the distribution form;   is scale parameter. The central data observations are modeled 

with normal distribution. 



 

4 Scenario analysis 

One of the well-known approaches to formal risks description is based upon 

computing PFI cost for the risk positions under various market conditions. This 

approach is called scenario analysis. The scenario analysis approach has the following 

two basic types: shock testing and sensitivity analysis.  

The shock testing is dedicated to analysis of consequences provoked by the sudden 

and substantial variations of market processes. It is especially useful in the cases 

when the market movements are resulted in qualitative changes of some market 

conditions. Actually the shock testing is based on the process of creating and analysis 

of such situations that could be helpful in identifying extreme portfolio risks and 

implementing the scenarios in a simulation model for estimating the qualitative and 

quantitative risk measures. 

The scenario development is performed on the basis of observations received 

during former crisis events, the observations coming from other spheres of activities, 

or realistic, potentially extreme scenarios. Systemic approaches to creating scenarios 

of this type do not exist at the moment. It is necessary to create a viable model of risks 

to analyze results of the scenarios implementation that are characterized by substantial 

quantitative and qualitative deviations of the processes under study from normal mode 

of functioning. The model on the basis of existing link functions and combined 

marginal distributions provides a possibility for variations in the scenarios regarding 

the parameters of separate risk distributions and utilize the types of marginal 

distributions that differ from the types of distributions characteristic for the basic 

accepted model. It is also possible to incorporate extreme modifications into the 

process under study through the values of tail distribution parameters and vary the 

dependency characteristics between the risks. However, the shock testing does not 

provide the possibility for estimating probabilities of the scenarios that result in high 

losses. So, its application in risk management systems is restricted by taking into 

account the risks for each potential risky event separately. 

The sensitivity analysis provides a possibility for estimating the risk characteristic 

of a portfolio in non-critical market conditions when actual modifications are not 

substantial. This type of analysis is used in conditions of availability of a large 

number of realistic scenarios that do not predict/suppose extreme events. Using of the 

models based upon link functions and combined marginal distributions provides a 

possibility for changing not only for distribution parameters but also the non-tail parts 

of marginal distributions too, separately from the tails. This way the model for 

nominal market conditions can be changed leaving unchanged the model for extreme 

values that is constructed on the data generated within longer periods of time and very 

often is weakly depending upon the distribution for central values. 

5 The risk measures 

The quantitative estimate of risk with using specific measures is one of the basic tasks 

of risk management due to necessity of comparing the risks provoked by different 



 

decision alternatives. On one side, the risk can be considered as the losses or 

shortened income that is determined by the future value of a certain position. On the 

other side, the risk is provoked by the high volatility of value for some positions.  

The examples of risks dynamical models are shown for credit and outflow risks in 

[17, 18] with risk degree and level estimation through the probability and size of the 

losses. The risk measures that are based upon understanding the risk as a future cost 

of an instrument are called coherent. The necessary requirements to the coherent risk 

measure,  , were formulated in the form of axioms in [19]. These requirements are 

of financial nature and are derived from the rules of accepting risks proposed by 

investment managers as well as practically induced regulations. The non-subadditive 

coherent risk measures should satisfy the axioms 1 – 3 given below.  

Let X  and Y  are random variables that reflect future values for portfolio 

composed of market positions. The portfolio components which exhibit higher future 

values than positions of another portfolio is considered as a less risky one.  

Axiom 1. Monotonicity: if YX  , then, )()( YX  . Investing into the stock 

instrument with known return level, r , for which the future value is deterministic and 

known, decreases the risk by the invested value. 

Axiom 2. Invariance to bias: for the constant a , aXraX −=++ )())1(( , the 

risk is growing with growth of risky position value. For large value positions the 

simple growth of risk (according to the growth of invested capital) is added to the 

growth of liquidity risk. The large position cannot be realized at the market as easy as 

the small one. However, the risk measure for small position should be proportional to 

the value of the position.  

Axiom 3. The positive homogeneity: )()( XbbX =  for any positive number, b .  

The measures of risk deviation,  , should be defined by some other axioms [20]. 

The non-subadditive measures of risk deviation satisfy the axioms 4 – 6. The 

characteristic of deviations for non-deterministic risk X  should always be positive 

and equal to zero in a case when X  is a constant.  

Axiom 4. 0)(,  XX .  

Investing into stock instrument the future value of which is known thanks to the 

level of return, r , that is not volatile should not influence the characteristic of 

portfolio deviations.  

Axiom 5. )())1(( XraX =++ .  

For the market of complete liquidity increase of the investment volume results in 

proportional growth of cost deviation.  

Axiom 6. )()(0 XXX = .  

This subadditivity axiom is based upon suggestion that diversification of the stock 

instruments results in decreasing of risks. Besides, the subadditive risk measures are 

convenient for the use at the enterprise level, as far as they guaranty that integrated 

risk will not exceed the sum of risks characteristic for separate divisions, portfolios or 

positions.  

Axiom 7. The subadditivity of coherent risk measures is determined as follows: 

)()()( YXYX ++ . 



 

Axiom 8.  The subadditivity of measures for risk deviation is determined as 

follows: )()()( YXYX ++ . 

Holding of axiom 7 is necessary condition for the coherent risk measures 

(subadditive coherent risk measures); and axiom 8 for the deviation measures of risks 

(subadditive measures of risk deviation).  

The axioms 1 – 3 and subadditivity axiom could be used to derive an expression 

for the coherent risk measures of the following type [19]:  
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where,  , is a family of probabilistic measures. Thus, any coherent measure of risk 

is defined by the mathematical expectation of maximum loss for a certain set of 

scenarios. As it can be seen from (1) extension of the scenario set leads to 

enhancement of the risk measure too. The fact that the risk measures depend on the 

set of scenarios proves practical validity of the scenario analysis approach in the risk 

management systems. The coherent risk measures for which the following inequality 

holds: ][)( XEX − , when X  is not a constant, and, ][)( XEX − , when X  is a 

constant are called restricted expectations. Between coherent risk measures that are 

restricted by expectation and risk deviation measures there exists one-to-one 

correspondence of the form:  

−= )()( EXXX  

+−= )(][)( XXEX  

If these conditions hold, then   is a measure of risk deviation linked to the 

coherent measure of risk,  , and,  , is a measure of risk linked to  . The couple of 

the two measures together create a risk profile.  

6 Estimation of basic risk measures  

The measure of Value-at-Risk (VaR). VaR, or value at risk is a response to extreme 

financial events and catastrophes. The initial purpose was to create quantitative 

measure of risk based on available statistical techniques. Thus, VaR provides for a 

probabilistic measure of potential loss pointing out to the threshold that could be 

exceeded with expected loss in normal market conditions on definite time horizon and 

given confidence level.  

Definition 1. For a given value of ]10(   and random variable, X , the   – 

quantile is defined by the expression:  

 = ][ xXPRxq  

The values of quantiles with sufficient set of values for   characterize sufficiently 

form and scatterplot of probabilities distribution.  

Definition 2. The measure of risk VaR at confidence level   for random variable 

(process) X  (returns and losses where losses are negatively defined values) is 

formally defined as follows:  

−=  )()( XqXVaR  



 

If losses have distribution function, F , then )(1 = −
 FVaR , where 

1−F  is 

inverse for F .  

As a quantitative characteristic of short-term market risk, VaR is often used in 

management systems for analysis of credit and operational risks. This measure is one 

of the most important components of general methodology of quantitative risk 

estimation that is used in practice. The VaR-based instruments are used for solving 

the problems of investments and estimating the compromise between returns and risk. 

The measure satisfies the axioms 1 – 3 for the coherent risk measures but does not 

satisfy the axiom of subadditivity.  

However, analytical estimation of VaR is not always convenient due to relative 

complexity of finding appropriate solution. This is true for the case considered in this 

study where joint distribution for risks with combined marginal distributions is used. 

That is why an empirical estimate will be used based on application of the Monte 

Carlo technique. If a sample of random values }{ jiX   is considered of power, n , that 

is arranged in the way that nnn X…X  1 , then empirical estimate of risk measure 

VaR is determined as follows:  

=  nniNiXXVaR )(max)(  

The computations necessary for estimating this value include the following steps:  

1. Selection of confidence level,  .  

2. Generating sufficiently large number of pseudorandom vectors according to 

previously estimated marginal distributions for the central and tail parts as 

well as link function for the joint distribution of losses constructed.  

3. Using the price models compute simulated samples of losses and returns for 

all instruments.  

4. Computing VaR as the lowest losses for −1  percentage of the worst cases.  

The risk measure ES (Expected Shortfall). An alternative to VaR coherent risk 

measure is Expected Shortfall.  

Definition 3. The measure of risk ES at confidence level   for random variable 

X  is determined as follows:  
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ES is mathematical expectation of losses on a given time horizon and confidence 

level; at the same time VaR represents minimum loss:  

][  −−= VaRXXEES . 

The measure ES is also called conditional VaR. An empirical estimate of ES is 

determined by the expression: 
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Markowitz’ measures of risk. First, Markowitz proposed to use as a measure of 

risk the standard deviation, −= XEXX )( , and then semi-deviation 

−= −− ][)( XEXX  [5]. Both risk measures satisfy all four axioms for risk 



 

deviation measures. In risk management systems it is more convenient to use the 

measure in the form of semi-deviation, )(X− . For a sample, iX , of power, n , the 

empirical estimates for risk deviation measures are the following:  

– for standard deviation:  
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– and for semi-deviation:  
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The empirical estimates of the risk measure VaR or coherent risk measure ES and 

risk deviation measures together provide an estimate of risks portfolio.  

Generating risk measures from copulas. When copulas are used in the risk 

management systems the Monte Carlo techniques should be used for estimating risk 

measures, risk deviation measures, and scenario analysis. It means generating 

pseudorandom dependent values with given marginal distributions and copula. There 

exists general scheme for sample generating from joint distribution, the structure of 

dependence in which is determined by copula. Using Sklyar theorem, the procedure 

of generating random sample, nX…X 1 , with marginal distribution functions, 

nF…F 1  and copula, C , is described as given below [21].  

1. Generate random numbers nu…u 1  with scalar uniform distributions with 

parameters, ]10[  , and joint distribution over copula C .  

2. Compute the values of ix  using the transformation:  

= − )(1
iii uFx  

where, 
1−

iF , is inverse for iF .  

Depending on the features of the copula family implementation of the step 1 can be 

simplified.  

Elliptical copulas.  

Definition 4. The characteristic function CRn →  for a random n -vector X  is 

defined as follows:  

][)( Xti
X eEt = , 

where, Xt , is coordinate-to-coordinate product of the vectors t  and X . The 

characteristic function represents probabilistic distribution as a single-valued 

meaning.  

Definition 5 [22]. The probabilistic distribution for n -vector X  is called elliptical 

if for a certain vector, 
nR , positively defined matrix, 

nnR  , and some 



 

function R→ )0[ , the characteristic function of vector, −X , is defined as 

follows: ( )ttt T
X = − )( .  

The elliptical functions got their name due to the elliptical form of invariability 

lines for densities of the distributions. Any combination of elliptical distributions also 

creates elliptical distribution. The marginal distributions of joint elliptical distribution 

also belong to elliptical distributions. The elliptical copulas are defined through joint 

elliptical distributions, H , and inverse functions, )(
)1(

ii uF
−

, as follows:  

))()(()( )1(
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= . 

Generating random numbers with the dependency structure defined by the elliptical 

copula is actually sampling from respective elliptical distribution. The algorithm 

given below generates PRN from Gaussian copula, corresponding to normal 

distribution, in the form of n -vector, )( 1 nX…X  , with correlation matrix,  , as 

follows: 

1. Generate n  independent random numbers, nu…u 1 , according to normal 

distribution.  

2. Represent,  , in the form of decomposition, TAA = , where A  is a low 

triangle matrix.  

3. Compute, uAy

= .  

4. Using the scalar normal distribution function,  , compute, )( ii yx = .  

To generate PRN from more complex elliptical copulas any zero mean elliptically 

distributed vector, X , is represented via centered normally distributed vector, N , 

with the same correlation matrix, and independent on, N , random value, r : rNX = . 

For example, for Student t -distribution with   degrees of freedom, r  has 2 -

distribution with,  , degrees of freedom.  

The Archimedean copulas. The copulas that can be represented in the form: 

( ))()()( 1
]1[

1 nn u…uu…uC ++= −
, are called Archimedean. The unified 

algorithm for generating the copulas is constructed on the following basis:  

)()()()( 11122111 uCuuC…u…uuCu…uC nnnn = − , 

where, 2C , is copula for the first k components; and 111 )( uuC = . To accomplish 

sampling from this joint distribution it is necessary to perform the following steps:  

– Generate, n , independent PRN, nv…v 1 ;  

– then, sequentially compute, 11 vu = , )( 12
1

22 uvCu = −
, ..., 

)( 11
1

−
− = nnnn u…uvCu . 

For Archimedean copulas the computational algorithm can be simplified to the 

following form:  
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The extreme value copulas. Let, )( 1 imi X…X  , …i = 21 , are independent 

identically distributed m -vectors with distribution function, F , and let  

m…jXM ij
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represents maximum for each component. The multidimensional distribution for 

extreme values is a limit of the random vectors, )(
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limit distribution exists, then each component of the distribution represents one-

dimensional distribution of extreme values that can be represented in the form:  

( ) )()( 11 mmzH…zHC  

where, )( jjzH  , is generalized distribution of extreme values, and, C , is a copula. 

It is natural that marginal distributions are related to the extreme value distributions, 

but more interesting is the case of the following copula:  
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Let, jr , is strictly increasing transform for ijX ; denote the variables and 

maximum after the transform as, 
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It can be shown that, = CC , and,   
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for all 0t . The copulas that satisfy this condition are called extreme value copulas.  

This set of copulas includes, for example, the family of two-dimensional Gumbel 

copulas of the form:  
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where, 1 . Sampling of PRN from extreme copulas is based on the use of universal 

generating procedures from known probabilistic distributions. To solve the problem it 

is proposed to apply multidimensional generalization of one-dimensional method of 

so called slice sampling [14].  

The method of slice sampling. Suppose it is necessary to perform sampling from 

probabilistic distribution on some subset from, 
nR , that is determined by some 

probability density function (PDF) proportional to some function, )(xf . Such task 

can be accomplished by the uniform sampling from 1+n -dimensional area under 

graph of the function, )(xf . Formally this idea can be implemented by introducing 



 

extra variable, y , and determining joint distribution for, x , and y , that is uniform 

over the area under the boundary described by the function )(xf : 

 = )(0)( xfyyxU  

Thus, the joint distribution for )( yx  is determined as follows:  
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Generating of independent values uniformly distributed over the set, U, is not 

simple task. That is why Markov chain is generated converging to this distribution. 

One of possible solutions is based upon Gibbs sampling, i.e. sampling from 

conditional distribution, )|( xyP . The distribution is uniform over the interval, 

))(0( xf , and from conditional distribution, )|( yxP , that is uniform over the 

interval,  )(xfyxS = . The resulting distribution is called a “slice” (or sector) 

defined over the variable, y . Rather complicated task can be generating of 

independent, uniformly distributed value from, S . It can be replaced by some 

innovation for, x , that doesn’t violate uniform distribution over S .  

Introduce the following notations: let )(xf  is the function proportional to the 

density distribution we are looking for; 0x  is current (initial) state; 1x  is a new state. 

Now, the method for sampling in one-dimensional case can be formulated as given 

below [14].  

1. Generate real value, y , uniformly from ))(0( 0xf , and this way get 

horizontal “slice”,  )(xfyxS = . Note, that 0x  always belongs to, S .  

2. Define the interval, )( RLI = , around 0x  that contains at least large part of 

the slice.  

3. Generate new point, 1x , that belongs to the interval defined, i.e. to the 

intersection, IS . 

On the first initialization step a value for an extra variable should be selected that is 

characteristic for the particular case of slice sampling. There is no need to save the 

value for further iterations. To avoid the problem touching upon precision of 

representing floating point numbers it is recommended to use the following function: 

))(log()( xfxg = , instead of )(xf . In this case the extra variable is defined as 

follows: exgyz −== )()log( 0 , where, e , is exponentially distributed value with 

unity mathematical expectation; and the slice is defined as  )(xgzxS = . The 

second and the third steps of sampling in one-dimensional case could be implemented 

in various ways but the result should be in the form of Markov chain that does not 

affect the distribution defined by the function, )(xf .  

On the second step, the respective numerical interval is determined. It is desirable 

that the interval should include as larger part of the slice as possible. This is necessary 

for distinguishing the new point (number) from the previous one as much as possible. 

Though it is also necessary to avoid such intervals that would exceed the slice 



 

substantially; the matter is that this results in less effective generating of the new 

point. The interval can be found in several possible ways given below.  

1.  It is ideally to have, )(inf SL = , and, )(sup SR = . It means that interval, I , 

is equal to the least possible interval that contains the whole set, S . However, this 

situation is difficult to implement in practice.  

2.  If the values of, x , are restricted, then interval, I , may be defined over the 

whole admissible range. However, this is not effective approach when the slice size is 

substantially less than the range.  

3.  Define size of the slice as,  , and randomly select initial interval, 0 , that 

would include the point, 0x , with possibility of expanding the interval. For example, 

it could be doubled to one side or expanded to other side until both ends of the 

interval will be outside of the slice.  

In multidimensional case there are two different ways of sample generating.  

The first one supposes application of one-dimensional approach to each variable 

from the multidimensional distribution. The second approach is based on application 

of slice sampling to generating multidimensional distribution by forming uniform 

sample from the area under the graph of PDF for this distribution.  

The second approach was used in performing computational experiments because 

it is more natural and can be substantiated analogously to one-dimensional case. Here 

sample generating is performed from uniform distribution in the interval from zero to 

the value of density function at current point. The uniform value defined by slice is 

determined by the vertical dimension. It is obvious that uniform sample generating in 

a case of multidimensional slice is more difficult. In this case the interval, )( RLI = , 

is replaced by the hyper-interval:  

 n…iRxLxH iii == 1 . 

Here, iL  and, iR , determine the length of the hyper-interval along the axis, ix .  

The simplest way of determining, H , is its placement randomly over dimensions 

in such a way that its value would be uniform over all possible values of, H , that 

contain initial point, 0x . Other procedures for determining the interval don’t exhibit 

such simple generalization. For example, the procedure of expanding the interval until 

all boundaries will exceed the slice limits would not be effective because n -

dimensional interval has 
n2  peaks. That is why in the computational experiments the 

approach was used based on the interval expanding until the point taken uniformly 

from the interval belongs to the slice.  

7 Estimation of basic risk measures  

The model has been constructed for analysis of exchange rates for the currencies: 

Swiss franc, British pound, Japanese yen, and US dollar to euro. To estimate model 

parameters the data for daily exchange rates were taken from 03.1998 to 01.2006. 

After preliminary data processing 1643 observations were selected for the model 

building. Using maximum likelihood technique parameters for one-dimensional 



 

marginal distributions estimated for the exchange rates selected, as for respective 

copula parameters (Table 1). 

Table 1. Estimates for copula parameters 

Copula  Parameter   Value MSE 

Gumbel    1.6720 0.0158 

Normal  1  0.5637 0.0118 

 2  0.3318 0.0136 

 3  0.5943 0.0120 

 4  0.8241 0.0054 

 5  0.8593 0.005 

 6  0.8037 0.0061 

Frank    4.5874 0.0911 

An empirical measure of VaR with quantile 0.03, i.e. for 50 observations that 

exceed the threshold selected amounted to 3.4967. For quantile 0.01, there are 16 

observations that exceed the threshold 3.5345. There are enough observations for the 

quintile 0.03 to use in practice for calculating empirical estimate, but for quantile 0.01 

the data sample is too short. That is why it is necessary to construct risk distribution 

model and estimate the VaR value using this model (Table 2).  

Table 2 shows that VaR measures computed using the models on the basis of 

combined marginal distributions that were used to form joint distribution with 

Gumbel and Frank copulas exhibit relative error to the empirical value for quintile 

0.03 of the following values: 0.203%, and 0.022%, respectively. 

Table 2. VaR estimates using the models 

Copula Quantile Sample size  

100  1000  10000  

Gumbel  0.03 3.414  3.477  3.489  

 0.01 3.437  3.566  3.601  

Normal  0.03 3.500  3.538  3.534  

 0.01 3.617  3.688  3.660  

Frank   0.03 3.498  3.479  3.495  

 0.01 3.513  3.563  3.589  

The model with normal copulas showed the error of about 1%. On the basis of the 

results obtained it can be concluded that all three models constructed are adequate but 

the model on the basis of Frank copula showed the best result. Thus, the VaR measure 

for, 0.01, quantile will be the value of 3.5892. The same three models were used to 

compute the coherent risk measures ES. An empirical value for measure ES with 

quantile 0.03 is 3.6074. Table 3 shows that the most adequate model for estimating 

the measure ES is also the model based on Frank copula: an estimate for ES with 



 

quintile 0.01 is 3.6822. All three models showed worse results for the risk deviation 

measure proposed by Markowitz than two tail measures considered above (Table 4).  

Table 3. Estimates of risk measure ES 

Copula Quintile  Sample size 

100 1000 10000 

Gumbel  0.03 3.512  3.575  3.583  

 0.01 3.534  3.647  3.673  

Normal  0.03 3.610  3.647  3.643  

 0.01 3.712  3.773  3.752  

Frank  0.03 3.585  3.566  3.583  

 0.01 3.602  3.655  3.682  

Table 4. Estimates of Markowitz measure 

Estimation method +    

Gumbel copula  0.1330 

Normal copula  0.1462 

Frank copula  0.1370 

Empirical estimate  0.1733 

Thus, quality of the models constructed shows that they can be used for active 

management of risks by changing the portfolio structure aiming to optimization of the 

risk measure selected.  

8 Conclusion 

The method for constructing joint distribution, copula based models, is proposed. The 

copula model parameters are estimated with the method of maximum likelihood 

which turned out to be effective according to the mean squared error criterion. Three 

types of copulas were studied and three models constructed. All three models turned 

out to be adequate and practically useful. Used approach to evaluate the risk measures 

based on sampling measures provided high precision of estimates when non-extreme 

quantiles were estimated. At the same time the quality of risk deviation measures that 

create a part of a risk profile requires model refinement in the future. 

High quality of the tail measure estimates supports the idea that the model based 

upon combined marginal distributions, with the use of normal and generalized Pareto 

distribution, requires description improvement for the central part of observations. 

The future studies will take into consideration the possibility for applying to modeling 

central observations some other types of distribution than normal one. The purpose is 

to further improve quality of the model in the form of combined marginal distribution, 

and to refine final results of risk estimation. 
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