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Abstract.  This article discusses the prospects of using linear regression models 

to describe multi-section branched transport systems of conveyor type. A char-

acteristic feature of the functioning of a multi-section transport system is the 

presence of resonant peak values for the flow parameters of the transport sys-

tem and transport delay. Various variants of the linear regression model are in-

vestigated. It is shown that for multisection transport systems with a periodic 

nature of the magnitude of the incoming material flow into the transport system 

and periodic nature of the regulation of the belt speed the value of the transport 

delay is a quasi-stationary value. The transport delay can be excluded from 

model variables. Analysis of the various variants of linear regression models 

considered in the article shows that using them to describe branched transport 

systems is ineffective. The considered models can only be used for a qualitative 

analysis of the output stream from the transport system. The absence of a linear 

relationship between the input and output flow parameters of the transport sys-

tem is shown. 
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Introduction 

The conveyor belt is an important element between the place of material extraction 

and the place of material processing. Increasing the throughput of the transport system 

and increasing its length leads to an increase in the cost of transporting material by the 

conveyor system. The cost of transporting material is more than 20% of the total cost 

of material mining [1]. With an increase in the length of the transport route, transpor-

tation costs increase.  For long main conveyors [2, 3], the increase in transportation 

costs can be significant due to the unevenness of the incoming material flow, and, as a 

consequence, its uneven distribution along the transport route. For transport systems 

not loaded up to the nominal value, the share of transport costs in the total production 

mailto:pihnastyi@gmail.com
mailto:vdkhodusov@karazin.ua


cost becomes much higher than the normative. One of the effective ways to reduce 

transport costs is to increase a load of material on the transport conveyor [4]. This is 

achieved by belt speed control [5, 6] or the material flow control at the input of a 

separate conveyor section. To control the flow of material at the input to the conveyor 

section, an accumulate bunker is usually installed [7.8]. Optimal flow parameters 

control of the transport system makes it possible to provide the best option for filling 

the transport route with the material, which leads to lower transportation costs. To 

construct an algorithm for optimal parameters control by a separate conveyor section, 

a sufficient number of conveyor models have been developed [9, 10]. From all of 

them, two types of models attract attention. The first type of model is based on the use 

of the finite element method [11, 12]. This type of model makes it possible to obtain a 

numerical solution that determines the state of the section parameters. The analytical 

type PiKh–model belongs to the second type [13, 14]. These two types of models 

make it possible to obtain a description of the conveyor section with a given accuracy. 

1 Formal problem statement 

An increase in the length of the transport system leads to a separation of the transport 

route into individual sections. The development of new mines lead to the emergence 

of new routes for the transportation of materials, increases the branching of the 

transport system. The presence of such a trend complicates the use of the considered 

two types of models for constructing algorithms for optimal control of the flow pa-

rameters of a branched multi-section transport conveyor. The complexity of the de-

scription lies both in increasing the number of equations depending on the number of 

sections, and in increasing the number of interrelations between the parameters of the 

transport system.  

Тhe perspectives for their use are limited by the number of sections.  It should be 

assumed that the first class of models should be used to describe transport systems 

with the number of sections not exceeding ten.  

The use of the second class of models is limited by the number of sections not ex-

ceeding one hundred sections. However, at present, transport systems already consist 

of several dozen sections [8.15]. This fact makes it relevant to use regression models, 

and also models based on a neural network, to describe a multi-sectional transport 

system.  

The number of input parameters in such a description, as a rule, is determined by 

the number of sections through which material flow incomes the transport system 

directly from the mine.  

The number of input sections can be significantly less than the number of internal 

sections, which significantly reduces the number of variables for describing the 

transport system. For example, the main conveyor from the Bu Craa mine to the coast 

at El Aaiún, Western Sahara [16] consists of eleven sections, among which there is 

only one input section. These circumstances increase interest in using regression 

models and models that are based on a neural network to describe a transport system. 

In this paper, we will focus on the use of the linear regression equation for modelling 

complex transport systems.  



2 Literature review 

 In paper [17], a linear regression model was considered to predict the optimal ser-

vice life of a conveyor belt. To build a regression model, eighteen conveyors were 

studied. The following parameters were used as model parameters: width, thickness, 

length of the conveyor belt dS , belt speed )(ta  and cargo flow of material   S)(t,χ 1 , 

which passes through the section of the conveyor. The linear regression equation for 

predicting the speed of wear of the belt of the conveyor section depending on the 

conveyor belt speed )(ta  and the cargo flow of the material   S)(t,χ 1  is given in [18]. 

In [19], a linear regression model is considered to analyze the effect of shock load on 

a conveyor belt by incoming material. The aim of the experiment is to determine the 

dependence of impact force IF , respectively tension force SF  from independent 

variables: the weight of the ram (m) and the amount of impact ram (h). A regression 

model for the prediction of idler rotational resistance on a belt conveyor is shown in 

[20]. Multiple regression is used to find the relationship between the two main inde-

pendent variables, as the volume of transported material, the angle of the conveyor, 

and the dependent variable SEC (special energy consumption), [21]. The presented 

review shows that the linear regression equation can be successfully used to solve two 

types of problems. The first type of problem is predicting the degree of wear of the 

components of the conveyor section depending on the magnitude of the conveyor 

section flow parameters. The second type of the problem is to determine the effect of 

the flow parameters of a separate section on the specific energy consumption that is 

spent on transporting one ton of material over a distance of one meter (SEC), [21]. 

The most commonly used as regressors are the flow parameters as the belt speed )(ta  

and the cargo flow of material   S)(t,χ 1 , which passes through the conveyor section. 

In this paper, we will expand the area of application of the linear regression model for 

transport systems which consist of a large number of sections and consider the possi-

bility of their use for predicting the dependencies between the input and output 

transport system flow parameters. 

3 The main parameters of the conveyor model  

The structural diagram of a multi-section transport conveyor is given in [8, 15]. Let 

us consider the construction of the linear regression equation and the analysis of the 

prediction results on the example of eight sectional transport conveyors (Fig. 1). The 

proposed method can be used to build a linear regression model for a transport system 

with an arbitrary number of sections. 

To describe the state of the transport system, let us introduce dimensionless varia-

bles 
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Fig. 1. Diagram of a branched conveyor transport route 
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where parameters   S)(t,χ 0m  (t/m),   S)(t,χ 1m  (t/h)  are the linear density of the rock 

and the rock flow along the transport route of the m-ой section at time t (h) at the 

point of the transport route with coordinate S (m); )(tam  (m/h) is the  belt speed of 

the m-th section; (t)m  is the intensity of rock incoming at the input of the m-th 

conveyor section at a point with coordinate  S=0; )(Sm (t/m) is initial distribution of 

material along the m-th section length dmS ; dS  is the characteristic length of the 

conveyor section; dT  is the characteristic time over which the material passes the 

transportation route length dS . The intensity of material (t)m  incoming to the input 

of the m-th section of the conveyor is set exclusively for the input sections, through 

which the material from the mine enters the transport system. Such sections in the 

transport system of Fig. 1 should be considered sections m = 1,2,4,5. For the other 

sections, the intensity of the material flow (t)m  is determined by the value of the 

material flow incoming from the previous section. During the operation of the con-

veyor section, the material flow (t)m  and the belt speed )(tam  change in the range 

limited by the maximum and minimum values and are periodic in nature [22]. Thus, 



(t)m  and )(tam  can also be represented as an expansion in periodic functions. Let's 

limit ourselves to the first harmonics of decomposition, write  the dimensionless in-

tensity of the material, the speed and initial distribution in the form:  
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The view of functions )(m  и )(mg  for the input sections m = 1,2,4,5 for the time 

interval 20   is shown in Fig. 2, Fig. 3.  

 

Fig. 2. The intensity of the flow material )(m  at the input of the m-th section 

 

Fig. 3. The belt speed )(mg  of the m-th section 



The system of equations (4)–(7) forms the output flow ( )m, 11 =  of the 

transport system. The distribution density ( )1f  for the output flow 17 , 18  sections 

m = 7.8 of the transport system (Fig. 2) is shown in Fig. 4. The tail of the distribution 

density has characteristic local maximums associated with the periodic law of the 

input parameters of the transport system (4) - (7). The statistical characteristics of the 

cargo flow of material at the input of the transport system are analyzed in [22, 23]. 

Studies in [24, 25] indicate that the minute flow at the input to a separate section has a 

distribution law close to the normal distribution law. The material flow of the output 

sections (Fig. 4) was calculated based on the analytical PiKh–model [13]. The value 

of the flow parameters at the output of a separate section can be determined by the 

equations (8)–(10): 
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Fig. 4. The distribution density ( )1f  of the output flow of material )1(1m ,  

From the calculation of the transport delay 
m

  (10) it should be assumed that the 

transport delay has a value close to a constant value (Fig. 5). This makes it possible to 

assume that the transport delay value determined by conditions (5), (7) does not sig-

nificantly affect the value of the output flow of the transport system. 



This fact confirms the values of the correlation coefficient 
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Fig. 5. Transport delay value (steady-state) )(m   for the m–th section 

4 Linear regression conveyor model 

To predict the value of the output flows 17 , 18  for the sections m=7,8 of the 

transport system (Fig. 2), let us research for the linear regression equation in the form 
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where 
iii  0 1717 7  −= , 

iii  0 1818 8  −=  are prediction errors; Ni ..1= , N  is 

the number of rows in the sample. 

The frequency diagrams for the value of the output flow )1(17 , , )1(18 ,  of the 

sections m=7,8 are presented in Fig. 6, Fig. 7. 

The coefficients ka , kb  of the linear regression (11), (12) are determined from the 

condition for the minimum value of the mean square error (MSE) 
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 141lg3.3 =+= Nr . (14) 

 

Fig. 6. The frequency diagram for output flow values )1(17 ,  

 

Fig. 7. The frequency diagram for output flow values )1(18 ,  

5 Analysis of the results 

The linear regression model for predicting the values of the output flow )1(17 , , 

)1(18 ,  taking into account the optimality condition (13), takes the form 

 −−−−−= 221117 g  0,7349  1,2839g  0,0773   ,467002246.0
0

  (15) 

 5544 g  ,48530  ,23961g  ,0820   ,42910 ++−+  ,  

 −−−−+= 221118 g  0,9600  0,6290g  0,2674   ,487603045.2
0

  (16) 



 5544 g  ,66360  ,40740g  ,02330   ,41270 −−−−  ,  

The mean square error for the model (15), (16) is 7MSE =0,223. The null hypothesis 

0H  that the error 7  has a normal distribution law is rejected (the significance level 

05.0= , valuep ). The value of the output flow )1(17 , , )1(18 ,  does not 

depend on the input parameters of the transport system linearly. The frequency dia-

gram for the error 7  is shown in Fig. 8. The expressed peak values of the function 

characterize the features of the process under consideration, that provides resonant 

values of the flow parameters. To analyze the nonlinear dependence, let us use the 

transformation ( )1mln =mZ  for the model output parameters (11), (12) 

 

Fig. 8. The frequency diagram for the error 7  

The transformation ( )1mln =mZ  leads to a linear model of the form 
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The coefficients of the transforming model determine from the condition for opti-

mality (13) 

 −−−−−−= 221170 g 1.3523  1.5514g  1.4431   1.1907 1.591 Z  (19) 

 5544 g  1.2725  2.8164g  0.1986   0.9471 ++−+  ,  



 −−−++−= 221180 g  0.4666 0.7624g  ,16280   ,38291.13851 Z  (20) 

 5544 g  ,10761  ,25581g  0,0168  0.9676 ++−−  ,  

The mean square error for the model (19), (20) amounts 8467.0ln7 =MSE . The 

mean square error for the model, taking into account the inverse transformation 

)exp( 717 
Z= , is the value 7MSE =0,259.  This value is higher than the value of the 

model (15),(16). The null hypothesis 0H  that the error ln7  has a normal distribution 

law is rejected (the significance level  05.0= , valuep , 50~22
cr ). The 

value 70Z , 80Z  of the output flow )1(17 ,  and )1(18 ,  does not depend on the 

input parameters of the transport system linearly. The frequency diagram for the error 

ln7  is given in Fig.9. The frequency diagram shows that the density function of the 

error ln7  is more qualitatively approaching the normal distribution law. However, 

the presence of resonance values for the output parameters still leads to a significant 

asymmetry of the distribution density. 

 

Fig. 9. The frequency diagram for the error ( ) 1ln7 +  

Figure 10 shows the frequency diagram ( )1ln7 +  for the transformation 

( )1ln 177 += Z : 
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The mean square error for the model (21) is. ( ) 054.01ln7 =+MSE . The mean square 

error for the model, taking into account the inverse transformation, ( ) 1exp 717 −= Z  

is 7MSE =0,222. The null hypothesis 0H  that the error ( ) 1ln7 +  has the normal dis-



tribution law was rejected (the significance level is 05.0= , valuep , 

25~22
cr ). As in previous cases, the value 70Z  and 80Z  for the output flow 

)1(17 ,  and )1(18 ,  does not depend on the input parameters of the transport sys-

tem linearly.The prediction results of the output flow )1(17 ,  are presented in Fig. 

11. The time interval  100;95  over which the system is insensitive to the initial 

conditions is considered. The exact value of the output flow )1(17 ,  has resonance 

peaks characteristic of the system under consideration. As in previous cases, the value 

7MSE  for each model coincides practically. The max fluctuations amplitude of the 

value output flow has the model (the model is indicated by number 2 in Fig. 11).  

 

Fig. 10. The frequency diagram for the error ( )1ln7 +  

 

Fig. 11. The predicted values for the output flow )1(17 ,  

The type of function for predicting each of the models coincides qualitatively. 

Themodel (15) has a predicted value higher than other models. Lower predicted val-

ues correspond to model (19) (the model is indicated by number 4 in Fig. 11).  



The predicted values of the model (21) (the model is indicated by number 3 in Fig. 

11) occupy intermediate values between model (15) and (19). It should also be noted 

that the predicted value for each model is represented by a periodic function with a 

period of the same value for each model. Also, a characteristic property for the devel-

oped regression models is the fact that the local maxima of these models have the 

same value  . 

Conclusion 

The main result of the research is to determine the perspectives for using linear re-

gression models and their transformation options for describing a multi-section 

transport system. 

A characteristic feature of the functioning of a multi-section transport system is the 

presence of resonant peak values for the flow parameters of the transport system. This 

is due to the periodic nature of the magnitude of the incoming material flow into the 

transport system and the periodic nature of the regulation of the speed of the belt with 

the subsequent superposition of the transport flows on each other. 

The analysis indicates the absence of a linear relationship between the value of the 

parameters of the input sections )(m  и )(mg  and the value of the parameters 

17 , 18  output sections of the transport system. The presented regression models 

give a qualitative aggregated idea of the magnitude of the output flow 17 ,, but do 

not allow predicting the time moments of the functioning of the transport system with 

overloads and peak values due to superposition flows from individual sections of the 

transport system. Using linear regression models to predict the material output in such 

systems is inefficient. It is required to build strongly non-linear regression models that 

allow one to evaluate the effects associated with the superposition of material flows 

from different sections. 

No less important result,  that presents in the paper, is that transport delay is quasi-

stationary value, and can be excluded from the regressor set of the model. 

The results obtained in this article determined the prospects for further research, 

among which should be highlighted:a) determination of the functioning modes of 

individual sections of the transport system, in which resonant values of the flow pa-

rameters arise; b) development of nonlinear regression models for predicting the state 

of the transport system parameters and designing optimal control systems for these 

parameters. 
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