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Abstract. The article considers the problem of managing the reserve of capaci-

ty of arcs, which is relevant for the distribution of flows and designing reliable 

communication networks with discrete parameters and a constraint on flows de-

lay time or average load factor of the network arcs. An algorithm for the ap-

proximate solution of the problem for the case of linear functions for the cost of 

arcs is proposed and the results of its experimental study on a network contain-

ing 1000 nodes and 4000 arcs are presented. The results of the experiment 

showed the sufficient accuracy and speed of the proposed algorithm, which al-

lows us to assert of its practical applicability for engineering calculations on the 

large-dimensional networks.  

Keywords: flows in networks, the reserve of capacity of arcs, time of delay 

flows, problems of combinatorial optimization      

1 Introduction 

The article is an addition to the work [1], in which the Problem of Choosing the Ca-

pacity of Arcs (PCCA) for communication network from a given set of discrete inte-

ger values with constraint on flows delay time was considered. Delays of flows klt  on 

arcs are defined as / ( )kl kl kl klt f w f= − , kl E  , and the constraint on the delay time 

of flows avt  in a network has the following form max1/ / ( )av kl kl kl

kl E

t U f w f T



= −  . 

Here klf Z +  — fixed arc flow value for kl E , E  — set of arcs of network, 

klw Z +  — bandwidth capacity of arc kl E , maxT  — the maximum of  flows delay 

time in network, ij

ij S

U u



=   — total  flow in network, iju Z +  — value of the flow 

from a node i  to a node j , S  — set of pairs of indexes corresponding nodes in the 

network. When approaching the magnitude of the flow on the arcs to their carrying 

capacity, the delay increases and, therefore, network congestion can occur.   

The essence of the problem is for fixed flows it is necessary to choose the through-

put capacities of arcs from a given set of integers so that the constraint on the delay 
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time of flows is fulfilled and the minimum of some objective function is achieved. For 

the design of data transmission networks, PCCA was studied in detail in [2-5]. This 

problem also arises in transport networks when distributing flows according to the 

criterion of the minimum cost of the network and a given restriction on the delay time 

of flows [6].   
A Problem of Managing the Reserve of Capacity of Arcs (PMRCA) is to paramet-

rically solve a PCCA problem, in which as a variable parameter are selected values 

maxT  with the given sampling step. By controlling the parameter maxT  for maximum 

delay, the data network administrator or the transport network manager can provide 

the required reserve for the bandwidth capacity of the communication channels or the 

carrying capacity of vehicles at predicted fluctuations of values of flows on a given 

time of intervals. A decrease in the parameter maxT  (increase in the reserve) leads to a 

rise in the cost of the network, but reduces the probability of redistribution of flows 

and technical re-equipment of communication channels or fleet of vehicles at increas-

ing flows and a threat of emergence overloads in the network. An increase in the pa-

rameter maxT  makes it possible to reduce the capacity of communication channels or 

the carrying capacity of vehicles and the cost of the network, but increases the risk of 

redistributing flows and upgrading the network. As a quantitative measure of reserve 

capacity can be taken as the average load factor of the network arcs.   

Topical issues are the affiliation of PCCA and PMRCA to the class of NP-hard 

problems, and the development of approximate time-polynomial algorithms. The 

article provides an example of a parametric PCCA solution on a network containing 

1000 nodes and 4000 arcs, which clearly demonstrates the methodological approach 

to solve PMRCA and to the practical choice of required reserve capacity of arcs for 

the communication network.   

2 The formulation and algorithm of solving the problem 

We consider a direct connected network ( , )G N E  with a set of nodes N ,   n N=  

and a set of arcs E ,   e E= . In network for each direct arc kl , ( k l ) exist back 

arc lk , ( l k ). An arc represents a switched communication line in a data network 

or a vehicle route, the final nodes of which coincide with the initial and final node of 

the arc. The network may contain loops and parallel arcs, since cyclic and repeating 

communication lines and communication lines with the same final nodes are allowed. 

An integer flow matrix is given on the network   ij n n
U u


= . Let klw , kl E  — 

sought-for a bandwidth capacity of arcs of the network in transport blocks, 

1 2{ , , ..., }klw w w w , iw , 1,i =  — ascending positive integers; kld R+ , kl E  

— arcs lengths; ( , )kl kl klC w d R+ , kl E  — discrete values cost of arcs, such that 

1( , ) ( , )kl i kl kl i klC w d C w d+ , 1, 1i = − ; 
kl

kl ij

ij S

f u


= , kl E  — fixed total flows in 



transport blocks, a flowing along the arcs of the network, where 
kl

iju  — is the flow of 

transport blocks from i  to j , which passes along arc kl .  

It is required to find the minimum value of the network cost function  

min ( , )
kl

kl kl kl
w

kl E

C w d


 , 1 2{ , , ..., }klw w w w                          (1) 

s.t. 

max

1 kl

kl E kl kl

f
T

U w f


−

 , kl klw f , kl E                             (2) 

for the parameter of selected values maxT , that vary within the following limits  

max

,min

1 1kl kl

kl E kl Ekl kl kl

f f
T

U w f U w f  

 
− −

  ,                         (3) 

where ,min minkl i klw w f=  , 1,i = .           

To estimate the bandwidth reserve for each solution max 1 2( ) { , , ..., }klw T w w w , 

kl E  , we will calculate the average load factor of arcs for the network 

max

1

( )

kl

kl E kl

f
ALF

e w T

=  .                                               (4) 

Note that problem (1), (2) can be represented as a knapsack problem with Boolean 

variables and multi-choice (0-1 Multiple-choice Knapsack Problem, 0-1 MCKP), 

which, as you know, belongs to the class of NP-hard problems [7]. Let ijc R+  — 

discrete values cost of arcs i  with capacity 1 2{ , , ..., }ijw w w w Z

+   and length id , 

1,j = , 1,i e= ; / ( )ij i ij it f w f= − , ij iw f , 1,j = , 1,i e=  —delays of flows on 

arcs; if  — flow on the arc i , 1,i e= . Suppose that 1ijx = ,  if for the arc i  the ca-

pacity ijw  is selected, 1,j = , 1,i e= , and 0ijx =  otherwise. We require to find 

1 1

min
e

ij ij

i j

c x


= =

                                                        (5) 

s.t. 

max

1 1

1 e

ij ij

i j

t x T
U



= =

 ,                                              (6) 

1

1ij

j

x


=

= , 1,i e= ,                                                  (7) 

{0,1}ijx  .                                                              (8) 

Here, the required throughputs ijw  correspond to the optimal solution 
*

ijx  to the 

problem (5) - (8). 

It is easy to see that any individual problem formulated in the form of (1), (2) can 

be transformed in time ( )O e  into the corresponding instance of problem (5) - (8). 

To do this, it is necessary to construct two matrices of size e  , whose rows corre-



spond to arcs, the columns — to a set of discrete capacities, and the cost of arcs ijc  

and delays on arcs ijt  are taken as matrix elements. The converse is also true. 

For the knapsack problem with multi-choice (5) - (8), there are exact pseudo-

polynomial algorithms and Fully Polynomial Time Approximation Scheme (FPTAS) 

[8, 9]. This means that for them there are algorithms that, polynomial time of the size 

for the input of the problem and  1/   make it possible to obtain a (1 )+ - guaranteed 

approximate solution, where   is an arbitrarily small positive number. Therefore, to 

obtain an accurate or guaranteed  -approximate solution to problem (5) - (8), it is 

possible to use the algorithms described in [8-13]. These algorithms can also be used 

to solve the problem in statement (1) - (2).  

Despite the existence of exact pseudo-polynomial algorithms, their application for 

the parametric solution of the PCCA problem is not justified due to the great time 

complexity of the algorithms. 

So, for example, the time complexity of the FPTAS algorithm for solving the clas-

sical 0-1 MCKP problem is 2( / )O e    [9].Therefore, in [1], for solving NP-hard 

problems (1), (2) and (5) - (8), two approximate algorithms were proposed on the 

basis of the approximation of discrete cost functions by linear ones, and on the meth-

od of sequential analysis of options, which was first proposed and investigated in the 

works [14-17].  

The first algorithm uses the Lagrange multiplier method, which allows one to ana-

lytically solve a relaxed problem and obtain an exact continuous solution. The second 

algorithm enumerates the solutions, narrowing the range of feasible solutions at each 

iteration, and can be used for any monotonically non-decreasing cost of arcs with an 

increase in their throughput. It can be applied both to the initial statement of the prob-

lem, and to the statement in the form (5) - (8).  

We consider problem (1), (2) when it is known, that a given discrete values cost of 

the arcs ( , )kl kl klC w d  can be approximated with a sufficient degree of adequacy by 

continuous linear functions  
0 1( , ) ,kl kl kl kl kl klC w d c c w= +   kl E                                  (9) 

where 
0

klc , 
1

klc  — we found approximation coefficients. For linear cost functions, the 

analytical solution *

klw , *

minC , which is obtained by the method of Lagrange multipli-

ers is known as [2, 3].  We write the Lagrange function     

( , ) kl

kl kl kl

kl E kl kl

f
L c w d

U w f



 

= +
−

  

where   — is the Lagrange multiplier. Equating the partial derivatives of this func-

tion to zero, we obtain 
1

2
0

( )

kl

kl

kl kl kl

fL
c

w U w f






= − =

 −
 where from 

1

kl

kl kl

kl

f
w f

U c





= + . Substituting the values klw  in the original equality constraint, we 



obtain 

1

max 1/ / ( ) kl kl

kl kl kl

kl E kl E

c f
T U f w f

U


  

= − =   and 

1

max1/ kl kl

kl E

c f
T

U


 

=  . 

Substituting the value of the multiplier in the expression for klw , we finally obtain the 

values *

klw  for the optimal capacity of communication lines   

1

*

1

max

1 kl rs rs

kl kl

rs Ekl

f c f
w f

T UU c  

= +  ,  

or after obvious transformations  
1

*

1
max

rs rs

kl rs E

kl kl

kl kl

c f
f

w f
U T c f





= +


.                                 (10)  

The optimal network cost is defined as 

 

* 1 1 2

min

max

1
( )kl kl kl kl

kl E kl E

C c f c f
U T 

= +  .                        (11) 

Note that in practice for data transmission networks and transport networks, capacity, 

as a rule, should be the same for the forward kl  and reverse lk  directions. Therefore, 

at practical solution to the problem, two oriented communication lines kl  and lk  are 

replaced with one non-oriented communication line , ( )kl k l  and selected 

max{ , }kl kl lkf f f= . 

The approximation algorithm allows one to quickly get into the neighborhood of 

continuous points optimum of *

klw  and find an approximate discrete solution klw . The 

idea of the algorithm is as follows.  

Suppose that for all arcs kl E  the coefficients 0

klc , 1

klc  of the linear dependence 

(9) are known. Such coefficients can be obtained for each arc kl  of length kld  by 

linear approximation (for example, by the least squares method) of discrete values 

cost of the arcs for a number of standard discrete capacity 1 2{ , , ..., }klw w w w , the 

same for all arcs.  

Knowing the coefficients 1

klc tg=  (Fig. 1) and the values of klf , through formula 

(10) you can find the throughput *

klw . Next in the neighborhood of continuous opti-

mums 
*

klw  according to a certain procedure, we select the suitable carrying capacity 

values from a discrete range.  

We present a general scheme of the “greedy” algorithm for the parametric solution 

of problem (1), (2) for linear cost functions.  

AP Algorithm 

 1. For each arc kl E  and a given range of throughputs 1 2{ , , ..., }klw w w w , 

through the least-squares method, it is needed to approximate a discrete cost 

( , )kl kl klC w d  with linear functions. We determine the coefficients 
0

klc , 
1

klc  in (9).  

2. Through the formula (3), we determine the boundaries of the interval of varia-



tion of the parameter maxT . It is arbitrarily to choose the first parameter value maxT  

from the interval, for example, starting from its left or right border. 

3. We calculate *

klw , *

minC  according to (10) and (11). 

4. From 1 2{ , , ..., }klw w w w  for each arc kl E  we select the closest to *

klw  the 

permissible values j

klw , 1,j = , such as *j

kl kl klf w w  . If j

kl klw f , then as j

klw , we 

choose the nearest larger value of j

kl klw f  (it may be, that *j

kl klw w ). If 0klf = , 

then it is accepted that arc kl  does not exist. 

5. In the neighborhood of the point *

klw  for each arc, we find the values 

* /kl kl klc c t=   , where 1( ) ( )j j

kl kl kl kl klc c w c w+ = − , 

1/ ( ) / ( )j j

kl kl kl kl kl kl klt f w f f w f+ = − − − , {1, ..., 1}j  − .  

6. We arrange all the arcs kl E  in ascending order of values *

klc  and get a set 

*

1 2{( , ) , ( , ) , ..., ( , ) }eE k l k l k l= . The reason for such an ordering is for all arcs 

1( ) ( )j j

kl kl kl klc w c w + , and 1 1( ) / ( ) ( ) / ( )j j j j

kl kl kl kl kl kl kl kl kl klt w f w f t w f w f+ += −  = − . We 

set the initial value of the arcs counter 0i = . 

7. Let 1i i + . We select an arc ( , )ik l  from the set 
*E  and go to step 8.  

8. We increase throughput ( , )i

j

k l
w  for the arc ( , )ik l  to the nearest larger value from 

the discrete row 1 2{ , , ..., }w w w , i.e. choose such 
1

( , )i

j

k l
w +

, that 
1 *

( , ) ( , )i i

j j

klk l k l
w w w+   , 

{1, ..., 1}j  − . We recalculate the value avt  taking into account an increase in 

throughput of the arc ( , )ik l . If maxavt T , then go to step 9. Otherwise, go to step 7 to 

increase the counter of arcs. The value of the counter of arcs i  cannot exceed the 

value  number of arcs e , since the condition maxavt T  will be guaranteed to be satis-

fied in the cycle  for i  due to the fact that for all arcs may turn out to be 
1 *

( , )i

j

klk l
w w+  .  

9. The found values ( , )i

j

k l
w , {1, ..., }j  , {1, ..., }i e  or 

max 1 2( ) { , , ..., }klw T w w w , kl E  , are an approximate solution to the problem for 

the current parameter value maxT . Through the formula (4), we calculate the average 

load factor of the network arcs ALF  and the cost of the network 

( , )kl kl klkl E
AS C w d


= .  

10. If the choice of the current parameter value maxT  is completed, there is the end 

of the algorithm. Otherwise, we change the parameter value maxT  to the selected mag-

nitude and go to step 3.   

The time complexity of the AP algorithm is 
2

1( log )O e e Me e K e + + +  and is 

mainly determined by the time complexity of the algorithm for approximating the cost 

of arcs with linear functions and of the sorting algorithm, where M — is the number 

of values maxT  with a given  sampling step, 1K  — is some constant.  

 



 

Fig. 1. The cost function of arcs 

3 Results of the experimental solution of the problem  

The problem was solved by using an example of a network with n  = 1000 nodes and   

e  = 4000 arcs, generated by a pseudo random number sensor. The lengths of arcs kld , 

kl E  ranged from 20 to 50 km, and values of flows iju , , 1,i j n=  from 1 to 2 

transport blocks. The klf , kl E  values were obtained by distributing all flows along 

the shortest paths using the two-criteria lexicographic algorithm [18]. The throughput 

of arcs was selected from the set {5, 10, 15, 20, ...} with a sampling step of 5 units. 

The cost of arcs for a given set of throughputs of arcs was calculated by the formula 

0 1( , ) j j

kl kl kl klC w d k k d= + , 1, 2, ...j = , kl E . For linear functions, the coefficients 

1 2

0 0 ...k k   and 1 2

1 1 ...k k   were chosen from the sets {0, 0, 0, 0, 0, ...} and {5, 10, 

15, 20, ...}. The number of values in the sets for klw , 0

jk , 1

jk  was determined depend-

ing on the maximum flow along the arc max klf , kl E , the sampling step of the 

throughput capacities of the arcs, and the initial value maxT . If for the current value of 

maxT , it turned out to be 
*

klw w  , the set 1 2{ , , ..., }w w w  can be automatically ex-

panded to the value 
5

*

klw w
 =   , where 

5
    — is the rounding sign to a larger inte-

ger multiple of 5.  The table 1 shows the results of solving the problem when chang-

ing constraint at the delay time from maxT = 0.002 to maxT = 10.0. For all values of the 

parameter maxT , the following are given: Continuous Optimal Solutions, rounded to 

integers and Approximate Discrete Solutions (AS) in nominal units of cost value; 

values of the average load factor of arcs for network (ALF); deviations in percent of  

approximate solution from the continuous optimal solution.  

( )kl klc w  
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Table 1. Results for an experimental study of the dependence for the network cost and the 

average load factor of arcs on the value maxT  for the AP algorithm 

№ 
maxT  Continuous 

Optimal 

Solution 

Approximate 

Solution 

Average Load 

Factor  

of the Arc  

Deviation from Con-

tinuous 

Optimal Solution, % 

1 0,002 702606912 702629696 0,38942969 0,0032 

2 0,003 594371712 594391104 0,48080164 0,0033 

3 0,004 540254080 540272512 0,54661781 0,0034 

4 0,005 507783520 507800512 0,59667718 0,0033 

5 0,006 486136480 486152288 0,63623863 0,0033 

6 0,007 470674304 470691072 0,66836989 0,0036 

7 0,008 459077664 459092352 0,69505483 0,0032 

8 0,009 450058080 450074496 0,71761900 0,0036 

9 0,01 442842368 442856736 0,73692870 0,0032 

10 0,02 410371808 410387264 0,84252059 0,0038 

11 0,03 399548288 399564960 0,88708848 0,0042 

12 0,04 394136544 394153120 0,91188490 0,0042 

13 0,05 390889472 390907136 0,92762768 0,0045 

14 0,06 388724768 388742280 0,93870205 0,0045 

15 0,07 387178560 387197728 0,94657397 0,0050 

16 0,08 386018880 386038144 0,95283246 0,0050 

17 0,09 385116928 385137024 0,95748824 0,0052 

18 0,1 384395360 384416224 0,96161634 0,0054 

19 0,2 381148320 381177888 0,9798876 0,0078 

20 0,3 380065952 380102912 0,98587686 0,0097 

21 0,4 379524768 379568832 0,98896205 0,0116 

22 0,5 379200064 379250464 0,99074137 0,0133 

23 0,6 378983616 379040928 0,99179864 0,0151 

24 0,7 378828992 378893472 0,99245179 0,0170 

25 0,8 378713024 378784000 0,99292845 0,0187 

26 0,9 378622816 378700672 0,99332023 0,0206 

27 1,0 378550656 378635168 0,99358821 0,0223 

28 2,0 378225952 378363360 0,99453980 0,0363 

29 3,0 378117728 378303680 0,99463964 0,0492 

30 4,0 378063616 378296352 0,99464238 0,0616 

31 5,0 378031136 378295712 0,99464256 0,0700 

32 6,0 378009472 378295264 0,99464262 0,0756 

33 7,0 377994016 378295008 0,99464267 0,0796 

34 8,0 377982432 378295008 0,99464267 0,0827 

35 9,0 377973408 378295008 0,99464267 0,0851 

36 10,0 377966176 378295008 0,99464267 0,0870 

 



As it is visible in table 1, continuous optimal and discrete approximate solutions 

are differing slightly with a value from 0.0032% to 0.0796%. In a variant of solution 

33 at maxT  = 7.0, the lower boundary of the network cost 378295008 is reached, 

which cannot be improved at the further increasing the value of maxT . It follows that 

the deviations of discrete optimal and approximate solutions will be even smaller.  

The most interesting variants for analyzing and deciding the choice of reserve for 

the capacity of arcs, are the solutions with numbers 1-12, for which the network cost 

is significantly reduced (by 308476576 units) and load factor of arcs is increased from 

0.39 to 0.91. These variants solutions are clearly shown in Fig. 2.  

The same results as in table 1 were obtained, when solving the problem with an 

approximate algorithm on the basis of the method of sequential analysis for variants, 

which is given in [1]. However, the time complexity of this algorithm is several or-

ders of magnitude greater, and to calculate each solution for the given values maxT , it 

took from 5 to 12 seconds on a PC with a clock frequency of 2.66 GHz. The AP algo-

rithm coped with such tasks in a split second. 

The conducted experimental studies showed the sufficient accuracy and speed of 

the AP algorithm, which in the most cases allows it to be used for engineering calcu-

lations on networks containing more than 1000 nodes and 4000 arcs. The PMRCA 

solution can be useful in solving the practical problems of flow distribution and de-

signing reliable communication networks with discrete parameters and a constraint on 

the time delay of flows or on the average load factor of arcs of network [19, 20].   

 

Fig. 2. Change in network cost and load factor of the arcs from Tmax. The values in the AS  

line is multiplied by 109 

The experimental results were obtained on a dual-core PC with a clock frequency 

of 2.66 GHz and 2 GB RAM under Windows XP. All programs are written in soft-

ware environment Microsoft Developer Visual Studio.  



4 Conclusion 

The article formulates the problem of managing the reserve of capacity arcs in a 

communication network with discrete parameters when changing the constrain on the 

delay time of flows. An approximate polynomial algorithm for solving the problem 

for the case of linear of arcs cost’s functions is proposed and the results of its experi-

mental study are presented. The experimental results allow us to state the practical 

applicability of the algorithm for solving the problem on large-dimensional networks 

containing more than 1000 nodes and 4000 arcs.   
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