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Abstract. The paper considers the high-performance digital algorithm for esti-

mating the power spectral density (PSD) by the correlogram method. This algo-

rithm is developed on the binary analog-stochastic quantization basis of the in-

vestigated continuous signal. The mathematical model for the discrete represen-

tation of binary analog-stochastic quantization made it possible to analytically 

calculate the cosine Fourier transform of weighted window functions in the al-

gorithm development. As a result of this, the developed algorithm does not re-

quire numerical integration operations. The main computational operations of 

the algorithm are the operations of summation and subtraction. The algorithm 

also does not require the calculation of correlation function estimates. All this 

increases the computational efficiency of the PSD estimation by the correlo-

gram method. The experimental studies results of the algorithm are given. 

These results show that the proposed algorithm gives accurate PSD estimates in 

the presence of additive noise. The computational efficiency of the algorithm 

provides the ability to use it for estimating the PSD of complex signals. 

Keywords: power spectral density, time-weighting function, binary analog sto-

chastic quantization, sign signal, digital time readout 

1 Introduction 

Spectral analysis methods of signals are used in various fields of science and technol-

ogy. In particular, this applies to acoustics, location, vibration diagnostics, radio fre-

quency identification, etc. Under conditions of a priori statistical uncertainty, the reg-

ularity of changing signal parameters over time is determined by probabilistic laws. 

The spectral analysis of such signals involves estimating the power spectral density 

(PSD) over a finite time interval. PSD characterizes the distribution of the average 

signal power over frequencies within the analyzed frequency range. 

One of the most common classical methods for assessing PSD is the correlogram 

method. This spectral analysis method can be used to study the frequency composi-

tion of complex multicomponent signals that meet the conditions of stationarity and 

ergodicity in time. 
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At present, the correlogram method for estimating PSD is carried out primarily in 

digital form. First, modern computing and software engineering allow you to create 

high-tech problem-oriented systems. Secondly, digital signal processing guarantees 

the accuracy of calculations. Moreover, traditionally, researchers use digital algo-

rithms that are developed on the basis of an approximate implementation of the ana-

log integration operation in discrete form by digital summation operations with a 

uniform sampling interval in time [1–4]. All digital algorithms developed in this way 

require a significant amount of calculated operations. Among these operations, a large 

number of digital multiplication operations have to be performed. As you know, digi-

tal multiplication operations are the most time-consuming computing operations. 

Using algorithms that require a large number of digital multiplication operations can 

lead to significant time costs. The consequence of this is a decrease in the efficiency 

of calculating PSD estimates. 

A feature of classical algorithms for calculating the PSD estimate by the correlo-

gram method is the need for preliminary calculation of the correlation function esti-

mates sequence for the analyzed signal. It also reduces the computational efficiency 

of obtaining PSD estimates. 

The correlogram method involves the use of weighted window functions (the so-

called correlation windows) to attenuate the blurring effect of spectral components 

estimates. The use of weighted window functions involves the operation of weighing 

the correlation function estimates with the correlation window function samples. This 

procedure leads to the need for additional digital multiplication operations. As a re-

sult, the use of correlation windows reduces the computational efficiency of digital 

algorithms for estimating the PSD using the correlogram method. 

Typically, the computational efficiency of digital signal processing is enhanced in 

three main ways [5–9]. Firstly, an increase in the speed of data processing programs is 

ensured by an increase in the overall performance of computing systems. Secondly, 

the developers of the algorithms carry out special preparation of the initial data in the 

form of ordered algebraic structures. Thirdly, the computational process is accelerated 

by refactoring and using various methods of optimizing program code. However, 

none of these methods can solve the problem of increasing the computational effi-

ciency of digital signal processing in full. This is explained by the fact that the time 

characteristics of the execution of application programs are determined largely by the 

mathematical model of preparing data in digital form and by performing computa-

tional operations on this data. The use of binary quantization as the primary conver-

sion of the analyzed continuous signal into a digital code can improve the computa-

tional efficiency of digital signal processing [10, 11]. The application of binary quan-

tization has been investigated extensively in the past years [12–15]. In [16, 17], fast 

digital algorithms were developed for estimating the PSD based on the correlogram 

method using binary analog-stochastic quantization. The discrete-time mathematical 

model for this quantization type provided analytical calculation of analog integration 

operations in the development of these algorithms [18]. As a result, the need to per-

form a large number of digital multiplication operations is eliminated. The main oper-

ations of the algorithms are logical operations and arithmetic operations of summing 

and subtracting discrete values of the cosine function. Algorithms also do not require 



preliminary calculation of estimates of the correlation function. All this simplifies the 

digital procedures for calculating the PSD estimate by the correlogram method and 

reduces the overall complexity of the spectral analysis. However, the algorithms in 

[16, 17] were developed without taking into account the use of weight functions (cor-

relation windows), which limits their application in practice. 

Thus, the task of developing a computationally efficient algorithm for estimating 

the PSD based on the correlogram method is relevant. To solve this problem, it is 

fundamentally important to obtain simple computational procedures using the 

weighted window functions and reduce the number of digital multiplication opera-

tions. Moreover, such an algorithm should allow obtaining the PSD estimates with the 

necessary accuracy and frequency resolution. 

2 Algorithm for estimating the PSD by the correlogram method 

based on binary analog-stochastic quantization of the 

analyzed signal 

It was noted above that in [16, 17] fast algorithms for estimating the PSD based on the 

correlogram method were developed using a technique that allows analytical calcula-

tion of integration operations. Let us summarize this technique for developing a digi-

tal algorithm for calculating the PSD estimates by the correlogram method using 

weighted window functions. 

The correlation function and weighted window functions are even functions. With 

this in mind, the PSD estimate using correlogram method is calculated as follows: 
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where )(ˆ XXR  is the correlation function estimate of the analyzed signal )(tX ; 

)(w  is the weighted window function; T is the length of time the spectral analysis. 

Let within the time intervals ];0[ Tt  and ]2;0[ Tt , the results of two inde-

pendent operations of binary analog-stochastic quantization are sign signals: 
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where sgn{...}  is the operator of the sign function; )(tx
o

 is a centered implementa-

tion of the analyzed signal )(tX ; )(1 t  and )(2 t  are auxiliary random signals. 

Auxiliary signals )(1 t  and )(2 t  have a uniform distribution ranging from 

max−  to max+ , where the value of max  must exceed the highest possible value of 

the implementation )(tx
o

 with a probability close to unity [10,11,18]. 



As an estimate of )(ˆ XXR , we take an unbiased estimate [19–21]: 
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We introduce the notation: 

 = fwfg 2cos)(),( . (4) 

Then, taking into account (3) and (4), estimate (1) is: 
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In (5), we change the order of integration over the variables t and τ: 
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Further development of the digital algorithm for estimating the PSD was reduced 

to the practical implementation of analog integration operations in a discrete form. An 

effective calculation of these operations can be achieved using a discrete-time math-

ematical model for changing the values of the sign signals )(1 tz  and )(2 tz  in time. 

These signals are continuous functions and their values are limited in level by the 

values “–1” and “+1”. Therefore, we can unambiguously represent the signals )(1 tz  

and )(2 tz  at the time intervals of their formation ];0[ Tt  and ]2;0[ Tt  using the 

values of )( 01 tz  and )( 02 tz  at the initial moment of quantization time 00 =t  and 

the time samples  }   { 1z
it  and  }   { 2z

jt , at which they change their value, where 
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Taking into account the discrete-time representation of the sign signals )(1 tz  and 

)(2 tz , we write the estimate (6) as a sum: 
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From (4) it follows that for a continuous and differentiable weighted window function 

)(w  in the time interval ]2;0[ T , the function ),( fg   is also a continuous and 

differentiable function in this time interval. Then there exists a continuous function 

),( fG   for which the condition is satisfied [22]: 
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In (7), we change the order of integration. Then, taking into account (8), the integral 

over the variable t can be calculated analytically. After calculating this integral, we 

obtain: 
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Relation (11) as well as (6) can be represented as a sum of integrals: 
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The integral in (12) is defined. It can be calculated numerically: 
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Relations (9) and (13) can be directly used to calculate the SDM estimates in dis-

crete form. Moreover, we take into account that for a given duration of the spectral 

analysis time T, the maximum possible frequency resolution is Tf /1= . Then for 

fkfk =  we finally get: 
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As follows from (14) and (15), the calculation of the PSD estimate was reduced to the 

discrete processing of the function ),( fG  . Relations (14) and (15) became the basis 

for the development of a digital algorithm for calculating PSD estimates. The main 

operations of this algorithm are the operations of summing and subtracting the sam-

ples of function ),( fG  , where jit=  and fkf = . 

The function ),( fG   is primitive for the function = fwfg 2cos)(),(  in the 

time interval ]2;0[ T , where the weighted window function )(w  is known. 

Therefore, the function ),( fG   is also known, since its form is determined only by 

the type of the applied weighted window function )(w . As an example, some of the 

main weighted window functions )(w  used in calculating the PSD estimates and the 

corresponding functions ),( fG   are presented in Table 1 [1, 23–25]. 

Table 1. Weighted window functions and functions ),( fG   
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3 Experiments and results 

Experimental studies of the developed algorithm were carried out using simulation 

methods. In accordance with this, a logical-mathematical model was developed for 

conducting computer experiments. The purpose of the experimental studies was to 

evaluate the metrological capabilities of the algorithm for calculating the PSD esti-

mate. On the basis of discrete-event modeling, special software was developed to 

simulate the binary analog-stochastic quantization of a continuous signal. The dis-



crete-event model of binary analog-stochastic quantization made it possible to ab-

stract from the continuous quantization result and consider only the main events de-

termined by time instants at which it changes its values. The model of centered signal 

implementation was the sum of the statistical-independent harmonic components in 

additive noise )(te : 
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where mf  are the normalized frequencies, mA  are the normalized amplitudes, m  

are the initial phases. 

A model of this type reflects the dynamics of a real signal characterizing a wide 

class of physical processes. We can set a specific superposition for the arrangement of 

spectral components within a given frequency range and consider a complex signal as 

a combination of narrow-band signals. We also note that this model makes it possible 

to study the operability of the algorithm in the presence of noise interference and to 

examine its stability in calculating the PSD estimates in the presence of random back-

ground noise. 

Normalized frequencies mf  were set in the range from zero to 0.5. This ensured 

the constancy of the frequency range of the presentation of the results of the PSD 

estimation for complex signals models that a priori occupy different frequency ranges 

in width. The amplitudes mA  were also interpreted as normalized. They were set in 

the range from zero to unity. Initial phases k  were set within the interval 

− k  using a generator of randomly uniformly distributed quantities. Addi-

tive noise )(te  was white noise with zero expectation and dispersion 12 =e . In par-

ticular, the model contained five harmonic components. The parameters of these 

components are shown in Table 2. 

Table 2. Harmonic components parameters 

m mA  mf  
2
max

2 / AAm , 

dB 

Normalized PSD estimate, dB 

Rectangular 

(Box Car) 

window 

Triangular 

(Bartlett) 

window 

Cos(x) 

window 

Hann 

(Raised-

Cosine) 

window 

1 0.15 0.275 -16.48 -16.21 -16.32 -16.29 -19.52 

2 0.25 0.3 -12.04 -12.07 -12.14 -12.17 -13.86 

3 0.75 0.32 -2.5 -2.44 -2.47 -2.47 -3.04 

4 1.0 0.33 0 0 0 0 0 

5 0.35 0.375 -9.12 -9.73 -9.54 -9.55 -9.11 



Using simulation, experiments were carried out in the course of which the possibil-

ity of frequency resolution and the accuracy of determining harmonic components 

were checked. Figures 1-4 show the normalized PSD estimates obtained for the Rec-

tangular (Box Car) window, the Triangular (Bartlett) window, the Cos(x) window and 

the Hann (Raised-Cosine). PSD estimates were calculated with a resolution of 0.0001 

units of normalized frequency. The results of determining the harmonic components 

are presented in Table 2. 

 

Fig. 1. Normalized PSD estimate, Rectangular (Box Car) window 

 

 

Fig. 2. Normalized PSD estimate, Triangular (Bartlett) window 



 

Fig. 3. Normalized PSD estimate, Cos(x) window 

 

Fig. 4. Normalized PSD estimate, Hann (Raised-Cosine) window 

On all graphs, we see a steady identification of all five harmonic components. The 

position of the harmonic components estimates in the spectrum corresponds to the 

initial values. False spectral lines are not present. Spectral line splitting is not ob-

served. Spectral lines are clearly distinguishable. Strong harmonics do not mask weak 

ones. The spectral noise estimate remains at a fairly low level in relation to the har-

monic component estimates. It practically does not exceed -40 dB. This indicates a 

good resolution and high stability of the algorithm to external additive noise. 



4 Conclusion 

Based on binary analog-stochastic quantization, we developed a digital algorithm for 

estimating the PSD by the correlogram method. During the development of the algo-

rithm, the integration operations are calculated analytically. This eliminates the meth-

odological error, which is the result of numerical integration operations. The main 

computational operations of the algorithm are the operations of summation and sub-

traction. Unlike the classical digital algorithms for estimating the PSD by the correlo-

gram method, this algorithm requires calculating only two estimates of the correlation 

function )0(ˆ
XXR  and )(ˆ TRXX . If kxT  , then 0)(ˆ →TRXX , where kx  is the 

correlation interval of the analyzed signal. Then 0)(ˆ),( →TRfTG XX , and for (10) 

we will have )0(ˆ),0(2),( XXXX RfGfTD  . All this increases the computational 

efficiency of the estimation of the PSD by the correlogram method. 

The considered algorithm can be implemented as a functionally complete software 

module. This module can find application in the composition of the metrologically 

significant software of multifunctional systems for operational frequency-time analy-

sis of signals [26]. The practical use of such a module in integrated software should 

increase the efficiency of solving problems requiring the processing of complex mul-

ticomponent signals. 

Acknowledgments. The authors are grateful to the Russian Foundation for Basic 

Research (RFBR). This work was supported by the RFBR under initiative research 

project No. 19-08-00228-A. 

References 

1. Marpl Jr., S.L.: Digital Spectral Analysis: Second Edition. Dover Publications, Mineola, 

New York (2019) 

2. Oppenheim, Alan V., Schafer, Ronald W.: Discrete-Time Signal Processing: 3rd Edition. 

Prentice Hall, Upper Saddle River (2009) 

3. Alessio, S.M.: Digital Signal Processing and Spectral Analysis for Scientists: Concepts 

and Applications. Springer, Cham (2016) 

4. Stoica, P., Moses, R.L.: Spectral Analysis of Signals. Pearson Prentice Hall, Upper Saddle 

River, New Jersey (2005) 

5. Blahut, R.E.: Fast Algorithms for Signal Processing. Cambridge University Press, New 

York (2010) 

6. Bi, G., Zeng, Y.: Transforms and Fast Algorithms for Signal Analysis and Representa-

tions. Birkhauser, Boston (2004) 

7. Britanak, V., Yip, P.C., Rao, K.R.: Discrete Cosine and Sine Transforms: General Properties, 

Fast Algorithms and Integer Approximations. Academic, Elsevier, Amsterdam, (2007) 

8. Chu, Ellen W.: Discrete and Continuous Fourier Transforms: Analysis, Applications and 

fast Algorithms. CRC Press, Boca Raton, London, New York (2008) 

9. Madisetti, V.K. (editor-in-chief): The Digital Signal Processing Handbook, Second Edi-

tion: Digital Signal Processing Fundamentals. Boca Raton, FL: CRC Press (2010) 



10. Mirskii, G.Ya.: Characteristics of Stochastic Interconnections and Their Measurement (in 

Russian). Energoizdat, Moscow (1982) 

11. Max, J.: Methodes et techniques de traitement du signal et applications aux mesures phy-

siques. Tome 1. Principes generaux et methodes classiques. Masson, Paris (1996) 

12. Isla, J., Celga, F.: The use of binary quantization for the acquisition of low SNR ultrasonic 

signals: a study of the input dynamic range. IEEE Transactions on Ultrasonics, Ferroelec-

trics, and Frequency Control 63(9), pp. 1474–1482 (2016). 

doi:10.1109/TUFFC.2016.2571843 

13. Qiqing Zhai, Youguo Wang.: Noise effect on signal quantization in an array of binary 

quantizers. Signal Processing 152, pp. 265–272 (2018). 

https://doi.org/10.1016/j.sigpro.2018.06.010 

14. Jing-Dong Diao, Jin Guo, Chang-Yin Sun.: Event-triggered identification of FIR systems 

with binary-valued output observations. Automatica 98, pp. 95–102 (2018). 

https://doi.org/10.1016/j.automatica.2018.09.024 

15. Auber, R., Pouliquen, M., Pigeon, E., M’Saad, M., Gehan, O. Chapon, P.A. Moussay,S.: 

Estimation of auto-regressive models for time series using binary or quantized data. IFAC-

PapersOnLine 51(15), pp. 581–586 (2018). https://doi.org/10.1016/j.ifacol.2018.09.221 

16. Yakimov, V.N.: Numerical estimation of a spectral power density (SPD) on the basis of 

the signed stochastic quantization of continuous processes (in Russian). Pribory i Sistemy 

Upravleniya 12, pp. 60–64 (2001) 

17. Yakimov, V.N.: Digital spectral analysis based on sign two-level transformation of contin-

uous random processes and asymptotically unbiased estimation of the correlation function. 

Measurement Techniques 48, pp. 1171–1178 (2005). doi: https://doi.org/10.1007/s11018-

006-0040-9 

18. Yakimov, V.N.: Digital complex statistical analysis based on sign-function representation 

of random processes (in Russian). Izvestia of Samara Scientific Center of the Russian 

Academy of Sciences 18, no. 4(7), pp. 1346–1353 (2016) 

19. Yakimov, V.N.: Correlation analysis based on interval representation result of sign-function 

for random processes (in Russian). Pribory i Sistemy Upravleniya 11, pp. 61–66 (2001) 

20. Yakimov, V.N., Mashkov, A.V.: Digital estimation of correlation function moments using 

analog-stochastic sign quantization of a random process. Measurement Techniques 59, pp. 

12–15 (2016). doi: https://doi.org/10.1007/s11018-016-0908-2 

21. Yakimov, V.N., Susarev, S.V., Mashkov, A.V., Gubanov, N.G. Philimonov, A.B.: Acous-

tic diagnostics of pipeline networks based on correlation analysis using binary analog-

stochastic quantization. In: XX IEEE International Conference on Soft Computing and 

Measurements (SCM), pp. 4–7. IEEE Press, Saint Petersburg (2017). doi: 

10.1109/SCM.2017.7970478 

22. Fichtenholz, G.M.: A Course of Differential and Integral Calculus (in Russian). Vol. II, 8th 

ed., Fizmatlit, Moscow (2003) 

23. Prabhu, K. M. M.: Window Functions and Their Applications in Signal Processing. CRC 

Press, Taylor & Francis Group, Boca Raton (2014) 

24. Poularikas A. D.: The Handbook of Formulas and Tables for Signal Processing. CRC 

Press, IEEE Press, Boca Raton (1999) 

25. Allen, Ronald L., Mills, Duncan W.: Signal Analysis: Time, Frequency, Scale, and Struc-

ture. IEEE Press, Wiley-Interscience, Piscataway, New Jersey (2004). 

26. Yakimov, V.N., Zaberzhinskij, B.E., Mashkov A.V., Bukanova, Yu.V.: Multi-threaded 

Approach to Software High-speed Algorithms for Spectral Analysis of Multi-component 

Signals. XXI International Conference Complex Systems: Control and Modeling Prob-

lems, pp. 698–701. IEEE Press, Samara (2019). doi: 10.1109/CSCMP45713.2019.8976669 

https://doi.org/10.1016/

