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Abstract. Sparse and dense wireless sensor networks (WSNs) are both broadly 

implemented due to the rapid advancement of control and communication tech-

nologies. Impact of both scalability and density on the lifespan of WSNs has 

however seldom been examined which depends on the sensor node deployment. 

Scalability takes a critical role in both the connectivity and coverage range of 

WSNs, which in turn is also relevant to the lifespan defined in terms of either 

the first node or last node. Without loss of generality, to minimize the power 

consumption and optimize the WSN lifespan, energy-efficient WSNs are select-

ed to analyze the impact of scalability and density on the WSNs lifespan in this 

research. When path transmission energy and transceiver circuit energy are both 

taken into account, it is not guaranteed that either single-hop routing or multi-

hop routing is always optimal. In general, single-hop routing is more efficient 

for WSNs in small diameter coverage range at high radio transceiver power, 

while multi-hop routing is more efficient for WSNs in large transmission dis-

tance at low radio transceiver power. As a matter of fact, the single-hop routing 

is chosen for WSNs analysis with respect to density and scalability in this pre-

liminary study, which can also be easily expanded to multi-hop routing cases. 
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1 Introduction 

Wireless sensor networks consist of numerous spatially placed sensor nodes, which 

are small battery powered autonomous devices capable of data processing and short 

range radio communication. Wireless channels are used for transmitting and receiving 

data among sensor nodes. Network densities of WSNs vary significantly from sparse 

to dense deployment. Integration of sensing, communication, control, computing and 

hardware technologies makes it possible to produce compact scale and low energy 

devices, which allows for the capability of dense deployment. WSNs are subject to 

limitation of battery power, operating power and memory storage as well as the delay, 

propagation loss, and interference. For dense deployment of WSNs such as wireless 
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cellular networks, information redundancy upon broadcasting also needs to be taken 

into account [1-3].  

The low energy adaptive clustering hierarchy (LEACH) is developed to evaluate 

performance in terms of WSNs lifetime, quality and latency. The distributed pro-

cessing is enabled to save energy resources via cluster self-organization, adaptive 

clustering, cluster head rotating and balanced energy load distribution as well as the 

application-specific aggregation of data. However, practical node heterogeneity and 

cluster head load imbalance will shorten the network lifetime. Meanwhile it is based 

on single-hop instead of multi-hop data transmission. In this case, energy-efficient 

protocol is necessary for potential optimal clustering with energy-constrained sensor 

nodes, where nodes with highest residual energy are reelected as cluster heads in next 

rounds in order to forward the data to base stations [4]. The initial LEACH protocol 

can be enhanced from different aspects to extend the lifetime. The near-optimal chain-

based protocol has been used to optimize sensor energy efficiency via power-efficient 

information gathering. Each sensor node solely communicates with its nearest neigh-

bor and then it takes turns to transmit data to the base station. It reduces the energy 

consumption each round [5]. The multi-hop LEACH protocol via clustering is also 

proposed which outperforms the LEACH protocol in terms of energy consumption, 

lifetime and stability. The heterogeneous nodes are used for data transmission follow-

ing the optimal path from cluster heads (CHs) to the base station (BS) [6]. In addition, 

an energy-efficient clustering protocol is designed for the heterogeneous WSNs using 

data aggregation. Reelection of cluster heads and selection of the suitable routing path 

for data transmission are both based on the residual energy of sensor nodes [7].  

The balanced data aggregation scheme can be introduced via clustering. The sensor 

network is split into a number of rectangular grids. One cluster head per grid is elect-

ed for load balance among sensor nodes as well as node management in WSNs [8]. 

An energy-efficient reliable data aggregation scheme can also be designed with clus-

tering. Cluster head is elected based on residue energy and transmission distance from 

the node to coordinate node. Afterwards it conducts data aggregation to transmit data 

to the base station [9]. For cellular networks, direct sink access is applied to mobile 

data collection via clustering. Clustering and data correlation help cluster heads to 

operate under small overhead and medium access control. Across a wide range of 

parameters, latency and energy consumption are remarkably reduced with robustness 

[10]. Sensor node deployment is confronted with diverse harsh environments. WSNs 

also differ in node densities between sparse and dense deployments. For dense node 

deployment, broadcasting by flooding will give rise to information redundancy. Thus 

adaptive routing protocols are necessary. WSNs topology control by integrating adap-

tive schemes and Kalman filters is proposed to solve these problems [11]. 

The energy efficiency of WSNs plays a critical role in the lifespan. Data aggrega-

tion is important to reduce redundancy and decrease transmission cost to save energy. 

There is a tradeoff among reliability, energy usage and latency. Dynamic routing is 

introduced to reach good performance via adaptive clustering. The generalized Ant 

Colony Optimization (ACO) is used to extend the actual lifespan of sensor nodes with 

energy constraints. Every sensor node computes the residual energy so as to dynami-

cally estimate probabilities for optimal channel selection to extend the WSNs lifespan 



 

 

[12]. The music-based harmony search optimization is also designed and implement-

ed in real time for WSNs. Its objective is to optimize the energy distribution by mini-

mizing the intra-cluster distances between cluster heads and members to extend its 

lifespan. This protocol shows better results than the LEACH protocol and Fuzzy C-

Means clustering scheme [13]. Single-hop routing has the merits of less packet loss 

and propagation delay than others, while its energy efficiency could also be higher 

than multi-hop routing in many cases, thus it is selected to examine the impact of 

scalability and density on the network lifespans. 

2 Energy dissipation model of WSNs 

To successfully transmit and receive a single packet of size K, the energy dissipation 

is formulated as (1). 

)E E +E +(E×K  K) (d,E RE_ELEAMPDATR_ELET +=    (1) 

where ET(d, K) refers to the total energy dissipation to send and receive a packet of 

the data size K [Bits]; ETR_ELE [J/Bit] refers to the overhead energy of transmitter elec-

tronics (e.g., modulation, digital coding, phase lock, filtering); EDA [J/Bit] refers to the 

additional energy dissipated by cluster heads for data aggregation and compression; 

EAMP [J/Bit] refers to the radio propagation energy consumed in the power amplifiers 

which is defined by (2); ERE_ELE [J/Bit] refers to the overhead energy of receiver elec-

tronics (e.g., digital decoding, demodulation); d [m] refers to the distance for radio 

propagation from the transmitter to receiver; ε [J/Bit*mλ] refers to the transmission 

amplifier cofactor; λ refers to the path loss exponent.  
 d=AMPE             (2) 

The path loss exponent λ varies between single path and multiple path propagation. 

For instance, the free space channel model assigns λ as 2 for single path propagation 

within the radio range, while it assigns λ as 4 for multi-path propagation in the fading 

channel model. Particularly λ can be selected as 4 when data transmission starts from 

the cluster head nodes, while λ is selected as 2 when data transmission starts from 

other sensor nodes. 

For an individual cluster with N sensor nodes, only one will serve as the cluster 

head (CH) each round. Then the residual energy ECH of the CH must be no less than 

(3) in order to possibly deliver the data packet.   

)+E(E×1)-(N  E DATR_ELECH        (3) 

The residual energy ERS of each sensor node is simply the difference between initial 

energy EINI and the total dissipated energy ET of that node, as shown in (4). 

 TINI RS E-EE =            (4) 

The residual energy ERS of any sensor node monotonically decreases along with 

time unless staying at the idle mode (inactivity). The residual energy of the CH de-

creases dramatically with exceptional energy dissipation compared with other sensor 

nodes. To extend the lifespan, reelection of CH must be conducted each round. For 

LEACH protocol, energy should be distributed evenly, so all nodes will serve as clus-

ter heads with rotation finally. Since the entire network has been split into a number 



of clusters covering randomly distributed active nodes and dead nodes, load imbal-

ance among all clusters and CHs will give rise to shortened network lifespan. Thus 

energy-efficient dynamic routing scheme is needed. The optimality on energy effi-

ciency might be too tough to reach due to numerous factors (e.g., power, memory, 

propagation loss, delay, latency and interference) under diversified complex cases. 

Even problems on reaching the optimal number of clusters and optimal number of 

hops have never been solved completely. The focus here instead is to conduct some 

preliminary studies about impact of both scalability and density on the lifespan of the 

simple energy-efficient dynamic routing. 

3 Energy-efficient dynamic routing of WSNs 

An easily implemented energy-efficient routing protocol has been proposed. In the 

initial 1/p rounds, dynamic routing of WSNs follows the classical hierarchical 

LEACH protocol. CHs should be determined in advance, which are responsible for 

data aggregation and transmission.  The stochastic scheme (5) is used to generate the 

threshold so as to determine the CHs. For each sensor node, a random number can be 

generated ranging from 0 to 1. If this number is less than the specified threshold, then 

it turns out to be the CH for that round, otherwise it serves as a cluster member for 

certain cluster head that can provide the maximal signal strength. This threshold θ can 

be computed by (5). 
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where p is the desired percentage of cluster heads among all sensor nodes, r is the 

expected total number of cluster heads in the actual round, S is the set of sensor nodes 

never being CHs over all previous rounds.  

After 1/p rounds, the energy-efficient dynamic routing will be applied to substitute 

the LEACH protocol. The main reason is that an assumption of homogeneous sensor 

nodes during the setup phase is not feasible for those WSNs with significant large 

diameters. Most sensor networks are heterogeneous in reality. The residual energy of 

each sensor node will take the leading role in subsequent cluster head elections and 

dynamic routing. Specifically, the residual energy of all sensor nodes within each 

cluster of the setup phase will be computed again and sorted. The one with the largest 

amount of the residual energy will serve as the new CH in the next round. After all 

CHs of the next round are updated already, each non-cluster-head sensor node turns 

out to be a member of an updated cluster whose CH provides the maximal signal 

strength in the new around. The load imbalance problems can be easily solved accord-

ingly. This simple scheme continues throughout the life expectancy of WSNs.   

There are three phases in each round, namely cluster head election and broadcast-

ing, cluster membership setup, and steady state data transmission. During the steady 

state, cluster heads will aggregate and transmit the data. Data packets can only be 



 

 

transmitted via active sensor nodes while other sleepy nodes stay idle upon communi-

cation in order to save energy. The energy model (1) in fact covers the transmitting 

energy, propagation path loss energy, receiving energy, aggregating and compression 

energy dissipation, which is also used to calculate the residual energy. 

4 Sparse sensor node deployment 

 

Fig. 1. 100-Node sparse random network (initial round) 

 

Fig. 2.  100-Node sparse random network (final round) 



For all sparse sensor node deployment in this study, the total count of sensor nodes is 

equivalent to both length and width of WSNs. Numerical simulations have been con-

ducted with some useful results. For instance, it takes about total 1400 rounds for the 

100-node sparse random network (100m × 100m) to complete all data transmission in 

terms of the battery power. The patterns of the initial round and final round are shown 

in Figs. 1-2, where blue "+", pink "o", red "*" and black "." will represent the active 

sensor node, cluster head, sink node and dead node, respectively. The green lines 

represent single-hop routing paths. 

 

Fig. 3.  400-Node sparse random network (initial round) 

 

Fig. 4. 400-Node sparse random network (34th round) 



 

 

 

Fig. 5. 400-Node sparse random network (50th round) 

 

Fig. 6. 400-Node sparse random network (60th round) 

From numerous simulations in general, for sparse random networks to complete all 

data transmission, sensor nodes near the central base station always stay the longest, 

while sensor nodes near the boundary edges run out of energy the fastest. An evidence 

is depicted by the routing process of the typical 400-node random network (400m × 

400m). From the initial simulation, it takes 68 rounds to reach the final stage so as to 

complete all data transmission during the lifespan of WSNs. Subsequent simulations 

are also conducted in order to observe the network dynamic patterns after 34 rounds, 

50 rounds, and 60 rounds, respectively. The simulation results are shown in Figs. 3-6.  



Simulation results for the diverse scalability cases are also obtained starting from 

the 4-node sparse random network to 1024-node sparse random network. The actual 

counts of final rounds, lifespans of the first active node and lifespans of the last active 

node are collected and plotted in 3 sets of curves of Fig. 7. The mismatch between 

two separate lifespan curves of the first active node and last active node in Fig. 7 is in 

fact relevant to the load imbalance of the sparse random network. 

 

Fig. 7.  Sparse random network lifespan analysis curve 

 

It is clearly indicated from the simulations of the sparse random networks that the 

actual count of the final round decreases monotonically when the total count of sensor 

nodes increases, similar to an exponential curve. For sparse random networks, the life 

expectancy curves of both the first active node and the last active node exhibit the 

patterns of Gaussian distribution function simply described as (6), where µ acts as the 

expected value and ϭ2 acts as the variance of the Gaussian function. 
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By introducing the nonlinear Least Squares curve fitting, it is easy to approximate 

the expected value corresponding to the maximal lifespan and the variance of the 

Gaussian distribution curve. The maximal lifespan of the first active node occurs 

when 107 sensor nodes are deployed in the sparse random network, while maximal 

lifespan of the last active node occurs when 158 sensor nodes are deployed in the 



 

 

sparse random network. Therefore it is suggested that 100-node to 160-node sparse 

random network should be selected to maximize the lifespan of WSNs. 

5 Dense sensor node deployment 

For all dense sensor node deployment in this study, the total count of sensor nodes is 

equivalent to the product of length (m) and width (m) of WSNs. It is shown in general 

that for the dense sensor network to complete all data transmission, those sensor 

nodes near the central base station dissipate all energy the fastest, while sensor nodes 

near the boundary edges will stay the longest. This result is opposite to that of sparse 

sensor random network. The evidence can be shown by the routing process of a 400-

node dense random network (20m × 20m). Based on its initial simulation, it takes 

more than 1300 rounds to complete all data transmission during its lifespan. Other 

simulations are also conducted so as to observe the network patterns after 800 rounds, 

850 rounds, and 900 rounds. The simulation results are shown in Figs. 8-12.  

It is clearly indicated from the dense network simulations that the maximal round 

occurred within network life expectancy also decreases monotonically when the total 

count of sensor nodes increases, similar to an exponential curve (Fig. 13). In Fig. 13, 

for dense random networks, the life expectancy curves of both the first active node 

and the last active node are however significantly different from those sparse random 

networks. Instead both lifespan curves increase monotonically when the total count of 

sensor nodes increases. On the other hand, perfect match of these two curves will 

theoretically represent the ideal energy distribution case across entire dense random 

network. Similar to the sparse random networks, the mismatch between two lifespan 

curves of the first active node and last active node, however, could be regarded as the 

measure of the load imbalance in dense random networks as well. 

 

Fig. 8.  400-Node dense random network (initial round) 



 

Fig. 9.  400-Node dense random network (800th round) 

 

Fig. 10.  400-Node dense random network (850th round) 



 

 

 

Fig. 11.  400-Node dense random network (900th round) 

 

Fig. 12.  400-Node dense random network (final round) 



 

Fig. 13.  Dense random network lifespan analysis curve 

This discovery has also been supported by several other case studies such as on the 

625-node dense random network (25m×25m). The corresponding outcomes at (600th, 

700th and final) rounds are shown in Figs. 14-16.  

 

Fig. 14. 625-Node dense random network (600th round) 



 

 

 

Fig. 15. 625-Node dense random network (700th round) 

 

Fig. 16. 625-Node dense random network (final round) 

 



 

Based on the relative slope flatness and mismatch between two curves (1st node 

and last node) in Fig. 13, it is suggested that actual size of a dense random network 

should be between 400-node network (20m×20m) and 625-node network (25m×25m) 

from this preliminary study. 

6 Conclusion 

The role of scalability and density of sensor node deployment in the WSNs lifespan 

has been examined, where energy-efficient hierarchical LEACH protocol is applied in 

order to compare the lifespan of the sensor network in diverse cases with various node 

densities and network diameters. After a number of initial rounds through LEACH, 

the residual energy of all neighboring nodes must be computed and sorted in order to 

determine the cluster heads in the future around. Characteristics of both sparse sensor 

node deployment and dense sensor node deployment are analyzed in detail, where 

reasonable degree of scalability via numerical simulations has been located for two 

cases. It is also observed that sensor nodes near the central base station last the longest 

for sparse sensor node deployment, while those sensor nodes near boundary edges last 

the longest for dense sensor node deployment. The preliminary simulation results are 

all based on single-hop routing, however, the proposed protocol can be easily expand-

ed to multi-hop routing. Meanwhile, when the packet loss, end-to-end delay, interfer-

ence, latency and security are all taken into account, advanced robust topological 

control is necessary to achieve reliable power control of wireless sensor networks 

against the potential load imbalance so as to accomplish the longest lifespan. 
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