

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons

License Attribution 4.0 International (CC BY 4.0). ICST-2020

Computing ψ-Caputo Fractional Derivative Values Using

CUDA 10

Vsevolod Bohaienko[0000-0002-3317-9022]

V.M. Glushkov Institute of cybernetics of NAS of Ukraine, Kyiv, Ukraine

sevab@ukr.net

Abstract. The paper addresses the issues of efficient GPU-implementation

of ψ-Caputo fractional derivative values computation on NVIDIA GPU’s with

compute capability 7.5 using CUDA 10 SDK on both CUDA and OpenCL lan-

guages. We consider a three-dimensional time-fractional diffusion equation

solved by a locally one-dimensional finite difference scheme. To compute non-

local part of the derivative a rectangle rule quadrature is used and a summation

algorithm of linear computational complexity is considered along with a con-

stant complexity order approximating algorithm based on integral kernel expan-

sion into series. For the approximating algorithm we present a computational

scheme that uses NVidia GPU’s tensor cores. For both algorithms, we study the

influence of the used scalar and vector data types on performance and accuracy.

Studying the summation algorithm, comparing to the usage of 64-bit double-

precision floating-point data type, the computations were ~2 times faster for 32-

bit single-precision data type and ~3 times faster for 16-bit half-precision data

type without significant loss of accuracy. For the approximated algorithm that

was up to 5-times faster than the summation algorithm, the usage of low-

precision data types slightly influence the performance reducing the accuracy

during long-term simulations. The usage of vectorized operations in the approx-

imation algorithm allowed up to 6-19% speed-up compared with non-vectorized

implementations for a single-precision data type. The usage of tensor cores that

operate with a half-precision data type allowed performing calculations 12%

faster compared to the case when the same data type was used.

Keywords: GPU algorithms, finite-difference method, diffusion equation,

ψ-Caputo fractional derivative, tensor cores, data types, CUDA, OpenCL.

1 Introduction

Memory effects in diffusion processes can be efficiently simulated using time-

fractional differential equations [1-3].

Such equations contain the so-called fractional derivatives that are integral-

differential operators.

The need to numerically calculate integrals while solving time-fractional differen-

tial equations increase the computational complexity order compared to the traditional

differential equations.

mailto:sevab@ukr.net

Approaches to lower computational complexity include parallel computing tech-

niques [4,5,6], particularly using GPUs [5,6], and approximation of integral kernels

[7,8,9].

In this paper we consider a three-dimensional diffusion equation with the general-

ized ψ-Caputo derivative with functional parameter solved by a locally one-

dimensional finite-difference scheme similarly to [10].

We focus on efficient GPU implementation of ψ-Caputo derivative’s values com-

putation, which is one the most time-consuming operation while performing simula-

tions, on NVidia GPUs using CUDA 10 SDK.

We study GPU algorithms’ performance when scalar and vector data types of dif-

ferent length and precision are used in CUDA and OpenCL algorithms’ implementa-

tions along with the possibility to speed up computations making use of 16x16 ma-

trix-matrix multiplication operations that are hardware-implemented in the so-called

tensor cores of the NVidia GPUs with compute capabilities 7.x.

2 Problem statement and finite-difference scheme

We consider the following three-dimensional time-fractional diffusion equation [10]:

100101010)(

)()()(
)(

2

2

2

2

2

2
)(





























β<,>t,z,y,x,tz,y,x,F+

+
z

tz,y,x,C
+

y

tz,y,x,C
+

x

tz,y,x,C
D=tz,y,x,CσD β

gt,
 (1)

where)(tz,y,x,C is the diffusive substance concentration, σ is the porosity, D is

the diffusion coefficient, F is the given source-term function, and
)(

gt,D is the gen-

eralized ψ-Caputo fractional derivative with respect to the time variable t with the

functional parameter)(tg that has the following form [11]:

()

0

1 ()
() (() ())

(1)

t

β β

t,g

C x, y,z,t
D C x, y,z,t = g t g τ dτ

β t

−
−

 −  , (2)

)1() 0, , () 0 (0), (0) 0g t C g t t g +   =
.

For the equation (1) we pose first-type initial and boundary conditions. The initial

boundary value problem for the equation (1) is discretized using locally one-

dimensional finite-difference scheme [10,12] on the uniform grid

1 1 2 2 3 3{(, , ,) : (0, 1), (0, 1), (0, 1),i j k l i j k lx y z t x ih i n y jh j n z kh j n t l = = = + = = + = = + =

where 1 2 3h , h , h ,τ are the steps with respect to the space and the time variables.

The finite-difference scheme, similarly to [10,12], is as follows:

(1/ 3) (1/ 3) (1/ 3) (1/ 3) () ()

1, , 1, ,2

11 1

(2) ,
3

l l l l l l

ijk i j k ijk i j k ijk ijk

D
C C C C C F

kk h

 + + + +

− +− − + = + (3)

(2 / 3) (2 / 3) (2 / 3) (2 / 3) (1/ 3) ()

, 1, , 1,2

11 2

(2) ,
3

l l l l l l

ijk i j k ijk i j k ijk ijk

D
C C C C C F

kk h

 + + + + +

− +− − + = + (4)

(1) (1) (1) (1) (2 / 3) ()

, , 1 , , 12

11 3

(2) ,
3

l l l l l l

ijk i j k ijk i j k ijk ijk

D
C C C C C F

kk h

 + + + + +

− +− − + = +

 (5)

(1)

1 ,
(1)

l

lb
k



+

=
 −

(1) ()2
() ()

0

1
,

(1)

s sl
ijk ijkl l

ijk ijk s

s

C C
F F b

 

+−

=

−
= +

 −
 (6)

1

() (() ()) .
s

s

t

i

s i

t

b g t g d 
+

−= −
 (7)

The equations (3)-(5) can be with the addition of discretized forms of boundary

conditions represented as three-diagonal linear equation systems, which are solved by

the Thomas algorithm [12].

The summation in the right-hand side of (6) is the first-order discretization of a

non-local part of the fractional derivative obtained applying the rectangle quadrature

to the integral in (2).

3 Approximating algorithm for computing ψ-Caputo fractional

derivative values

Computation of non-local part of fractional derivative according to (6) has ()O l com-

putational complexity and requires storing all previously obtained solutions making it

time and memory consuming while performing simulations over large time intervals.

Hence, we consider the constant complexity order algorithm based on series expan-

sion of the integrals (7) [13, 14] that requires storing solutions on only the two last

time steps.

When)(tg has an infinitely differentiated inverse function)(tf ,
)(i

sb can be rep-

resented in the form [13,14]




−−






















−
−

0

)(1)(

=n

n
nβ

j
n(j)

s ,Stg
n

=b


,
m!

tgf
B=t,tS

=m

+s
+m

m1+ssn 














0

1
1)())((

)(

1 1() ()

1 1

1 0 1

() ()

1 1

1

1

1 1

1
(()) (() ())

1

() (() ())2
,

()(1) ()(1)

s s

s s

g t g t

n m n n+ n+

m s+ s+ s

g t g t

n+ i+

s s s+

i+ i

s+ s+

B = x x g t dx, B = x dx = g t g t ,
n+

g t g t g tn+i+
B = B

g t i+ g t i+

+ +

− −

 −
− − 

 

 

Truncating the infinite series, the summation in (6) using such representation can

be organized [14] as follows:

(1) ()2
()

, 1

0 0

() (1)

1 ,0

1
(1) () ,

() () 0.

s sl K
ijk ijkl n n

s l n l

s n

l l

n,l n,l 1 n l l n

C C
b g t S

n

S = S + C C S t ,t , S =




 

+−
− −

−

= =

−

− −

−  −  
 −  

  

−

 
 (8)

where K is the given number of terms in series.

So, to compute in a specific node),,(kji the value of the term
)(l

ijkF , which is the

most time-consuming part when computing right-hand sides of three-diagonal linear

equations systems (3)-(5), we need to store the values of •n,S and on the time step l

• update 1ln,S − into ln,S according to the second equation in (8);

• calculate the value of the sum according to the first equation in (8);

• substitute the obtained value of the sum into (6) getting the value of
)(l

ijkF .

4 Parallel implementation

We perform the solution of linear systems (3)-(5) using multithreaded OpenMP im-

plementation with the calculation of a non-local part of the ψ-Caputo fractional deriv-

ative upon (6) or (8) performed for every node of the grid using GPU.

The calculations upon the series approximating algorithm (8) are organized follow-

ing the scheme described in [15]:

• the values of)t,(tS lln 1− are calculated on CPU on the step 1−l in parallel with

GPU computations upon (8) and uploaded on the step l into GPU memory along

with the solution
)1(−lC ;

• each GPU thread calculates the value of
)(l

ijkF for a specific node),,(kji and, after

GPU performed the computations, values of
)(l

ijkF are copied back into CPU

memory.

To use GPUs local memory [15], we form thread groups of a controllable size 

with computations organized in  /l substeps. On the substep s , the values of

    /)1(/),,(1 lsnlsttS lln +− are loaded into local memory and a correspond-

ing part of ln,S is updated by each thread. Further, the resulting K -terms sum in (8)

is computed with n
l

n tg
n

−−
−







−
− 

)()1(2 in advance calculated in parallel and loaded

into local memory.

To make use of vector data types present in CUDA and OpenCL languages, the

summations in (8) are split into m-terms vector operations obtaining

()()
(1) () /2

() (1)

, , 1 (1) , 1

0 0

(1) (1) (1)

,

1
,..., ,

(1) () ,..., (1) ()
(1)

s s K ml
ijk ijkl

s n m n m l n m l

s n

n m n m n m n m

n m l l

C C
b v S S

v g t g t
n m n m

 

 

 

+  −  

 − +  −

= =

 − −  +  − − + 

−


 − −    
= − −    

 +     

 

() ()

()

, (1) , , 1 (1) , 1

1

1 (1) 1

,..., ,...,

() (),..., () .

n m l n m l n m l n m l

(l) (l)

n m l l n m l l

S S S S +

C C S t ,t S t ,t

 +   − +  −

−

 − +  −

=

+ −
 (9)

The performance of the algorithm (9) was studied for 16-component double-

precision vectors in [15].

Continuing this work, we consider the calculation upon (9) and the saving of lnS ,

using floating-point data types of different precision (16, 32, and 64 bits) and different

vector sizes (2, 4, 8, 16).

In all cases, we save the values of C and nS in a double-precision floating-point

format in both CPU and GPU memories. The summation upon (6) can also be repre-

sented in vectorized form, and we consider it with the same data types as the algo-

rithm (9).

As the newest NVidia GPUs implement 16x16 matrix-matrix (tensor) multiplica-

tion operations in hardware in the so-called tensor cores, we transform the summation

in (8) to make use of them.

The considered tensor operation),,(CBATma multiplies two 16x16 half-precision

matrices A , B and adds a 16x16 single-precision matrix C to the result of multipli-

cation. The result of this operation also has a single-precision data type. Considering

the vector of sums
)16(S for 16 grid cells)16()1(,...,CC , the summation part of (9) for

16=K can be performed as follows:

1, 1,(0) 16, 1,(0)

(16) (1)

0 1 ,16 0 0

1, 1,(16) 16, 1,(16)

...
1

((, ,)) , (, ,....,),

...

l l

T T T

ma n

l l

S S

S T S V A V v v v S

S S


− −

− −

 
 

 = =  
 
 

 (10)

where 0A is the 16x16 zero matrix, 0v is the 16-component zero vector,)(,, ilnS is the

lnS , coefficient value for the grid cell i , and 1)( denotes the first column of the ma-

trix.

The algorithm (10) makes use only of one matrix-vector multiplication of 16 per-

formed in maT operation.

5 Numerical experiments

We consider the test problem for the equation (1) with
γt=tg)(and

)(2
)/21(

)/21(
)(22222 zx+zy+yxDt

γ+βΓ

γ+Γ
=tz,y,x,F 22βγ −

−

− .

Then, the solution of (1) has the form
22

0 t+zyx=tz,y,x,C=tz,y,x,C 22)()(for

the case of 1=σ and the first-type initial and boundary conditions derived from

)(tz,y,x,C .

The system (3)-(5) was solved on 200 time steps of size 0.0025=τ ,

0.80.8 =β,=γ , grid size of 80...40 ,,=NN,NN  , and 64...16 ,,=K on a single

node of SCIT-4 cluster of VM Glushkov Institute of Cybernetics of NAS of Ukraine.

The used node contains two Intel(R) Xeon(R) Bronze 3104 CPUs with total of 12

cores and NVidia RTX 2080 Ti GPU.

The algorithms were implemented in both CUDA and OpenCL languages and the

corresponding source code can be accessed through

https://github.com/sevaboh/FPDE_HPC.

5.1. Performance for a fixed N

The available set of data types for CUDA implementation was double, float, half,

double[2,4], float[2,4], and half2.

In the case of OpenCL we considered the implemented in CUDA10 double, float,

double[2,4,8,16], and float[2,4,8,16] data types. The times spent on computation up-

on (6), (9), and (10) on 200 iterations for 1640 =K,=N and all the considered com-

binations of languages and data types are given in Table.1. In all experiments thread

block size  was equal to K .

The times spent on a single iteration are near to equal for the approximating algo-

rithm (9) and tend to increase linearly for the summation upon (6). This linear in-

crease is non-monotone (Fig.1) due to incomplete GPU resources usage when

0% Kt where t is the time step number.

Doing calculations upon (6) in CUDA implementation, comparing to the usage of a

double-precision data type, the algorithms that were implemented using data types of

lower precision performed the computations ~2 times faster for 32-bit single-precision

data type and ~3 times faster for 16-bit half-precision data type.

The usage of the approximating algorithm (9) up to ~5 times decreased the compu-

tation time compared to the summation upon (6).

Here the usage of a single-precision data type decreased the time only by <12%

when the algorithm was implemented in CUDA.

This can be explained by a high amount of data type conversion operations in the

implementations of (9) due to the storage of the solutions C and the coefficients nS

using 64-bit double-precision data type.

The usage of a half-precision data type in CUDA implementation slowed the com-

putations compared to the usage of a single-precision data type.

However, the half-precision implementation that uses tensor cores was the fastest

of all the considered variants. The usage of a single-precision data type in OpenCL

implementation slowed down the computations compared to the usage of a double-

precision data type.

Table 1. Times spent on computation upon (6), (9), and (10) for 16,40 == KN

Data type

CUDA,

summation

upon (6)

CUDA,

approximating

algorithm (9)

OpenCL,

summation

upon (6)

OpenCL,

approximating

algorithm (9)

double 344,18 78,37 286,86 81,14

float 204,03 74,86 88,27 83,97

half 105,77 77,32

double2 350,24 81,41 287,11 81,90

float2 191,38 73,02 91,08 84,97

half2 98,14 74,70

double4 345,18 79,52 287,57 81,56

float4 182,00 70,19 90,22 84,87

double8 292,92 80,81

float8 90,50 85,18

double16 292,41 80,99

float16 90,76 84,38

Usage of tensor cores 69,49

For 16=K , vectorization accelerated computations only for the case of a single-

precision floating-point data type in CUDA implementation.

To explain the observed behavior, we compare PTX assembly sources generated

by CUDA and OpenCL compilers with the generation of FMA (floating-point multi-

ply-add) instruction enabled.

1

13

25

37

49

61

73

85

97

5

9 17

21 29

33 41

45 53

57 65

69 77

81 89

93 101

105

109

113

117

121

125

129

133

137

141

145

149

153

157

161

165

169

173

177

181

185

189

193

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

GPU1d

GPU1f

GPU1h

GPU4d

GPU4f

GPU2d

GPU2f

GPU2h

Fig. 1. CUDA kernel execution time, ns, for the total summation upon (6), 16,40 == KN

The following conclusions can be made from the performed comparison:

• both compilers perform automatic unwinding of 16 loop iterations;

• both compilers do not generate vector arithmetic instructions when vector data

types are used;

• both compilers generate vectorized 128-bit load/store instructions

[ld,st].[shared,global].v2.f64 and [ld,st].[shared,global].v4.f32 and this is their us-

age that accelerated computations when vector data types are used;

• when both compilers perform loop unwinding, memory is addressed through fixed

offsets from the base for both shared and global memory (e.g. ld.global.f64 %fd77,

[%rd23+40]). For the vectorized data types, offsets to global memory are comput-

ed for every memory access to the corresponding vector (e.g. mul.wide.s32 %rd28,

%r67, 128; add.s64 %rd29, %rd3, %rd28; ld.global.v2.f64 {%fd172, %fd173},

[%rd29+112]; ld.global.v2.f64 {%fd176, %fd177}, [%rd29+96];...). For both al-

gorithms (6) and (8), such additional operations slowed down the computations.

However, the increase of K leads to the decrease of the number of auxiliary op-

erations allowing obtaining up to 15% speed-up for double16 data type usage in

OpenCL;

• CUDA compiler automatically vectorizes the reading of 32-bit floating-point data

stored in the local memory using 64-bit instruction ld.shared.v2.f32 making the

calculation upon (9) faster than in the case of double-precision data type usage.

The absence of such automatic vectorization in OpenCL makes the single-precision

OpenCL implementation to perform slower than in the case of a double-precision

data type. The same applies to half-precision data type usage in CUDA that yields

slower code than for the case of a single-precision data type;

• While performing calculation upon (6), CUDA compiler implements division op-

eration in div.rn instruction, while OpenCL compiler uses approximated div.full in-

struction making OpenCL code faster.

To check how the tendencies of vectorization efficiency observed for 16=K

changes for its bigger values, the series of computational experiments were conducted

for 40=N and 64,...,16=K for the case of the approximating algorithm (9).

Here, automatic loop unwinding leads to the decrease of the number of auxiliary

operations with the increase of K . The computation time also decreases by up to

15% for double16 data type usage in OpenCL, up to 5.3% for double8 data type usage

in OpenCL, up to 2.6% for float16 data type usage in OpenCL, and up to 19% for

float4 data type usage in CUDA. The usage of double[2,4] and float[2,8] data types

in OpenCL slowed down the computations.

Thus, while OpenCL language supports larger vector data types than CUDA lan-

guage (16 elements compared to 4 elements), its inefficient compilation by NVidia

compiler leads to the situation when OpenCL vectorized implementations of the algo-

rithm (9) allow accelerating computations only for large K and the largest vector

data types.

5.2 Performance in the case of variable grid size

The influence of the time of fractional derivative values calculation on the total time

spent on simulation along with the speed-ups of different GPU implementations are

given in Table 2 for the summation upon (6) and in Table 3 for the approximating

algorithm (9) for 80,...,40=N .

Table 2. Algorithms’ relative characteristics for the summation upon (6), 16=K , 200 itera-

tions

 N 40 60 80

CPU
Percentage of summation to

total time
31,93% 36,64% 36,41%

CUDA float to

CPU
Total time 40,74% 43,58% 51,15%

 Summation time 939,46% 1374,70% 1568,14%

CUDA float
Percentage of summation to

total time
4,32% 3,57% 3,30%

Percentage of auxiliary host-

GPU operations
28,62% 22,25% 22,22%

CUDA float4 to

CUDA float
Summation time 7,52% 5,40% 8,80%

OpenCL float to

CUDA float
Summation time 68,19% 104,21% 95,05%

In the algorithm (6), time spent on fractional derivative values computation (sum-

mation time) comprises up to 36% of total computation time on CPU. This value low-

ers to ~4% on GPU when this operation became 9-30 times faster and the total com-

putation time became ~50% less. As can be seen from the Table 2, GPU algorithms’

efficiency increases with the increase of N while the efficiency of vectorization re-

mains on the same level. For the approximating algorithm (9) and 16=K , fractional

derivative values computation comprises up to 40% of the total computation time

while executing on CPU with slight decrease of this percentage with the increase of

N . GPUs efficiency here is close to the case of the summation upon (6): 15-27 times

acceleration of the calculations upon the algorithm (9), 51-63% decrease of the total

computation time compared to CPU, ~3% of time spent by GPU algorithms for frac-

tional derivative values computation. Comparing to the slower algorithm (6), the time

spent on auxiliary CPU-GPU memory copying operations while calling GPU kernels

is here bigger: ~60% compared to ~25%. Efficiency of vectorization do not depend on

N with the usage of tensor cores yielding the highest 12% increase compared with

the usage of a half-precision data type and 8% increase compared to the usage of a

single-precision data type. Efficiency of the usage of tensor operations compared to

the fastest case of vectorized float4 implementation however is only 2%.

Table 3. Algorithms’ relative characteristics for the approximating algorithm (9), 16=K ,

average on 200 iterations

 N 40 60 80

CPU
Percentage of summa-

tion to total time
39,85% 38,04% 36,85%

CUDA float to CPU Total time 61,19% 53,05% 55,29%

 Summation time 1717,88% 2536,28% 2735,08%

CUDA float
Percentage of summa-

tion to total time
3,53% 2,21% 2,02%

Percentage of auxiliary

host-GPU operations
67,30% 61,63% 59,96%

CUDA float4 to

CUDA float
Kernel execution time 6,43% 6,40% 6,60%

OpenCL float to

CUDA float
Kernel execution time -10,84% -9,83% -9,72%

CUDA half to CUDA

float
Kernel execution time -3,27% -3,31% -3,44%

CUDA half2 to

CUDA float
Kernel execution time 0,21% 0,68% 0,69%

CUDA half, tensor

cores, to CUDA float
Kernel execution time 7,53% 8,07% 8,24%

CUDA half, tensor

cores to CUDA half
Kernel execution time 11,16% 11,77% 12,09%

5.3 Errors of solution

Changes in maximal square absolute error on the iterations while using summation

upon (6) and series expansion upon (9) for different data types are given in Fig. 2.

Lowering of data type precision has a little influence on the quality of solution for the

summation upon (6) due to monotone increase of)(i
sb when si → that minimizes

summation errors. The error for the algorithm (6) decreases with the increase of time

step number.

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0,0014

0,0016

0,0018

Full summation (all data types) Series expansion (float,double) Series expansion (half)

Series expansion (half, tensor cores)

Fig. 2. Maximal square absolute error on time steps while solving the problem using different

data types

Close values of errors between the summation upon (6) and the approximating al-

gorithm (9) with 16=K on the initial time steps show the adequacy of a chosen val-

ue of K . However, for the algorithm (9), the recurrently changing values of lnS ,

overflow the data type values range starting from some time step leading to linear

increase of error. In the conducted experiments such behavior was observed for a

half- and single-precision data types.

6 Conclusions

Calculation of time-fractional ψ-Caputo derivatives’ values significantly influence

time needed to solve fractional derivative equations that contain them. For the consid-

ered case of the diffusion equation solved using a finite-difference scheme, this opera-

tion comprises up to 40% of time spent while performing calculation on CPU. Its par-

allelization on GPU is efficient because the computations on the cells of the grid are

independent.

We studied additional possibilities to speedup GPU implementations considering

the summation algorithm of linear computational complexity and the approximating

recurrent algorithm of constant complexity. Considering the usage of different preci-

sion floating-point data types, their vectors, and matrix-matrix multiplication opera-

tions implemented in tensor cores of the latest NVidia GPUs the following conclusion

can be made:

• for the summation algorithm (6), comparing to the usage of a double-precision data

type, the computations were ~2 times faster using 32-bit single-precision data type

and ~3 times faster using 16-bit half-precision data type without significant loss of

accuracy;

• for the approximating algorithm (9) that was up to 5-times faster than the summa-

tion algorithm, the usage of different data types slightly influence the performance

due to the high amount of data type conversion operations. However, the usage of

low-precision data types here leads to linear increase of solution error starting from

some time step due to data type overflow;

• Inefficient compilation of vectorized memory access in OpenCL code leads to the

situation when OpenCL vectorized implementations of the algorithm (9) allow ac-

celerating computations only for large number K of terms in truncated series and

the largest vector data types. Thus, the usage of CUDA is preferable for the ap-

proximating algorithm (9). However, for the summation algorithm (6), OpenCL

implementations were faster due to the differences in compiling the division arith-

metic operation;

• GPU implementations 9-30 times accelerate fractional derivative values computa-

tion with the efficiency that increases with the increase of grid size;

• the usage of tensor cores that operate with 16-bit half-precision floating-point data

type allowed performing calculations 12% faster than the usage of a half-precision

data type without vectorization. However, comparing to the efficiency of the fast-

est vectorized implementation that uses float4 data type, only 2% acceleration was

obtained.

References

1. Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of frac-

tional order. In: Fractals and Fractional Calculus in Continuum Mechanics, pp.223–276,

Springer Verlag, Wien, Austria (1997)

2. Podlubny, I.: Fractional differential equations, Academic Press, New York (1999)

3. Bulavatsky, V.M.: Mathematical modeling of dynamics of the process of filtration convec-

tion diffusion under the condition of time nonlocality. Journal of Automation and Infor-

mation Science 44(4), 13–22 (2012). doi: 10.1615/JAutomatInfScien.v44.i4.20

4. Bonchis, C., Kaslik, E., Rosu, F.: HPC optimal parallel communication algorithm for the

simulation of fractional-order systems. J Supercomput 75, 1014–1025 (2019). doi:

10.1007/s11227-018-2267-z

5. Liu, J., Gong, C., Bao, W., Tang, G., Jiang, Y.: Solving the Caputo Fractional Reaction-

Diffusion Equation on GPU. Discrete Dynamics in Nature and Society 2014, 820162

(2014). doi: 10.1155/2014/820162

6. Golev, A., Penev, A., Stefanova, K., Hristova, S.: Using GPU to speed up calculation of

some approximate methods for fractional differential equations. International Journal of

Pure and Applied Mathematics 119(3), 391-401 (2018). doi: 10.12732/ijpam.v119i3.1

7. Gong, C., Bao, W., Liu, J.: A piecewise memory principle for fractional derivatives. Fract.

Calc. Appl. Anal. 20(4), 1010–1022 (2017). doi: 10.1515/fca-2017-0052

8. Ford, N.J., Simpson, A.C.: The numerical solution of fractional differential equations:

Speed versus accuracy. Numerical Algorithms, 26(4), 333–346 (2001). doi:

10.1023/A:1016601312158

9. Baffet, D., Hesthaven, J.S.: A kernel compression scheme for fractional differential equa-

tions. Siam J. Numer. Anal 55(2), 496–520 (2017). doi: 10.1137/15M1043960

10. Bogaenko, V.A., Bulavatsky V.М.: Computer modeling of the dynamics of migration pro-

cesses of soluble substances in the case of groundwater filtration with free surface on the

base of the fractional derivative approach (in Russian). Dopov. Nac. Akad. Nauk Ukr. 12,

21–29 (2018). doi: 10.15407/dopovidi2018.12.021

11. Almeida, R.: A Caputo fractional derivative of a function with respect to another function.

Communications in Nonlinear Science and Numerical Simulation 44, 460–481 (2017). doi:

10.1016/j.cnsns.2016.09.006

12. Samarskii A.: The Theory of Difference Schemes. CRC Press, New York (2001).

13. Bohaienko, V.O.: A fast finite-difference algorithm for solving space-fractional filtration

equation with a generalised Caputo derivative. Computational and Applied Mathematics

38(3), 105 (2019). doi: 10.1007/s40314-019-0878-5

14. Bohaienko V.O.: Efficient computation schemes for generalized two-dimensional time-

fractional diffusion equation. In: Papers of the International scientific and practical confer-

ence ІТСМ – 2019, Ivano-Frankivsk, Ukraine, pp. 238–241 (2019).

15. Bohaienko, V.O.: Performance of vectorized GPU-algorithm for computing ψ-Caputo de-

rivative values. In: Hu Z., Petoukhov S., Dychka I., He M. (eds) Advances in Computer

Science for Engineering and Education III. ICCSEEA 2020. Advances in Intelligent Sys-

tems and Computing, vol 1247. Springer, Cham (2021). https://doi.org/10.1007/978-3-

030-55506-1_24

