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Abstract— Diversity is the basis of approaches using multiple classification 

systems. Solution sets are formed in ensembles of models. Many models give 

poorly distinguishable results. The use of strongly correlated model results in 

ensembles significantly reduces their effectiveness. Therefore, here the main in-

fluence is exerted by the variety of decisions made by the models. The value of 

each model decreases with an increase in the group of models. Accordingly, it 

is necessary to reduce the contribution of an individual model to the solution of 

the model. An approach based on clustering is proposed, according to which the 

influence of an individual model is inversely proportional to the volumes of ag-

gregated groups. With this approach, the influence of an individual solution of 

the model, which differs from others, is significantly increased. Aggregation of 

groups is made in direct proportion to the correlation of decisions. Moreover, 

the aggregation of groups of models is performed according to the hierarchical 

structure of the ensemble. The solutions of strongly correlated groups of models 

are replaced by a single cluster solution. This solution at the next level can be 

grouped with other closest groups of models. Due to this architecture, the level 

of influence of a single solution of the model is increased. The main advantage 

of the proposed approach is the determination of the structure of the ensemble 

depending on the correlation of model decisions. Clusterization of decisions for 

features of similarity enhances the role of diversity and allows leveling out the 

error of an individual decision at a local level and to provide acceptable global 

indicators of cluster efficiency. Advantage of the proposed approach is the pos-

sibility of building an ensemble based on the properties of the correlation pa-

rameters of the models. 
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1  Introduction 

The basis for the use of group classification methods such as ensembles is the diversi-

ty of solutions of the models. For successful use, models must provide diverse and at 

the same time accurate solutions. Each model complements its solution with other 

models. This underlies the application of the ensemble. However, obtaining a variety 

of solutions is difficult, since the models are often trained on the same data, and they 

are based on similar mathematical approaches. The consequence of this is similar 

results, which have a strong correlation. Variety is also necessary for using the accu-

racy of solutions since combining less accurate models often gives better results. Sup-

plementing informativeness with models is effective with a low correlation of deci-

sions. Correlation is one of the most important indicators of the need to use the model 

in determining group decisions. And it can also serve as a criterion for determining 

the need to use a model in an ensemble. Therefore, the influence of each model 

should be determined depending on the correlation of decisions on the overall result 

of the ensemble. Consideration of the peculiarities of the model should be displayed 

in the architecture of the ensemble. At the same time, the model should improve the 

outcome of the overall solution. 

2 Related works 

Mutual addition of a solution in order to obtain an objective assessment in the form of 

a general solution is a fundamental principle on which the methods of group determi-

nation of solutions are based, as an example of ensembles of models [1]. A variety of 

methods are used to combine group models with data manipulation, with enhanced 

features. There are various modifications of bugging [2], boosting [3], stacking [4] as 

the area of the most well-known ensembles. 

Despite the fact that the concept of diversity is intuitive, attempts to develop a sys-

tem for measuring diversity are quite extensive. An example is [5, 6, 7]. The defini-

tion of a measure of diversity would allow the development of an approach based on 

that measure. However, the variety of factors affecting the effectiveness of the appli-

cation of known solutions is very wide, requires extensive experience in use and does 

not always give the necessary result. 

Another approach is to reduce the number of models that make up an ensemble. 

Pruning can reduce the redundancy of models in a group since models can also worse 

the outcome of ensemble predictions. At the same time, the computational complexity 

of the combination of models still remains significantly at the modern level of tech-

nology. Known a pruning method based on forward selection [8], ensemble pruning 

based on objection maximization [9] and others. This allows optimizing the calcula-

tions to achieve the expected result. 

The most interesting in our opinion are the clustering-based [10, 11] methods. The 

rationale for this is the fact that the correlation of solutions contributes to the grouping 

of objects into certain agglomerations. Moreover, the difference in solutions within 

the agglomeration is relatively small. This may indicate that the correlation between 

the solutions of these models is high. And accordingly, they can be reduced by the 

required size. The correlation of models is an important factor, as it can be assumed 



that correlation is the inverse of diversity. By decreasing correlation, it is possible to 

increase the variety of solutions of ensemble models. 

The selection of ensemble models is also important. The difference in models can 

often be determined based on the results of their predictions. The informative features 

of the data on which the model is based also play an important role. To expand the 

diversity of models, approaches using human intellectual abilities can be used. This 

allows building machine models based on the mental models of humans [12, 13, 14]. 

Methods of increasing the diversity of models and their effective use in ensembles 

is an important area of research. In this paper, we consider the basics of building en-

sembles based on the correlation of models and determine the effectiveness of the 

result based on the estimation of the prediction error. 

3 The individual influence of classifiers on the ensemble 

The solution of the ensemble is a set of individual predictions of classifiers. In ac-

cordance with this, it is necessary to determine how the prediction of an individual 

classifier can affect the general decision. 

1.  The classifier may have the wrong solution. However, with the vast majority of 

correct decisions, the effect of an incorrect decision may generally be of little im-

portance. 

2.  An incorrect solution to each of the classifiers introduces noise into the overall so-

lution, thereby adversely affecting the quality of general solutions as a noise 

source. A noise source can be understood as errors of one of the classifiers in a sig-

nificant percentage bias. Also, the noise source can be a set of errors of all classifi-

ers that appear relativity to each prediction element. 

3.  The correct decision of an individual classifier can be refuted by a combination of 

incorrect decisions of a group of classifiers. And the presence in many solutions of 

the right one will not affect the general wrong decision. 

4.  A strong correlation of incorrect decisions of classifiers may have a dominant ef-

fect on the result of the work of the ensemble, despite the presence of correct pre-

dictions of other classifiers. 

5.  In the general case, a strong correlation of solutions for all data elements leads to 

worse results, since there is a greater probability that classifiers receive less infor-

mation from the data and have less overall value within the training sample in 

comparison with the total data set. For arithmetic means, this is based on the dis-

persion formula for the sums of correlated random variables. In this case, the ques-

tion arises of the influence of individual correct predictions of classifiers on the 

general incorrect decision of the ensemble. 

Of primary interest is the definition of the influence of an individual classifier solu-

tion on the overall incorrect decision. The obvious influence of the majority on the 

decisions of the group, in this case, is erroneous. The interconnection of decisions 

indicates the incorrectness of the general approach for making decisions regarding a 

particular data element. This means that this element has a negligible content of gen-

eral informativeness, on which the decisions of the majority were based. At the same 

time, if another decision was made on it by any classifier, there is another informa-



tiveness that was not determined by the majority. This is significant in the event of a 

majority group error. 

The positive correlation of group decisions has an undesirable effect. The presence 

of a negative correlation may indicate the presence of an alternative opinion. This 

aspect indicates the variability of predictions. A prerequisite is the presence of a posi-

tive relationship between the prediction of the ensemble and the expected result. 

4 The hierarchical structure of ensemble as the globalization of 

local solutions 

The presence of a strong positive correlation between the individual decisions of the 

models within the ensemble facilitates their aggregation into groups. The decision of 

each group model is strongly correlated with the decisions of other members of this 

group. With a large measure of generalization, it is possible to formulate a general 

decision of the group, which to one degree or another will represent the solution of 

each model. Since differences in model decisions are insignificant within the group, 

the generalizing ability of aggregation will be significant within the ensemble. This 

allowing to divide the aggregate of models in the ensemble into aggregations on the 

basis of strongly positively correlated groups and representing clusters. An individual 

decision of a model within a cluster is of insignificant value, and it can be replaced by 

a generalized solution - a cluster decision. A cluster decision represents a solution to 

the models that form its solutions, and each individual model delegates its opinion to 

the cluster. Further subsequent aggregation of cluster decisions forms the ensemble 

solution. Such a process of delegating a decision to a higher-order level allows creat-

ing a hierarchical structure for the formation of the ensemble decision. Using this 

approach, the set of highly correlated solutions is replaced by a single cluster solution. 

The influence of an individual element on the ensemble solution decreases under con-

ditions of strong correlation with other elements, and as a result of this, is determined 

by its location in any cluster. The larger the group size, the less influence the model 

has on the ensemble decision. 

The formation of groups allowing to gradually reduce the variance in the ensemble. 

The variance of the group is replaced by a bias of a higher hierarchical order. A hier-

archical structure of the ensemble forms the conditions for the separation of decisions 

by levels of locality, and the delegation process gradually globalizes local solutions. 

An important consequence of this process is that global solutions may be wrong at the 

local level, and local solutions may differ from the global one. The globalization of 

local solutions through delegation through the hierarchical structure of the ensemble 

improves the bias-variance tradeoff. The cluster decision is formed on the basis of an 

unbiased estimate. In this case, the dispersion of the cluster at the highest level of the 

hierarchy is not taken into account, and in fact, the distribution within the group is 

converted into a solution of the cluster, which has a certain bias at the next level. This 

allowed creating conditions for heterogeneous accounting for model predictions in the 

ensemble solution. The participation of the model in the global solution is made de-

pendent on the correlation strength of the solution with relation to other models. This 

translates into a general rule for the structure of the hierarchy: the more general in-

formation contained in the model, the less its participation in global prediction. It is 



also, the correctness of a local solution may be weakly correlated with a global solu-

tion. 

Consider a simple example in a one-dimensional space, which is shown in Figure 

1. This example demonstrates a general unbiased hierarchical estimate. Group I con-

sists of six strongly positively correlated models. Group II consists of one model. 

However, the participation of this one model is high in relation to the general decision 

of the groups. The figure shows the hierarchy of the second level and the unbiased 

estimation of the highest level. 

 

Fig. 1. Aggregation of model predictions and location relative to the expected target 

Aggregation of model predictions and location relative to the expected target 

In the general case, group II can increase the bias and therefore worsen the result. As 

an example, an asymmetric arrangement of groups I and II relative to the expected 

result (target). This is a consequence of increasing the value of a weakly correlated 

model. An important condition for this approach is the presence of a hierarchy of a 

higher level. In our case, this is a level three hierarchy. At the third level of the hierar-

chy (and this is the level of the ensemble), the model should have acceptable indica-

tors of unbiased estimation. Only in this case, an increase in local bias can indicate 

that the model takes into account some information content that other models could 

not determine. Moreover, information content is exclusively local in nature and weak-

ly correlates with the general.  Using models with a biased global estimate introduces 

uncertainty in which we cannot determine whether the prediction of the model at the 

local level is an outlier or the model was able to determine the hidden local infor-

mation content of the data. Thus, under the condition of a global unbiased assessment 

of the model, the hierarchical structure of the ensemble makes it possible to strength-

en the latent information content of the data. And in the general case, it tells us that it 

is necessary to use some form of cascading classification as a consequence of the 

appearance of uncertainty and the process of strengthening local information content 

in relation to the global one. 

5 Correlation of models and bias of ensemble solutions 

Let us examine how the presence of model correlation affects the error of ensemble 

decisions. The ensemble makes decisions using the hierarchical structure of 

delegation. The model is accepted into the ensemble if it is overall unbiased. We will 

use the normal distribution of model predictions. For the simplest hierarchy structure 

with symmetrical distribution, the number of groups is two. This is also consistent 

with a minimum number of alternative solutions. 



We take the relation between the predictions of two cluster groups 

 1211 ,...,, nL CCCC =  and  2212 ,...,, nL CCCC = , Nnn 2,1 . Let the prediction 

( )1LCErr  and ( )2LCErr  errors of two clusters (groups) of models. We accept the 

presence of cluster decision errors in general. Within each cluster, both variability of 

predictions and the presence of a strong positive correlation are possible. The studied 

variables ( )1LCErr  and ( )2LCErr  are both distributed normally and have large 

unbiased dispersion 
LC  of cluster predictions. Group predictions are opposite 

 ( )( ) ( )( )xCsignPxCsignP LkLi  , Xx ,  2,1 ki  (1) 

Groups are correlated with a certain Pearson coefficient 
LC . The combination of the 

two groups should lead to the expected result with a minimum ensemble prediction 

error ( )EErrmin . Based on the opposite of the predictions of the groups of models, 

the ensemble prediction error 

 ( ) ( ) ( ) ( )LkLi CErrCErrEErr  −+= 1 ,  2,1 ki ,  1,0  (2) 

Accordingly, the variance of the error 
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Since covariance 

 ( )( )
LkCLiCLCLCErrCov = ,  2,1 ki  (4) 

Dispersion of ensemble error 

 ( )( ) ( ) ( )
LkCLiCLCLkCLiCEErrVar  −+−+= 121 2222

,  2,1 ki  (5) 

The parameter  1,0  is a nondeterministic quantity and allows one to study the 

variance of the ensemble error at the extremum 
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Solution (6) with relation to the Pearson coefficient 
LC  has the form 
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The minimum coefficient value 
LC , based on equation (7), can be obtained under 

the condition 



 0222 =+−
LkCLkCLiC  ,  2,1 ki  (8) 

Relating the parameter   
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Provided 22

LkCLiC  = ,  2,1 ki   we get the parameter value 

 5.0=  (10) 

We solve (6) with relation to the parameter   
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We set the condition 22

LkCLiC  = ,  2,1 ki
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This corresponds to the result (10). Taking into account (7) and (11), the main condi-

tion for minimizing the ensemble prediction error is the equality of the variance of the 

clusters of the ensemble of models and the opposite of their predictions. 
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System (13) corresponds to the unbiased variance of the ensemble of models at the 

level of global estimation of the data set. The dispersion symmetry ensures comple-

mentarity of predictions of model clusters when used in ensembles with unbiased 

estimates and of individual models in the general case. 

We use equation (7) under the condition of the maximum value of the coefficient 
1=

LC  
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Relating the parameter   
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Then 
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Provided 0→
LiC  value 1→ . 

Based on (16), bias from the median value of the parameter   is accompanied by 

an increase in intergroup correlation. In the general case, the bias of the dispersed 

estimate is manifested in the correlation dependence. Thus, it can be assumed that the 

presence of a correlation between the clusters is the cause of the bias. 

The dispersion of solutions of a cluster (group) has a dependence on the internal 

dispersion of solutions of the models forming this cluster ( ) f= . Solutions within 

the cluster are also correlated. 

Consider a situation in which 0→i  value 1→ . The general correlation of the 

ensemble is dependent on the internal correlation of the groups. If the correlation of 

one of the clusters tends to zero, then it can be assumed that the intragroup correlation 

value of the other group is largely represented in the general correlation at 1→ . 

6 Experimental studies 

To verify the effectiveness of using the hierarchical structure, it is necessary to con-

duct experimental studies. It is necessary to form a data set for classification, and sets 

of correlated predictions of solutions. The most optimal from the point of view of 

understanding the effectiveness will be synthetic tests that provide the necessary pa-

rameters for research management. 

Based on the generated normal distribution data using a linear relationship, varia-

tions of the model predictions are generated. This set of solutions is used to obtain 

correlated solutions. 

To generate a correlation of random predictions, we use the Cholesky decomposi-

tion. If Corr  is a correlation matrix, the Cholesky expansion has the form 

 CorrLLT =  (17) 

Accordingly, random variables can be generated. 

 YLX =  (18) 

Here X  is the base distribution, Y  is the correlated distribution. 

When generating a correlation of two random variables 

 








−
= 21

01


L  (19) 

Here   is the Pearson correlation coefficient. 



Thus, using the set of Pearson correlation coefficient  n ,...,, 21 , ni ,...,1= , sets 

of correlated model predictions S  are formed. 

6.1  Clustering model decisions 

Clustering is a big area of data analysis methods that are used to obtain information 

about the data structure. This allows determining the aggregation of data and the iden-

tification of these groups. The data in each cluster are most similar in terms of the 

measure of similarity of the correlation distance, as one of the criteria. Cluster analy-

sis will be made based on the decisions made by the models regarding the data ele-

ment. In our case, clustering is one of the stages of classifications. Of the various 

clustering methods, we will use the simplest one in order to simplify the understand-

ing of the proposed approach. The method should use the definitions of grouping data 

into a predetermined number of clusters. In experimental studies, we will use two 

clusters. For this purpose, the k-means algorithm is chosen. This is an iterative algo-

rithm that splits data into disjoint groups. Predictions  npppP ,...,, 21= , d
i Rp  , 

ni ,...,1= , within a group are most similar to the breakdown criteria, and clusters 

Nk   are most distant from one another. In terms of usability, the K-means ap-

proach defines the centers kii ,...,1, =  of cluster sets kiS i ,...,1, = , 
k

PS = , 

,= ji SS
 

,ji  kji , . Here t  - iteration index. 

Algoritm: K-means 
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K-means strives to create clusters in which the fewer the variations, the more uniform 

the data points in one cluster. 

The cluster center is a common solution of the formed group. The dispersion of 

prediction of a group of models is leveled and embodied in a point solution with a 

possible bias at the next hierarchy level. 

6.2 Experiment Results 

As the base we use a linear model, presented in the form 

 += bxy T  (20) 



Here b  are the model parameters,   is the random error of the model. Alternative 

model predictions will be obtained by generating correlated sets with relation to the 

distribution of the basic random error. 

 
Set 1 

 
Set 2 

 
Set 3 



 
Set 4 

Fig. 2. Distributions of predictions based on a linear model with error modeling and a hierar-

chical cluster structure of an ensemble of models on given sets of correlations 

Table 1.  Values of statistical parameters for given sets of correlations (Fig. 2) 

Set 1   

 bias variance 

LM -0.1009 1.1591 

LM’s variation -0.3581 2.9016 

Clusters prediction -0.0734 1.2558 

 

Set 2   

 bias variance 

LM -0.2016 1.1859 

LM’s variation -0.2024 3.7683 

Clusters prediction 0.2444 1.5576 

 

Set 3   

 bias variance 

LM -0.23351 1.0853 

LM’s variation 0.33731 3.7138 

Clusters prediction -0.09598 2.1010 

 

Set 4   

 bias variance 

LM -0.03141 1.0223 

LM’s variation 0.20085 1.9691 

Clusters prediction -0.04302 1.4182 

 

Using a visual representation of the averaged cluster solutions, one can observe a 

local amplification of weakly correlated model predictions. Moreover, the general 

statistical estimates of the distribution of ensemble predictions remain in acceptable 



values. Compared to the random error of the linear model, the hierarchical structure of 

the ensemble gives a significant advantage from the point of view of classification. 

We determine the effect of the size of the set of models in the ensemble on the 

change in the results of the ensemble. To do this, we fix the distribution of the gener-

ated data based on the seed parameter, and change the set of the correlation parameter. 

Examples of sets of randomly generated normal distribution data visually demon-

strate clustering using. Cluster decisions are generalized by the centers of these clus-

ters, the values of which are determined using the K-means algorithm. 

Cluster decisions are passed to the next level of the hierarchy. These experimental 

studies applied two levels of ensemble hierarchy. When making an ensemble deci-

sion, cluster predictions are averaged. 

 

 
Set 1 

 
Set 2 



 
Set 3 

Fig. 3. Change of the ensemble predictions based on the structure of the set of correlation pa-

rameter on a fixed data distribution 

Table 2.  Values of the statistical parameters of the predictions with a fixed set of generated 

data and an increase in the dimension of the ensemble in accordance with the correlation para-

meters (Fig. 3) 

Set 1   

 bias variance 

LM -0.1009 1.1590 

LM’s variation -0.3581 2.9016 

Clusters prediction -0.1034 1.3168 

 

Set 2   

 bias variance 

LM -0.1009 1.1590 

LM’s variation -0.3581 2.9016 

Clusters prediction -0.0633 1.2283 

 

Set 3   

 bias variance 

LM -0.10094 1.1590 

LM’s variation -0.35816 2.9016 

Clusters prediction -0.06580 1.2643 

 

Variation of the predictions of ensemble models makes it possible to reduce the influ-

ence of a random prediction error on the ensemble result. This confirms the effective-

ness of the use of group decision-making methods. At the same time, a prediction is 

divided into localization levels depending on the architecture of the ensemble con-

struction. This indicates the fact that local model errors practically do not affect the 

global characteristics of the ensemble. The hierarchical structure allows enhancing the 



influence of the model with relative deviations from the agglomeration groups. Thus, 

the redundancy of the models is leveled by reducing their influence. 

7 Conclusions 

Building an ensemble on a hierarchy of clusters, based on the correlation of model 

decisions, has several advantages. 

─ The hierarchy of clusters creates localization of predictions at the localization level 

with a constant global estimation. 

─ The proposed ensemble structure allows managing decisions based on the level of 

decision. 

─ The introduction of decision levels allows creating a control mechanism for the 

influence of local decisions on the global result. This allows to locally change 

decision parameters without affecting global prediction. 

─ A controlled mechanism of globalization of local predictions is being created. 

─ The influence of model predictions is ranked depending on the correlation 

properties of recognized information content. 

─ Correlation of the solution is the main factor forming clusters. 

─ The role of model predictions with a strong correlation of the solution decreases. 

─ The influence of the identified low information content on the global ensemble 

solution is increasing. 
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