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Abstract. Based on the network paradigm of complexity in the work, a 
systematic analysis of the dynamics of the largest stock markets in the world and 
cryptocurrency market has been carried out. According to the algorithms of the 
visibility graph and recurrence plot, the daily values of stock and crypto indices 
are converted into a networks and multiplex networks, the spectral and 
topological properties of which are sensitive to the critical and crisis phenomena 
of the studied complex systems. This work is the first to investigate the network 
properties of the crypto index CCI30 and the multiplex network of key 
cryptocurrencies. It is shown that some of the spectral and topological 
characteristics can serve as measures of the complexity of the stock and crypto 
market, and their specific behaviour in the pre-crisis period is used as indicators-
precursors of critical phenomena. 

Keywords: crypto index, visibility graph, complexity measures of financial 
crashes. 

1 Introduction 

The new interdisciplinary study of complex systems, known as the complex networks 
theory, laid the foundation for a new network paradigm of synergetic [17]. The complex 
networks theory studies the characteristics of networks, taking into account not only 
their topology, but also statistical properties, the distribution of weights of individual 
nodes and edges, the effects of information dissemination, robustness, etc. [1; 6; 10; 
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20; 21; 22; 31]. Complex networks include electrical, transport, information, social, 
economic, biological, neural and other networks [1; 6; 10; 20; 18; 22; 24; 31]. The 
network paradigm has become dominant in the study of complex systems since it allows 
you to enter new quantitative measures of complexity not existing for the time series 
[3]. 

Previously, we introduced various quantitative measures of complexity for 
individual time series [25; 26; 27; 28; 29]. Significant advantage of the introduced 
measures is their dynamism, that is, the ability to monitor the time of change in the 
chosen measure and compare with the corresponding dynamics of the output time 
series. This allowed us to compare the critical changes in the dynamics of the system, 
which is described by the time series, with the characteristic changes of concrete 
measures of complexity. It turned out that quantitative measures of complexity respond 
to critical changes in the dynamics of a complex system, which allows them to be used 
in the diagnostic process and prediction of future changes. In [25], we introduced 
network complexity measures and adapted them to study system dynamics. But 
networks are rarely isolated. Therefore, it is necessary to take into account the 
interconnection interaction, which can be realized within the framework of different 
models [4]. In this paper we will consider it by simulating so-called multiplex networks, 
the features of which are reduced to a fixed number of nodes in each layer, but they are 
linked by different bonds. 

2 Review 

Most complex systems inform their structural and dynamic nature by generating a 
sequence of certain characteristics known as time series. In recent years, interesting 
algorithms for the transformation of time series into a network have been developed, 
which allows to extend the range of known characteristics of time series even to 
network ones. Recently, several approaches have been proposed to transform time 
sequences into complex network-like mappings. Three main classes can be 
distinguished. The first is based on the study of the convexity of successive values of 
the time series and is called visibility graph (VG) [12]. The second analyzes the mutual 
approximation of different segments of the time sequence and uses the technique of 
recurrent analysis [9]. The recurrent diagram reflects the existing repetition of phase 
trajectories in the form of a binary matrix whose elements are units or zeros, depending 
on whether they are close (recurrent) with given accuracy or not, the selected points of 
the phase space of the dynamic system. The recurrence diagram is easily transformed 
into adjacency matrix, on which the spectral and topological characteristics of the graph 
are calculated [9]. Finally, if the basis of forming the links of the elements of the graph 
is to put correlation relations between them, we obtain a correlation graph [9]. To 
construct and analyze the properties of a correlation graph, we must form adjacency 
matrix from the correlation matrix. To do this, you need to enter a value which, for the 
correlation field, will serve as the distance between the correlated agents. So, if the 
correlation coefficient between the two assets is significant, the distance between them 
is small, and, starting from a certain critical value, assets can be considered bound on 
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the graph. For an adjacency matrix, this means that they are adjacent to the graph. 
Otherwise, the assets are not contiguous. In this case, the binding condition of the graph 
is a prerequisite. 

The use of the complexity of recurrent and visibility graph networks to prevent 
critical and crisis phenomena in stock markets has been considered by us in a recent 
papers [27; 28]. In this paper, we consider multiplex implementations of these 
techniques. 

The recurrence diagrams for the visualization of phase space recurrences is based on 
Henri Poincare’s idea of the phase space recurrence of dynamical systems. According 
to Takens’s theorem [9], an equivalent phase trajectory that preserves the structure of 
the original phase trajectory can be recovered from a single observation or time series 
by the time delay method: ⃗(ݐ)ݔ = ൫ݑ௜ ,௜ାఛݑ, …  ௜ା(௠ିଵ)ఛ൯, where m – embeddingݑ,
dimension, τ – time delay (real time delay is defined as τ·∆t). The recurrence plot shows 
the existing repetitions in the form of a binary matrix R, where Ri, j = 1, if ⃗ݔ௝ it is adjacent 
to the state ⃗ݔ௜, and Ri,j = 0 otherwise. Neighboring (or recurrent) are states jx  that fall 
into a m-dimensional region with radius ε and center in ⃗ݔ௜. It is clear that parameters m, 
τ and ε are key when conducting recurrent analysis. The recurrence plot is easily 
transformed into an adjacency matrix, by which the spectral and topological 
characteristics of the graph are calculated [28]. 

The algorithm of the VG is realized as follows. Take a time series Y(t) = [y1, y2, …, 
yn] of length N. Each point in the time series data can be considered as a vertex in an 
associative network, and the edge connects two vertices if two corresponding data 
points can “see” each other from the corresponding point of the time series (fig. 1). 
Formally, two values ya of the series (at the time ta) and yb (at the time tb) are connected, 
if for any other value (yc, tc), which is placed between them (that is, ta < tc < tb), the 
condition is satisfied yc < ya + (yb – ya)((tc – ta)/(tb – ta)). Note that the visibility graph 
is always connected by definition and also is invariant under affine transformations, due 
to the mapping method. 

 
Fig. 1. Illustration of constructing the visibility graph (red lines) and the horizontal visibility 

graph (green lines) [16]. 
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An alternative (and much simpler) algorithm is the horizontal visibility graph (HVG) 
[16], in which a connection can be established between two data points a and b, if one 
can draw a horizontal line in the time series joining them that does not intersect any 
intermediate data by the following geometrical criterion: ya, yb > yc for all c such that 
ta < tc < tb (fig. 1). 

In multiplex networks, there are two tasks [13]: (1) turn separate time series on the 
network for each layer; (2) connect the intra-loop networks to each other. The first 
problem is solved within the framework of the standard algorithms described above. 
For multiplex networks, the algorithm of the MVG for the three layers is presented in 
fig. 2. 

 
Fig. 2. Scheme for forming bonds between three layers of the multiplex network [13]. 

The recurrence multiplex network (MCRP) is formed from recurrence plots of 
individual layers. 

2.1 Spectral and topological graph properties 

Spectral theory of graphs is based on algebraic invariants of a graph – its spectra. The 
spectrum of graph G is the set of eigenvalues of a matrix Sp(G) corresponding to a given 
graph. For an adjacency matrix A of a graph, there exists a characteristic polynomial 
|λI – A|, which is called the characteristic polynomial of a graph PG(λ). The eigenvalues 
of the matrix A (the zeros of the polynomial |λI – A|) and the spectrum of the matrix A 
(the set of eigenvalues) are called respectively their eigenvalues and the spectrum of 
graph G. The eigenvalues of the matrix A satisfy the equality A̅ݔ̅) ݔ̅ߣ = ݔ – non-zero 
vector). Vectors ̅ݔ satisfying this equality are called eigenvectors of matrix A (or graph 
G) corresponding to their eigenvalues. 

Another common type of graph spectrum is the spectrum of the Laplace matrix L. 
The Laplace matrix is used to calculate the tree graphs, as well as to obtain some 
important spectral characteristics of the graph. In particular, the positive eigenvalues λ2 
is called the index of algebraic connectivity of the graph. This value represents the 
“force” of the connectivity of the graph component and is used in the analysis of 
reliability and synchronization of the graph. 
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Important derivative characteristics are spectral gap, graph energy, spectral moments 
and spectral radius. The spectral gap is the difference between the largest and the next 
eigenvalues of the adjacency matrix and characterizes the rate of return of the system 
to the equilibrium state. The graph energy is the sum of the modules of the eigenvalues 
of the graph adjacency matrix. The spectral radius is the largest modulus of the 
eigenvalue of the adjacency matrix. Denote by Nc the value which corresponds to an 
“average eigenvalue” of the graph adjacency matrix ௖ܰ = −݈݊൫ܰ∑ ݁ఒ೔ே

௜ୀଵ ൯ and is 
called natural connectivity. 

The k-th spectral moment of the adjacency matrix is determined by the expression 
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Among the topological measures one of the most important is the node degree k – 

the number of links attached to this node. For non-directed networks, the node’s degree 
ki is determined by the sum i ij
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To characterize the “linear size” of the network, useful concepts of mean <l> and 
maximum lmax shortest paths. For a connected network of N nodes, the average path 
length (ApLen) is equal to 2 / (( ( 1)) ,ij
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     where lij – the length of the 

shortest path between the nodes. The diameter of the connected graph is the maximum 
possible distance between its two vertices, while the minimum possible is the radius of 
the graph. 

If the average length of the shortest path gives an idea of the whole network and is a 
global characteristic, the next parameter – the clustering coefficient – is a local value 
and characterizes a separate node. For a given node m, the clustering coefficient Cm is 
defined as the ratio of the existing number of links between its closest neighbors to the 
maximum possible number of such relationships Cm=2Em/(km(km–1)). Here km(km–1)/2 
is the maximum number of links between the closest neighbors. The clustering 
coefficient of the entire network is defined as the average value Cm of all its nodes. The 
clustering coefficient shows how many of the nearest neighbors of the given node are 
also the closest neighbors to each other. He characterizes the tendency to form groups 
of interconnected nodes – clusters. For real-life networks, the high values of the 
clustering coefficient are high. 

Another feature of the node is the between’s. It reflects the role of the node in 
establishing network connections and shows how many shortest paths pass through this 
node. Node betweenness ߪ௠ is defined as ߪ௠ = ∑ ,݉,݅)ܤ ,݅)ܤ/(݆ ݆)௜ஷ௝ , where B(i, j) – 
the total number of shortest paths between nodes i and j, B(i, m, j) – the number of 
shortest paths between i, j those passing through the node m. 

One of the main characteristics of the network is the distribution of nodes P(k), 
which is defined as the probability that the node i has a degree ki=k. For most natural 
and actual artificial networks there is a power distribution P(k) ~ 1/kγ, k≠0, γ > 0. 

Also, important topological characteristics are the vertex eccentricity – the largest 
distance between m and any other vertex, that is, how far the vertex is far from the other 
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vertices of the graph. The centrality of the vertex measures its relative importance in 
the graph. At the same time, the farness of a node is defined as the sum of its distances 
to all other nodes, and its closeness is defined as the backward distance. Thus, the 
centrality of the node is lower than its total distance to all other nodes. 

Another important measure is the link density in the graph, which is defined as the 
number of links ne, divided by the expression nn(nn–1)/2, where nn is the number of 
nodes of the graph. 

2.2 Multiplex complexity measures 

A multilayer/multiplex network is a pair M=(G, C) where ܩ = ;ఈܩ} ߙ  ∈ {1, . . .  {{ܯ,
there is a family of graphs (whether directed or not, weighed or not) ܩఈ = (ܺఈ,ܧఈ), 
called layers ܥ = ఈఉܧ} ⊆ ܺఈ × ఉܺ; ߚ ,ߙ  ∈ {1,...,M}, ߙ ≠  The latter is a set of links .{ߚ
between nodes of different layers ܩఈ and ܩఉ at ߙ ≠  ఈ is intralayerܧ Each element .ߚ
bonds M in contrast to the elements of each ܧఈఉ (ߙ ≠  .called interlayer bonds ,(ߚ

A set of nodes of a layer ܩఈ is denoted ܺఈ = ଵఈݔ} , . . . , ேഀݔ
ఈ }, and a adjacency matrix 

as ܣ[ఈ] = (ܽ௜௝ఈ ) ∈ ℝேഀ×ேഀ, ܽ௜௝ఈ = ൜1, ௜ఈݔ) (௝ఈݔ , ∈ ఈܧ ,
0 

 for 1 ≤ ݅, ݆ ≤ ఈܰ and 1 ≤ ߙ ≤  .ܯ

For an interlayer adjacency matrix we have ܣ[ఈ,ఉ] = (ܽ௜௝
ఈఉ) ∈ ℝேഀ×ேഀ, where 

ܽ௜௝
ఈఉ = ቊ1, ௝ݔ ,௜ఈݔ)

ఉ) ∈ ఈఉܧ ,
0 

. 

A multiplex network is a partial interlayer case and contains a fixed number of nodes 
connected by different types of links. Multiplex networks are characterized by 
correlations of different nature [27], which enable the introduction of additional 
multiplexes. 

Let's evaluate the quantitative overlap between the various layers. The average edge 
overlap obviously equal ߱ = ∑ ∑ ∑ ܽ௜௝

[ఈ]
ఈ ∑ܯ/ ∑ (1 − ଴,∑௔೔ೕߜ

[ഀ])௝வ௜௜௝வ௜௜  and determines 

the number of layers in which this bond is present. Its value lies on the interval [1/1 ,ܯ] 
and equals 1/M if the connection (i, j) exists only in one layer, that is, if there is a layer 
such that ܽ௜௝ ߙ

[ఈ] = 1,ܽ௜௝
[ఉ]=0 ∀ ߚ ≠ ߱ If all layers are identical, then .ߙ = 1. 

Consequently, this measure can serve as a measure of the coherence of the output time 
series: high values ߱ indicate a noticeable correlation in the structure of time series. 

The total overlap ܱఈఉ between the two layers ߙ and ߚ is defined as the total number 
of bonds that are shared between the layers ߙ and  :ܱఈఉ = ∑ܽ௜௝ఈܽ௜௝

ఉ , where ߙ ≠  .ߚ
For a multiplex network, the vertex degree k  is already a vector 

݇௜ = (݇௜
[ଵ], . . . , ݇௜

[ெ]), where ݇௜
[ఈ] is the degree of the node in the layer, that is, while the 

elements of the matrix of adjacency for the layer. Specificity of the vector character of 
the degree of the peak in multiplex networks allows for the introduction of additional 
interlayer characteristics. One of these is the overlap of the node’s degree 
௜݋ = ∑ ݇௜

[ఈ]ெ
ఈୀଵ . 

The next measure quantitatively describes the interlayer correlations between the 
degrees of the selected node in two different layers. If, chosen from M the layers of the 



59 

pair (ߚ,ߙ) characterized by the distribution of degrees ܲ(݇[ఈ]),ܲ(݇[ఉ]), the so-called 
interlayer mutual information is determined by the formula 
ఈ,ఉܫ = ∑∑ܲ(݇[ఈ], ݇[ఉ]) ,൫(ܲ(݇[ఈ]݃݋݈ ݇[ఉ]))/(ܲ(݇[ఈ])ܲ(݇[ఉ]))൯, where ܲ(݇[ఈ],݇[ఉ]) is 
the probability of finding a node degree ݇[ఈ] in a layer ߙ and degree ݇[ఉ] in a layer ߚ. 
The higher the ܫఈ,ఉ value, the more correlated are the distributions of the levels of the 
two layers, and, consequently, the structure of the time series associated with them. We 
also find the mean value ܫఈ,ఉ for all possible pairs of layers – the scalar value < ఈ,ఉܫ > 
that quantifies the information flow in the system. 

The quantity that quantitatively describes the distribution of the node degree i 
between different layers is the entropy of the multiplexed degree 
௜ܵ = −∑ ݇௜

[ఈ]/݋௜ெ
ఈୀଵ ݈݊( ݇௜

[ఈ]/݋௜). Entropy is zero if all nodes are in the same layer and 
vice versa, has the maximum value when they are evenly distributed between different 
layers. That is, the higher the value Si, the even more links evenly the nodes’ 
connections are distributed between the layers. 

A similar magnitude is the multiplex participation coefficient 

௜ܲ = ܯ)/ܯ − 1) ൤1 − ∑ ቀ݇௜
[ఈ]/݋௜ቁெ

ఈୀଵ
ଶ
൨. Pi takes values on the interval [0, 1] and 

determines that homogeneous links of node i are distributed among M the layers. If all 
links of the node i lie in one layer, Pi = 0 and Pi =1 if the node has a precisely defined 
number of links in each of the M layers. Consequently, the larger the coefficient Pi is, 
the more evenly distributed the participation of the node in the multiplex. 

Obviously, the magnitudes Si and Pi are very similar. We will show that some of 
these spectral and topological measures serve as measures of complexity of the system, 
and the dynamics of their changes allows us to build predictors of crisis situations on 
financial markets. 

2.3 Experimental results and their discussion 

In our recent work [26] we investigated the multiplex properties of the most capitalized 
stock indices for the period from 01/01/1983 to 10/01/2019. Here we will add an 
analysis of their complex network properties, while also preserving the analysis of 
multiplex properties for a whiter period of time, but including the COVID-19 crisis 
[23]: 02/01/2004 – 17/08/2020 [34]. In addition, for the first time, we are examining 
the network complex properties of the CCI30 crypto index and comparing them with 
the properties of the multiplex network of the 3 most capitalized cryptocurrencies 
included in the CCI30 index basket. For the crypto market, the period under 
consideration corresponds to the time the index was observed: from 07/08/2015 to 
17/08/2020 [7]. The time series of daily values of stock market indices were selected 
as databases, which contained significant changes in the indices, and were identified as 
crisis phenomena [15]. Daily values of cryptocurrency prices for a period comparable 
to the CCI30 index were borrowed from [33]. Among the set of stock indexes are the 
following: SP (S&P500) – USA; DAX (DAX PERFORMANCE-INDEX) – Germany; 
N225 (Nikkei 225) – Japan; HSI (HANG SENG INDEX) – China; GSPTSE (S&P/TSX 
Composite index) – Canada. 
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Up to three selected cryptocurrencies include the following: Bitcoin – BTC; 
Ethereum – ETH; Litecoin – LTC. 

Their comparative dynamics on a relative scale is shown in fig. 3. 

  

Fig. 3. The dynamics of the daily values of the selected stock market indices (a) and 
cryptocurrencies and CCI30 (b). 

Despite a slight difference in the time series dynamics, the main trends (both rising and 
falling – actually crises) are observed for all time series. 

Crypto index CCI30 refers to a number of emerging crypto indices [32] similar to 
many stock market indices. CCI30 is an index that is designed to objectively measure 
the overall growth, daily and long-term movement of the blockchain sector. This allows 
you to track 30 cryptocurrencies by market cap. This index serves as a tool for passive 
investors to participate in this asset class and an industry benchmark for investment 
managers. The main characteristics of the CCI30 index are: 1) versatility; 
2) reproducibility; 3) transparent; 4) provides comprehensive coverage of the entire 
sector; 5) represents the best possible risk-adjusted performance profile. The CCI30 
was launched on Jan 1st, 2017. Its starting value is arbitrarily set at 100 on Jan 1st, 
2015. Members are automatically selected from the top 30 cryptocurrencies by adjusted 
market cap and included in the index. The minimum number of constituents required 
to obtain statistical significance was set at 30. Because using more components will 
lead to higher fees without significantly improving performance, and using fewer than 
thirty components will run the risk of reduced performance, lack of diversification, 
decreased statistical significance, and wasted opportunities to pick the next leader. To 
date, having hit the top 30 cryptocurrencies, CCi30 captures approximately 90% of the 
cryptocurrency market capitalization. With this scope, the index statistically represents 
the entire cryptocurrency market with a confidence level of 99% and a confidence 
interval of 1.11. The margin of error of the index value as an indicator of the market is 
just 1.11%. To calculate the weights for each cryptocurrency, you first need to calculate 
the adjusted market cap. Market capitalization is not calculated as some instantaneous 
number – the volatility in the cryptocurrency market is such that it too destabilizes the 
composition of the index. Instead, the CCI30 uses an exponentially weighted moving 
average of the market cap. Weighted average market cap helps smooth out volatility to 
give the most accurate portrait of market cap at any given moment. 
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The weight of each constituent cryptocurrency is measured by the square root of its 
adjusted market capitalization. The square root function was chosen as a hybrid that 
most accurately weighs the constituents based on the current cryptocurrency market 
conditions. A simple weighted market cap index would be dominated by the two 
leading cryptocurrencies, while a slower declining weight, or in a pinch, equal 
weighting, would give too much weight to the tiny illiquid cryptocurrencies at the 
bottom of the range. In order to accurately capture market movements, restrictions or 
minimum values for the weight of cryptocurrencies are not applied. The index is a better 
investment vehicle than Bitcoin itself, and a much safer approach than trying to pick 
individual coins. Investing in an index allows you to profit from the unpredictable 
growth of some cryptocurrencies, while limiting losses associated with the fall of 
others. 

The spectral and topological properties of both stock market indices and the CCI30 
index were calculated. The calculations were carried out using the moving window 
algorithm. In the case of stock indices, the window size was chosen equal to 250 days, 
and the window offset was equal to 5 days. In the case of a more volatile crypto market, 
the window size was chosen equal to 100 days. 

Figure 4, using only two measures as an example, shows their typical dynamics. It 
follows from the figure 4 that in the pre-crisis period the system has a higher 
complexity. In this case, node degree takes maximum values, while the average path 
length, on the contrary, is minimized. After the crisis, the opposite picture is observed. 

Calculations of spectral and topological measures by methods of MVG, MCRP were 
carried out in the following way. For the selected window, the corresponding graphs 
were constructed and the spectral, topological and multiplex properties were calculated. 
Next, the window was shifted step by step, for example, one week (5 trading days) and 
the procedure repeated until the time series were exhausted. Knowing the time of the 
onset of the crisis and comparing the time series with the dynamics of a certain 
indicator, it is possible to investigate its dependence on certain the characteristic 
changes in the stock market: pre-crisis, crisis and post-crisis periods. 

The results of calculations for revived time series of graphs are shown in figures 5-
8. 

a) 
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b) 

c) 

d) 

Fig. 4. Window dynamics of spectral kmax and topological ApLen complexity measures for the 
S&P500 and CCI30 indices. 
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Fig. 5. The entropy of the multiplexed degree and the multiplex participation coefficient 
calculated for a sliding window (w) of 250 days in increments (Δݐ) of 5 days. Moments of 

major stock crises are indicated. 

 

Fig. 6. Nodes degree overlap and the total overlap calculated for a sliding window (w) of 250 
days in increments (Δݐ) of 5 days. 

Figures 5-6 show that the pair of parameters ܵ ,ܲ in figure 5 is antisymmetric to the pair 
parameters ݋,ܱ of figure 6. However, all of them in a characteristic way (decreasing or 
increasing before the crisis) signal about its possible onset. 

Similar calculations were carried out for the CCI30 index (figures 7-8). As in the 
case of a multiplex visibility graph, multiplex recurrence measures are also informative 
indicators-predictors of crisis phenomena. 

Parameters such as the width of the window w and the step ∆t of its displacement 
along the time series are important. When w is small, the degree of complexity 
fluctuates noticeably, reacting not only to crises, but also to more or less noticeable 
fluctuations of the index. On the contrary, with too much window width there is a 
noticeable smoothing of the appropriate measure and if two crises are at a distance that 
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is smaller w, the indicators of both crises are averaged and less informative. If you 
choose an oversized parameter ∆t, you might miss the actual crisis that distorts the 
indicator. 

 

 
Fig. 7. MVG complexity measures: the entropy of the multiplexed degree and the multiplex 

participation coefficient. 

 
Fig. 8. MVG complexity measures: nodes degree overlaps and the total overlap. 

Multiplex networks are actively used to simulate complex networks of different nature: 
from financial (banks [2], stock market [19], guarantee market [14]) to social [30]. 
Particular attention should be paid to the work [19], in which the above multiplex 
measures are analyzed for the subject of correlations with known stock markets crises. 
Yet there is no systematic analysis of network and multiplex measures and the 
construction of indicators-predictors of the crisis phenomena in the stock market. 
Therefore, our studies to some extent fill this gap. 
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3 Conclusions 

We have demonstrated the possibility of studying complex socio-economic systems as 
part of a network paradigm of complexity. A time series can be represented in an 
equivalent way – a complex/multiplex network, which has a wide range of 
characteristics; both spectral and topological, and multiplexed. Examples of known 
financial crises have shown that most of the network measures can serve as indicators-
precursors of crisis phenomena and can be used for possible early prevention of 
unwanted crises in the financial markets. They are an extension of the already proposed 
by us and “working” indicators, which use other measures of complexity. 

It should be noted that the proposed indicators-precursors do not solve the more 
general problem of forecasting future values or trends of the stock market. In this way, 
it is possible to use new approaches or alternative methods based on algorithms of 
(deep) machine learning [5; 8; 11]. 

References 

1.  Avalos-Gaytán, V., Almendral, J.A., Leyva, I., Battiston, F., Nicosia, V., Latora, V., 
Boccaletti, S.: Emergent explosive synchronization in adaptive complex networks. Physical 
Review E 97(4), 042301 (2019) 

2.  Bargigli, L., di Iasio, G., Infante, L., Lillo, F., Pierobon, F.: The multiplex structure of 
interbank networks. Quantitative Finance 15(4), 673–691 (2015) 

3.  Bianconi, G.: Interdisciplinary and physics challenges in network theory. EPL 111(5), 
56001 (2015) 

4.  Boccaletti, S., Bianconi, G., Criado, R., del Genio, C.I., Gómez-Gardeñes, J., Romance, M., 
Sendiña-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. 
Physics Reports 544(1), 1–122 (2014) 

5.  Chatzis, S.P., Siakoulis, V., Petropoulos, A., Stavroulakis, E., Vlachogiannakis, N.: 
Forecasting stock market crisis events using deep and statistical machine learning 
techniques. Expert Systems with Applications 112, 353–371 (2018). doi:
10.1016/j.eswa.2018.06.032 

6.  Cheng, F., Kovács, I.A., Barabási, A.L.: Network-based prediction of drug combinations. 
Nature Communications 10(1), 1197 (2019) 

7.  Crypto Currency Index CCi30. http://cci30.com (2020). Accessed 17 Aug 2020 
8.  Derbentsev, V., Matviychuk, A., Soloviev, V.N.: Forecasting of Cryptocurrency Prices 

Using Machine Learning. In: Pichl, L., Eom, C., Scalas, E., Kaizoji, T. (eds.) Advanced 
Studies of Financial Technologies and Cryptocurrency Markets, pp. 211–231. Springer, 
Singapore (2020). doi:10.1007/978-981-15-4498-9_12  

9.  Donner, R.V., Small, M., Donges, J.F., Marwan, N., Zou, Y., Xiang, R., Kurths, J.: 
Recurrence-based time series analysis by means of complex network methods. International 
Journal of Bifurcation and Chaos 21(4), 1019–1046 (2011) 

10.  Fortunato, S., Bergstrom, C.T., Börner, K., Evans, J.A., Helbing, D., Milojević, S., 
Petersen, A.M., Radicchi, F., Sinatra, R., Uzzi, B., Vespignani, A., Waltman, L., Wang, D., 
Barabási, A.-L.: Science of science. Science 359(6379), eaao0185 (2018) 

11.  Kiv, A., Semerikov, S., Soloviev, V., Kibalnyk, L., Danylchuk, H., Matviychuk, A.: 
Experimental Economics and Machine Learning for Prediction of Emergent Economy 
Dynamics. CEUR Workshop Proceedings 2422, 1–4 (2019) 

http://cci30.com


66 

12.  Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuño, J.C.: From time series to complex 
networks: The visibility graph. Proceedings of the National Academy of Sciences of the 
United States of America 105(13), 4972–4975 (2008) 

13.  Lacasa, L., Nicosia, V., Latora, V.: Network structure of multivariate time series. Scientific 
Reports 5, 15508 (2015) doi:10.1038/srep15508 

14.  Li, S., Wen, S.: Multiplex Networks of the Guarantee Market: Evidence from China. 
Complexity 2017, 9781890 (2017). doi:10.1155/2017/9781890 

15.  List of stock market crashes and bear markets. 
https://en.wikipedia.org/wiki/List_of_stock_market_crashes_and_bear_markets (2020). 
Accessed 17 Aug 2020 

16.  Luque, B., Lacasa, L., Ballesteros, F., Luque, J.: Horizontal visibility graphs: Exact results 
for random time series. Physical Review E 80(4), 046103 (2009).
doi:10.1103/PhysRevE.80.046103 

17.  Malinetskii, G.G., Akhromeeva, T.S.: Self Organization in Complex Systems and New 
Problems in the Theory of Measurement. Measurement Techniques 59(6), 577–583 (2016)

18.  Markova, O., Semerikov, S., Popel, M.: CoCalc as a learning tool for neural network 
simulation in the special course “Foundations of Mathematic Informatics”. CEUR 
Workshop Proceedings 2104, 338–403 (2018) 

19.  Musmeci, N., Nicosia, V., Aste, T., Di Matteo, T., Latora, V.: The Multiplex Dependency 
Structure of Financial Markets. Complexity 2017, 9586064 (2017).
doi:10.1155/2017/9586064 

20.  Newman, M.E.J., Barabási, A.L., Watts, D.: The Structure and Dynamics of Networks. 
Princeton University Press, Princeton (2006) 

21.  Prigogine, I.R.: Networks society. Sotsiologicheskie Issledovaniya (1), 24–27 (2008) 
22.  Riolo, M.A., Newman, M.E.J.: Consistency of community structure in complex networks. 

Physical Review E 101(5), 052306 (2020) 
23.  Semerikov, S., Chukharev, S., Sakhno, S., Striuk, A., Osadchyi, V., Solovieva, V., 

Vakaliuk, T., Nechypurenko, P., Bondarenko, O., Danylchuk, H.: Our sustainable 
coronavirus future. E3S Web of Conferences 166, 00001 (2020). 
doi:10.1051/e3sconf/202016600001 

24.  Semerikov, S.O., Teplytskyi, I.O., Yechkalo, Yu.V., Markova, O.M., Soloviev, V.N., Kiv, 
A.E.: Computer Simulation of Neural Networks Using Spreadsheets: Dr. Anderson, 
Welcome Back. CEUR Workshop Proceedings 2393, 833–848 (2019) 

25.  Soloviev, V., Belinskij, A.: Methods of nonlinear dynamics and the construction of 
cryptocurrency crisis phenomena precursors. CEUR Workshop Proceedings 2104, 116–127 
(2018) 

26.  Soloviev, V., Solovieva, V., Tuliakova, A., Ivanova, M.: Construction of crisis precursors 
in multiplex networks. Advances in Economics, Business and Management Research 99, 
361–366 (2019) doi:10.2991/mdsmes-19.2019.68 

27.  Soloviev, V., Solovieva, V., Tuliakova, A.: Visibility graphs and precursors of stock 
crashes. Neuro-Fuzzy Technologies of Modeling in Economy 8, 3–29 (2019).
doi:10.33111/nfmte.2019.003 

28.  Soloviev, V., Tuliakova, A.: Graphodinamical Research Methods for Complexity of 
Modern Stock Markets. Neuro-Fuzzy Technologies of Modeling in Economy 5, 152–179, 
(2016) 

29.  Soloviev, V.N., Belinskiy, A.: Complex Systems Theory and Crashes of Cryptocurrency 
Market. Communications in Computer and Information Science 1007, 276–297 (2019) 

30.  Stephen, C.: Dynamic Phase and Group Detection in Pedestrian Crowd Data Using 
Multiplex Visibility Graphs. Procedia Computer Science 53, 410–419 (2015) 

https://en.wikipedia.org/wiki/List_of_stock_market_crashes_and_bear_markets


67 

31.  Vespignani, A.: Twenty years of network science. Nature 558(7711), 528–529 (2018) 
32.  Xie, A.: The Ultimate Guide on Cryptocurrency Index Funds. 

https://www.hodlbot.io/blog/ultimate-guide-on-cryptocurrency-indices (2019). Accessed 
25 Oct 2019 

33.  Yahoo Finance: All Cryptocurrencies Screener.
https://finance.yahoo.com/cryptocurrencies (2020). Accessed 17 Aug 2020 

34.  Yahoo Finance: Stock Market Live, Quotes, Business & Finance News. 
https://finance.yahoo.com (2020). Accessed 17 Aug 2020 

 

https://www.hodlbot.io/blog/ultimate-guide-on-cryptocurrency-indices
https://finance.yahoo.com/cryptocurrencies
https://finance.yahoo.com

