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Abstract. In this paper, the possibility of using some econophysical methods for 
quantitative assessment of complexity measures: entropy (Shannon, 
Approximate and Permutation entropies), fractal (Multifractal detrended 
fluctuation analysis – MF-DFA), and quantum (Heisenberg uncertainty principle) 
is investigated. Comparing the capability of both entropies, it is obtained that 
both measures are presented to be computationally efficient, robust, and useful. 
Each of them detects patterns that are general for crisis states. The similar results 
are for other measures. MF-DFA approach gives evidence that Dow Jones 
Sustainability Index is multifractal, and the degree of it changes significantly at 
different periods. Moreover, we demonstrate that the quantum apparatus of 
econophysics has reliable models for the identification of instability periods. We 
conclude that these measures make it possible to establish that the socially 
responsive exhibits characteristic patterns of complexity, and the proposed 
measures of complexity allow us to build indicators-precursors of critical and 
crisis phenomena. 

Keywords: Dow Jones Sustainability Index, measures of complexity, 
precursors of stock market crashes. 

1 Introduction 

Current economic trends have convincingly demonstrated that green development is a 
necessary condition for sustainable development, which is essential for a better life in 
the future [40]. Economists have described climate change as a global market failure 
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estimating that without action, the rising overall costs of climate could result in losing 
at least 5% of global GDP each year. A growing number of financial institutions are 
joining in a constructive dialogue on the relationship between economic development, 
environmental protection, and sustainable development. Financial institutions, 
including banks, insurers, and investors, work with the United Nations Environment 
Programme – Finance Initiative to better understand environmental, social, and 
governance challenges, why they matter to finance, and how to take steps to address 
them [30]. 

The availability of stock indexes based on sustainability screening makes 
increasingly viable for institutional investors the transition to a portfolio based on a 
Socially Responsible Investment (SRI) benchmark at a relatively low cost. 

The 2008 subprime crisis and increased social awareness have led to a growing 
interest in topics related to Socially Responsible Investment. SRI is a long-term 
investment that integrates environmental, social, and corporate governance criteria 
(ESG). According to the Global Sustainable Investment Alliance (GSIA), SRI reached 
24 trillion euro’s in 2016, registering a growth of 25.2% between 2014 and 2016. So, 
green and sustainable finance is more important nowadays than ever before [14]. 

This increased social interest coincides with international initiatives aimed at 
developing environmental and social policies on sustainable finance issues, such as the 
Action Plan on sustainable finance adopted by the European Commission in March 
2018. This plan has three main objectives: 

(i) to redirect capital flows towards sustainable investment to achieve sustainable 
and inclusive growth, 

(ii) to manage financial risks stemming from climate change, environmental 
degradation, and social issues, and 

(iii) to foster transparency and long-termism in financial and economic activity. 
Therefore, the main purpose is to enhance the role of finance and to build an economy 
that enables the goals of the Paris Agreement (2015) and the EU for sustainable 
development to be reached [15]. 

The Dow Jones Sustainability Index (DJSI) comprises global sustainability leaders 
as identified by SAM. It represents the top 10% of the largest 2,500 companies in the 
S&P Global BMI based on long-term economic, environmental, and social criteria [59]. 
Founded in 1995, RobecoSAM is an investment specialist focused exclusively on 
Sustainability Investing [38]. 

The S&P Global Broad Market Index (BMI) is the only global index suite with a 
transparent, modular structure that has been fully float-adjusted since 1989. This 
comprehensive, rules-based index series employs a transparent and consistent 
methodology across all countries and includes more than 11,000 stocks from 25 
developed and 25 emerging markets [39]. The SAM Corporate Sustainability 
Assessment (CSA), established by RobecoSAM, is now issued by S&P Global. 
RobecoSAM, an asset manager focused entirely on sustainable investing, established 
the CSA in 1999. The CSA has become the basis for numerous S&P ESG Indices over 
the last two decades attracting billions of USD in assets. Besides, S&P Global acquired 
RobecoSAM’s ESG Ratings and Benchmarking businesses which operate out of S&P 
Global Switzerland. SAM is a registered trademark of S&P Global. ESG is a generic 
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term used in capital markets and used by investors to evaluate corporate behavior and 
to determine the future financial performance of companies. In the conditions of a wide 
variety of sustainable development indices, investors need to have a comparative 
characteristic of traditional indices with sustainable development indices obtained by 
quantitative methods. At the same time, the set of tools of modern financial analysis 
took shape in a separate rapidly growing applied science – fintech. Financial technology 
(‘fintech’) is emerging as a core disruptor of every aspect of today’s financial system. 
Fintech covers everything from mobile payment platforms to high-frequency trading, 
and from crowdfunding and virtual currencies to blockchain. In combination, such 
forceful innovations will threaten the viability of today’s financial sector business 
models, and indeed the effectiveness of current policies, regulations, and norms that 
have shaped modern finance.  

The use of financial technology innovations is of course not new – but a step change 
is now expected with the novel application of several technologies in combination, 
notably involving blockchain, the ‘Internet of things’, and artificial intelligence [6]. The 
widespread introduction of fintech makes it possible to talk about green finance as a 
strategy for the financial sector and broader sustainable development that is relevant 
around the world [1; 7; 24; 33]. Green economy, green finance, and green development 
are the peculiar coordinates of the phase space in which today it is generally accepted 
to evaluate the sustainable development of world civilization. 

Financial systems are complex systems and consist of a plurality of interacting 
agents possessing the ability to generate new qualities at the level of macroscopic 
collective behavior, the manifestation of which is the spontaneous formation of 
noticeable temporal, spatial, or functional structures [54]. For many years financial 
markets have been attracting the attention of many scientists like engineers, 
mathematicians, physicists, and others for the last two decades. Such vast interest 
transformed into a branch of statistical mechanics – econophysics [25]. Physics, 
economics, finance, sociology, mathematics, engineering, and computer science are 
fields of science which, as a result of cross-fertilization, have created the multi-, cross-, 
and interdisciplinary areas of science and research such as econophysics and 
sociophysics, thriving in the last two and a half decades. These mixed research fields 
use knowledge, methodologies, methods, and tools of physics for modeling, explaining, 
and forecasting economic and social phenomena and processes. Accordingly, 
econophysics is an interdisciplinary research field, applying theories and methods 
originally developed by physicists to solve problems in economics, usually those 
including uncertainty or stochastic processes, nonlinear dynamics, and evolutionary 
games. Obviously, quantitative econophysical methods for studying financial markets 
are an interesting and promising area of fintech. 

Our research structured as follows. Section 2 contains a brief description of socially 
responsive indexes and an analysis of previous work on a comparative quantitative 
analysis of this variety of indices. Section 3 describes algorithms for constructing 
econophysical measures of complexity based on the informational, (multi-)fractal and 
quantum physical properties of a time series. These measures are calculated based on 
the DJSI index. Section 4 summarizes the results obtained and indicates the direction 
of subsequent studies. 
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2 Review of previous research 

In the last 20-25 years, a huge number of social responsibility or sustainability indices 
have been created and their number continues to grow [13; 53]. Briefly consider the 
most commonly used. 

The Dow Jones Sustainability Indices are a family of best-in-class benchmarks for 
investors who have recognized that sustainable business practices are critical to 
generating long-term shareholder value and who wish to reflect their sustainability 
convictions in their investment portfolios (http://www.sustainability-indices.com/). 
The family was launched in 1999 as the first global sustainability benchmark and tracks 
the stock performance of the world's leading companies in terms of economic, 
environmental, and social criteria. Dow Jones Sustainability World Index, the most 
important global stock market valuation index of corporate social responsibility. 

FTSE4Good was created by the FTSE Group to facilitate investments in companies 
that meet globally recognized corporate responsibility standards and constitutes an 
important reference point for the establishment of benchmarks and ethical portfolios. 
Companies in the FTSE4Good Index have met stringent environmental, social, and 
governance criteria, and are therefore potentially better positioned to capitalize on the 
benefits of responsible business practice (http://www.ftse.com/). 

MSCI is a leading provider of investment decision support tools to investors 
globally, including asset managers, banks, hedge funds, and pension funds. MSCI 
Global Sustainability Indexes include companies with high ESG ratings relative to their 
sector peers (http://www.msci.com/). 

CDP (formerly the “Carbon Disclosure Project”) is one of the world’s leading not-
for-profit climate change organizations, assessing transparency in the disclosure of 
information on climate change and greenhouse gas emissions, as well as in the 
management of water resources (http://www.cdp.net/). 

United Nations Global Compact 100 (“GC 100”), a global stock index developed 
and released by the UN Global Compact in partnership with the research firm 
Sustainalytics (https://www.unglobalcompact.org/). The index lists the 100 companies 
which globally outstand for executive leadership commitment and consistent baseline 
profitability, as well as their adherence to the Global Compact’s ten principles, on 
human rights, labor, environment, and anti-corruption issues. 

STOXX Global ESG Leaders Indices, a group of indices based on a fully transparent 
selection process of the performance, in terms of sustainability, of 1,800 companies 
worldwide (http://www.stoxx.com/). The ratings are calculated for three sub-areas – 
environmental, social, and governance – and are then combined to form the overall 
index. The indices are managed by STOXX, the owner of some of the most important 
international stock indices, such as the STOXX50. 

In our previous work [11], we performed a comparative analysis of the index DJSI 
[62] with its classic and traditional counterpart – the index Dow Jones Industrial 
Average (DJIA) [61]. 

In a comparative analysis of structural and dynamic properties of traditional stock 
market indices and social responsibility indices, descriptive statistics methods are used 
in most works [2; 31; 34; 43]. 

http://www.sustainability-indices.com/).
http://www.ftse.com/).
http://www.msci.com/).
http://www.cdp.net/).
https://www.unglobalcompact.org/).
http://www.stoxx.com/).
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Descriptive statistics (mean, maximum, minimum, and standard deviation) of the 
financial information required to apply the Ohlson [34] valuation model reviewed in 
[31]. They were examining whether sustainability leadership – proxied by the 
membership of the Dow Jones Sustainability Index Europe – is value relevant for 
investors on the 10 major European stock markets over the 2001–2013 period. These 
results reveal that there exist significant differences across markets. 

The article [43] analyzes rate-of-return and risk related to investments in socially 
responsible and conventional country indices. The socially responsible indices are the 
DJSI Korea, DJSI US, and Respect Index, and the corresponding conventional country 
indices are the Korea Stock Exchange Composite KOSPI, DJIA, and WIG20. Shown, 
that conclude that investing in the analyzed SRI indices do not yield systematically 
better results than investing in the respective conventional indices, both in terms of 
neoclassical risk and return rate. 

The authors [2] examined sustainable investment returns predictability based on the 
US DJSI and a wide set of uncertainty and financial distress indicators for the period 
January 2002 to December 2014. They employ a novel nonparametric causality-in-
quantile approach that captures nonlinearity in returns distribution. The authors 
conclude that the aggregate Economic Policy Uncertainty indicator and some 
components have predictive ability for real returns of the US sustainable investments 
index. Paper [55] explores the relationship between sustainability performance and 
financial performance by looking at the impact of sustainability index changes on the 
market value of a company. The author has studied the price effects of changes in the 
DJSI and FTSE4Good Index. He failed to observe statistically significant positive 
abnormal returns for companies being added to a sustainability index. On the opposite, 
he finds negative abnormal returns for companies being deleted from the FTSE, 
however not in the case of the DJSI. This can be explained by studying the volume 
effects and the behavior of investment managers. 

However, the first works appeared using more modern methods of analysis, using 
the achievements of nonlinear dynamical systems and complexity theory [16; 26; 29; 
32; 58]. The authors [58] constructed a sustainable regional green economy 
development index system from five aspects - economic, social, technological, 
resources, and environmental -  using DPSIR (drivers, pressures, state, impact, response 
model) and entropy-TOPSIS (a technique for order preference by similarity to an ideal 
solution) coupling coordination to horizontally and vertically quantitatively analyze the 
sustainable green economy development. The model was verified by the actual situation 
of green economy development in Shandong Province from 2010 to 2016, which 
confirmed the feasibility of the method. 

A sustainable development capacity measure model for Sichuan Province was 
established by applying the information entropy calculation principle and the 
Brusselator principle [26]. Each subsystem and entropy change in a calendar year in 
Sichuan Province were analyzed to evaluate Sichuan Province’s sustainable 
development capacity. It was found that the established model could effectively show 
actual changes in sustainable development levels through the entropy change reaction 
system, at the same time this model could clearly demonstrate how those forty-six 
indicators from the three subsystems impact on the regional sustainable development, 
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which could make up for the lack of sustainable development research. 
A similar approach is implemented to measure the tourist attractiveness of the region 

[16]. And in work [29] information and entropy theory used for the sustainability of 
coupled human and natural systems. 

Authors of [32] used R/S analysis to calculate the Hurst exponent as a measure of 
persistence (efficiency of traditional stock market indices and social responsibility 
stock market indices). The presence of persistence was evidence in favor of less 
efficiency. According to empirical results, SRI has lower efficiency, in particular the 
Dow Jones Sustainability Index. Lower efficiency was also observed in the emerging 
markets with a responsible investment segment, compared to the traditional stock 
market indices. 

In paper [27] authors suggest three new indicators based on an engineering approach 
of irreversibility. They allow evaluating both the technological level and the 
environmental impact of the production processes and the socio-economic conditions 
of the countries. Indeed, they are based on the energy analysis and on the irreversible 
thermodynamic approach, in order to evaluate the inefficiency both of the process and 
of the production systems, and the related consequences. Three applications are 
summarized in order to highlight the possible interest from different scientists and 
researchers in engineering, economy, etc. [19; 23], in order to develop sustainable 
approaches and policies for decision-makers. 

All mentioned measures can capture nonlinearity and complexity that peculiar even 
for sustainability indices. Analysis of previous papers [47; 48; 49; 51; 52] shows that 
indicators have theoretical perspectives and, in accordance with other studies, such 
approaches are presented to be robust and computationally efficient. In some aspects, 
the results of the multifractal analysis are presented to be better, but the computational 
costs leave a lot to be desired. Therefore, due to computationally efficiency and ability 
to monitor, and prevent crisis events in advance, the entropy measures present to be the 
most attractive. However, empirical results of quantum and multifractal measures 
present to be optimal that motivate further research work. 

3 Econophysical measures of DJSI complexity and 
precursors of crisis states 

In a series of recent works [4; 44; 45; 50], we have demonstrated the possibility of using 
the theory of complex systems and a set of developed analysis tools to calculate the 
corresponding measures of system complexity. These complexity measures make it 
possible to differentiate systems according to the degree of their functionality, to 
identify and prevent critical and crisis phenomena. 

Since the DJSI index is used as a calculation base, we will provide more detailed 
information for it. DJSI measures the performance of companies selected for economic, 
environmental, and social criteria that weighted by market capitalization using a best-
in-class approach. In assessing sustainability, the key factor in selecting components 
for any DJSI index is the overall company sustainability rating (TSS). The first CSA 
was undertaken in 1999 with the launch of the original DJSI family of indexes. The 
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annual CSA process begins in March of each year and is published with new estimates 
in September. The index is calculated using the divisor methodology that is used for all 
Dow Jones Index stock indices. Indices are calculated daily throughout the calendar 
year. The exception is those days when all exchanges on which the index constituents 
are quoted are officially closed or if the WM Reuters exchange rate services are not 
published. 

The table 1 and figure 1 provide information on the key companies in the index 
basket and the weight of the respective economic sectors to which they belong. 

Table 1. Top 10 components by index weight. 

No Constituent Symbol Sector 
1 Microsoft Corp MSFT Information 
2 Technology Alphabet Inc C GOOG Communication Services 
3 Nestle SA Reg NESN Consumer 
4 Staples United health Group Inc UNH Health Care 
5 Taiwan Semiconductor Manufacturing Co Ltd 2330 Information 
6 Technology Roche Hldgs AG Ptg Genus ROG Health Care 
7 Adobe Inc. ADBE Information 
8 Technology Novartis AG Reg NOVN Health Care 
9 Cisco Systems Inc CSCO Information 

10 Technology Bank of America Corp BAC Financials 
 

 
Fig. 1. Weights for each sector of the index, %. 

For the daily DJSI time series {ݐ|(ݐ)ݔ = 1, … ,  ܰ} we will carry out calculations of the 
corresponding measures of complexity within the framework of the moving window 
algorithm. For this purpose, the part of the time series (window), for which there were 
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calculated measures of complexity, was selected, then the window was displaced along 
with the time series in a predefined value, and the procedure repeated until all the 
studied series had exhausted. Further, comparing the dynamics of the actual time series 
and the corresponding measures of complexity, we can judge the characteristic changes 
in the dynamics of the behavior of complexity with changes in the cryptocurrency. If 
this or that measure of complexity behaves in a definite way for all periods of crashes, 
for example, decreases or increases during the pre-crashes or pre-critical period, then it 
can serve as their indicator or precursor. 

The returns over some time scale Δݐ is defined as the forward changes in the 
logarithm of the corresponding time series: (ݐ)ܩ ≡ ݈݊ ݔ ݐ) + Δݐ)/ ݈݊ ݔ  We will .(ݐ)
determine standardized returns ݃(ݐ) ≡ (ݐ)ܩ] − ߪ where ,ߪ/[⟨ܩ⟩ ≡ ඥ⟨ܩଶ⟩ −  ଶ is⟨ܩ⟩
the standard deviation of G, and ⟨… ⟩ denotes the average over the time period under 
study. 

In our previous paper [11] we devoted to a comparative analysis complexity of 
traditional stock market indices and social responsible indices in the example Dow 
Jones Sustainability Indices and Dow Jones Industrial Average. As measures of 
complexity, the entropies of various recurrence indicators are chosen – the entropy of 
the diagonal lines of the recurrence diagram, recurrence probability density entropy and 
recurrence entropy. It is shown that these measures make it possible to establish that 
the socially responsive Dow Jones index is more complex. In this paper, we will 
continue to use econophysical measures of complexity, considering other than recurrent 
entropy measures, as well as fractal and quantum measures of complexity in relation to 
the index DJSI. 

4 Entropy complexity measures for an index DJSI 

The most important quantity that allows us to parameterize complexity in deterministic 
or random processes is entropy. Originally, it was introduced by Clausius [8], in the 
context of classical thermodynamics, where according to his definition, entropy tends 
to increase within an isolated system, forming the generalized second law of 
thermodynamics. Then, the definition of entropy was extended by Boltzmann and 
Gibbs [5; 18], linking it to molecular disorder and chaos to make it suitable for 
statistical mechanics, where they combined the notion of entropy and probability. 

After the fundamental paper of Shannon [42] in the context of information theory, 
where entropy denoted the average amount of information contained in the message, 
its notion was significantly redefined. After this, it has been evolved along with 
different ways and successful enough used for the research of economic systems [57]. 

A huge amount of different methods, as an example, from the theory of complexity, 
the purpose of which is to quantify the degree of complexity of systems obtained from 
various sources of nature, can be applied in our study. Such applications have been 
studied intensively for an economic behavior system. 

The existence of patterns within the series is the core in the definition of randomness, 
so it is appropriate to establish such methods that will be based on the different patterns 
and their repetition [9]. In this regard, Pincus described the methodology Approximate 
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entropy (ApEn) [37] to gain more detail analysis of relatively short and noisy time 
series, particularly, of clinical and psychological. Pincus and Kalman [36], considering 
both empirical data and models, including composite indices, individual stock prices, 
the random-walk hypothesis, Black-Sholes, and fractional Brownian motion models to 
demonstrate the benefits of ApEn applied to the classical econometric modeling 
apparatus. This research the usefulness of ApEn on the example of three major events 
of the stock market crash in the US, Japan, and India. During the major crashes, there 
is significant evidence of a decline of ApEn during and pre-crash periods. Based on the 
presented results, their research concludes that ApEn can serve as a base for a good 
trading system. Duan and Stanley [12] showed that it is possible to effectively 
distinguish the real-world financial time series from random-walk processes by 
examining changing patterns of volatility, ApEn, and the Hurst exponent. The empirical 
results prove that financial time series are predictable to some extent and ApEn is a 
good indicator to characterize the predictable degree of financial time series. Alfonso 
Delgado-Bonal [10] gives evidence of the usefulness of ApEn. The researcher 
quantifies the existence of patterns in evolving data series. In general, his results present 
that degree of predictability increases in times of crisis. 

Permutation entropy (PEn), according to the previous approach, is a complexity 
measure that is related to the original Shannon entropy (ShEn) that applied to the 
distribution of ordinal patterns in time series. Such a tool was proposed by Bandt and 
Pompe [3], which is characterized by its simplicity, computational speed that does not 
require some prior knowledge about the system, strongly describes nonlinear chaotic 
regimes. As an example, Henry and Judge [20] applied PEn to the Dow Jones Industrial 
Average to extract information from this complex economic system. The result 
demonstrates the ability of the PEn method to detect the degree of disorder and 
uncertainty for the specific time that is explored. 

4.1 Approximate entropy 

When ApEn is calculated, for a given time series {ݔ(݅)|݅ = 1, … ,  ܰ}, non-negative 
embedding parameter ݀ா, with ݀ா ≤ ܰ, and a filter r we construct subsequences 
,(݅)ݔ]=(݅)ߕ⃗ ݅)ݔ + 1), … , ݅)ݔ + ݀ா − 1)] and ⃗ݔ]=(݆)ߕ(݆), ݆)ݔ + 1), … , ݆)ݔ + ݀ா − 1)]. 
The relative neighborhoods in phase space are measures by ܮ∞ norm between all pairs 
of ⃗ߕ(݅) and ⃗ߕ(݆). Then, for each ݅ = 1, … ,ܰ − ݀ா + 1 we count the number of 
݆ = 1, … ,ܰ − ݀ா + 1 that lie within a suitable distance r and define it as ௜ܰ

ௗಶ(ݎ). For 
further estimations, we need to define the probability of finding such patters of the 
length ݀ா that will be similar to the given pattern:  

(ݎ)௜ௗಶܥ  = ே೔೏ಶ(௥)
(ேିௗಶାଵ)

,   

or it can be presented in an equivalent form 

(ݎ)௜ௗಶܥ  = ଵ
ேିௗಶାଵ

∑ ݎ)߆ − ൧ேିௗಶାଵ(݆)ߕ⃗ ,(݅)ߕ⃗ൣ݀
௝ୀଵ ),   

where ߆(⋅) is the Heaviside function which counts the instances where the distance d 
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is below the threshold r. 
Next, we define the logarithmic average over all the vectors of the ܥ௜ௗಶ(ݎ) 

probability as 

(ݎ)ௗಶܨ  = ଵ
(ேିௗಶାଵ)

∑ )݃݋݈ ேିௗಶାଵ((ݎ)௜ௗಶܥ
௜ୀଵ    

and ApEn of a corresponding time series is defined as an increment of the absolute 
entropy ܨௗಶ(ݎ) during the transition from a sequence of patterns of length ݀ா to a 
sequence of length ݀ா + 1 according to the following formula: 

ா݀)݊ܧ݌ܣ  , (ݎ = (ݎ)ௗಶܨ −  (1) ,(ݎ)ௗಶାଵܨ

i.e., equation (1) measures the logarithmic likelihood that sequences of patterns that are 
close for ݀ா observations will remain close after further comparisons. Therefore, if the 
patterns in the sequence remain close to each other (high regularity), the ApEn becomes 
small, and hence, the time series data has a lower degree of randomness. High values 
of ApEn indicate randomness and unpredictability. But it should be considered that 
ApEn results are not always consistent, thus it depends on the value of r and the length 
of the data series. However, it remains insensitive to noise of magnitude if the values 
of r and dE are sufficiently good, and it is robust to artefacts and outliers. Although 
ApEn remains usable without any models, it also fits naturally into a classical 
probability and statistics frameworks, and, generally, despite its shortcomings, it is still 
the applicable indicator of system stability, which significantly increased values may 
prognosticate the upcoming changes in the dynamics of the data. 

The empirical results for the corresponding measure of entropy of DJSI are presented 
in figure 2: 

 
Fig. 2. ApEn dynamics of the entire time series of DJSI. 

Long before the crisis, the value of this type of entropy begins to decrease, the 
complexity of the system decreases. This measure, in our opinion, is one of the earliest 
precursors of the crisis. 
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4.2 Permutation entropy 

According to this method, we need to consider “ordinal patterns” that consider the order 
among time series and relative amplitude of values instead of individual values. For 
evaluating PEn, at first, we need to consider a time series {ݔ(݅)|݅ = 1, … , ݊} which 
relevant details can be “revealed” in ݀ா-dimensional vector: 

(݅)ߕ⃗  = ,(݅)ݔ] ݅)ݔ  + ߬),  .  .  .  , ݅)ݔ  + (݀ா − 1)߬)],  

where ݅ = 1, 2, … , ܰ − (݀ா − 1)߬, and ߬ is an embedding delay of our time delayed 
vector. By the ordinal pattern, related to the time i, we consider the permutation 
(݅)௟ߨ = (݇଴, ݇ଵ, … , ݇ௗಶିଵ) of [0, 1, … , ݀ா − 1] where 1 ≤ ݈ ≤ ݀ா!. Then each of the 
subvectors is arranged in ascending order: 

݅)ݔ  + ݇଴߬) ≤ ݅)ݔ + ݇ଵ߬) ≤ ⋯ ≤ ݅)ݔ + ݇ௗಶିଵ߬).   

We will use ordinal pattern probability distribution as a basis for entropy estimation. 
Further, the relative frequencies of permutations in the time series are defined as 

(௟ߨ)݌  = ௧ℎ௘ ௡௨௠௕௘௥ ௢௙ ௣௔௧௧௘௥௡௦ ௧ℎ௔௧ℎ௔௦ ௧௬௣௘ గ೗
ேି(ௗಶିଵ)ఛ

,  

where the ordinal pattern probability distribution is given by 
ܲ = ݈|(௟ߨ)௟݌} = 1, … , ݀ா!}. The Permutation entropy (denoted by ܵ[ܲ]) of the 
corresponding time series presented in the following form: 

 ܵ[ܲ] = −∑ ௟݌ ݃݋݈ ௟݌ .ௗಶ!
௟ୀଵ   

Then, to take more convenient values, we calculate Normalized permutation entropy as 

[ܲ]௦ܧ  = ௌ[௉]
ௌ೘ೌೣ

   

whose ܵ ݃݋݈ ݀ா௠௔௫ represents the maximum value of ܧ௦[ܲ] (a normalization constant), 
and normalized entropy restricted between 0 and 1. Here, the maximal entropy value is 
realized when all ݀ா! possible permutations are uniformly distributed (more noise and 
random data). With the much lower entropy value, we get a more predictable and 
regular sequence of the data. Therefore, the PEn gives a measure of the departure of the 
time series from a complete noise and stochastic time series. 

In figure 3 we can observe the empirical results for permutation entropy, where it 
serves as indicator-precursor of the possible crashes and critical events. 

Information measures of complexity due to their initial validity and transparency, 
ease of implementation and interpretation of the results occupy a prominent place 
among the tools for the quantitative analysis of complex systems. 
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Fig. 3. PEn dynamics of the entire time series of DJSI. 

5 Fractal and multifractral measures of complexity 

The economic phenomena that cannot be explained by the traditional efficient market 
hypothesis can be explained by the fractal theory proposed by Mandelbrot [28]. Before, 
fractal studies focus on the Rescaled Range (R/S) analysis were proposed by Hurst [21] 
in the field of hydrology. Peng et al. [35] proposed a widely used Detrended Fluctuation 
Analysis (DFA) that uses a long-range power-law to avoid significant long-range 
autocorrelation false detection. As a multifractal extension (MF) of the DFA approach, 
Kantelhardtet et al. [22] introduced the MF-DFA method that for a long time has been 
successfully applied for a variety of financial markets. An especially interesting 
application of multifractal analysis is measuring the degree of multifractality of time 
series, which can be related to the degree of efficiency of financial markets [56]. 

Similarly to our article [17] where we applied the MF-DFA method to Ukrainian and 
Russian stock markets, we use it here to explore the multifractal property of DJSI and 
construct a reliable indicator for it. 

As an extension to the original DFA, the multifractal approach estimates the Hurst 
exponent of a time series at different scales. Based on a given time series 
݅|(݅)ݔ} = 1, … ,ܰ}, the MF-DFA is described as follows: 

1. Construct the profile ܻ(݅) (accumulation) according to the equation below 

 ܻ(݅) = ∑ (݃(݆) − ⟨݃⟩௜
௝ୀଵ ),  

where ⟨݃⟩ denotes the average of returns. 

2. Then we need to divide the profile {ܻ(݅)} into ௦ܰ ≡  non-overlapping (ݏ/ܰ)ݐ݊݅
segments of equal length s, and the local trend ௩ܻ

௙௜௧ for each segment is calculated 
by the least-square fit. Since time scale s  is not always a multiple of the length of 
the time series, a short period at the end of the profile, which is less than the window 
size, may be removed. For taking into account the rejected part and, therefore, to use 
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all the elements of the sequence, the above procedure is repeated starting from the 
end of the opposite side. Therefore, the total 2 ௦ܰ segments are obtained together, 
and the variance is computed as 

,ݒ)ଶܨ  (ݏ  = ଵ
௦
∑ ݒ))ܻ] − ݏ(1 + ݅) − ௩ܻ

௙௜௧(݅)]ଶ,௦
௜ୀଵ    for  ݒ = 1, … ,  ௦ܰ  

and 

,ݒ)ଶܨ  (ݏ  = ଵ
௦
∑ [ܻ(ܰ − ݒ) − ௦ܰ)ݏ + ݅] − ௩ܻ

௙௜௧(݅)]ଶ,௦
௜ୀଵ    for  ݒ = ௦ܰ + 1, … , 2 ௦ܰ.  

Various types of MF-DFA such as linear, quadratic, or higher order polynomials can 
be used for eliminating local trend in segment ݒ. 

3. Considering the variability of time series and the possible multiple scaling 
properties, we obtain the q-th order fluctuation function by averaging over all 
segments: 

(ݏ)௤ܨ  = ቂ ଵ
ଶேೞ

∑ ,ݒ)ଶܨ] [(ݏ 
೜
మ

ଶேೞ
௩ୀଵ ቃ

భ
೜.  

The index q can take any non-zero value. For q = 0, ܨ௤(ݏ) is divergent and can be 
replaced by an exponential of a logarithmic sum 

(ݏ)଴ܨ  = ݌ݔ݁ ቂ ଵ
ସேೄ

∑ ݈݊( ,ݒ)ଶܨ ଶேೞ((ݏ 
௦ୀଵ ቃ.  

4. At least, we determine the scaling behavior of the fluctuation function by analyzing 
݃݋݈ ௤ܨ ݃݋݈ vs (ݏ)  is expected to reveal (ݏ)௤ܨ ,graphs for each value of q. Here ݏ
power-law scaling 

(ݏ)௤ܨ  ∼   .ℎ(௤)ݏ

The scaling exponent h(q) can be considered as generalized Hurst exponent. With q = 2 
MF-DFA transforms into standard DFA, and h(2) is the well-known Hurst exponent. 

5. Another way of characterizing multifractality of a time series is in terms of the 
multifractal scaling exponent ߬  which is related to the generalized Hurst exponent (ݍ)
h(q) from the standard multifractal formalism and given by 

(ݍ)߬  = (ݍ)ℎݍ − 1. (2) 

Equation (2) reflects temporal structure of the time series as a function of moments q 
i.e., it represents the scaling dependence of small fluctuations for negative values of q 
and large fluctuations for positives values. If (2) represents linear dependence of q, the 
time series is said to be monofractal. Otherwise, if it has a non-linear dependence on q, 
then the series is multifractal. 

6. The different scalings are better described by the singularity spectrum ݂(ߙ) which 
can be defined as: 
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ߙ = ௗఛ(௤)

ௗ௤
= ℎ(ݍ) + ݍ ௗℎ(௤)

ௗ௤
,

(ߙ)݂ = ߙ]ݍ − ℎ(ݍ)] + 1,
  

with ߙ is the Hölder exponent or singularity strength. Following the methods described 
above, we present results that reflect multifractal behavior of the DJSI time series. 

Fig. 4(a) presents ܨ௤(ݏ) in the log-log plot. The slope changes dependently on q, 
which indicates the multifractal property of a time series. As it was pointed out, 
multifractality emerges not only because of temporal correlation, but also because DJSI 
returns distribution turns out to be broad (fat-tailed), and this distribution could 
contribute to the multifractality of the time series. The same dependence can be 
observed in the remaining plots. The scaling exponent ߬(ݍ) remains nonlinear, as well 
as generalized Hurst exponents that can serve as evidence that Bitcoin exhibit 
multifractal property. 

 
 (a) (b) 

 
 (c) (d) 

Fig. 4. The fluctuation function ܨ௤(ݏ) (a), multifractal scaling exponent ߬(ݍ) (b), ℎ(ݍ) versus q 
(c), and singularity spectrum ݂(ߙ) (d) of the DJSI return time series obtained from MF-DFA. 

In the case of multifractals, the shape of the singularity spectrum typically resembles 
an inverted parabola (see Fig. 4(d)); furthermore, the degree of complexity is 
straightforwardly quantified by the width of ݂(ߙ), simply defined as 
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Δߙ = ௠௔௫ߙ −  ߙ ௠௔௫ correspond to the opposite ends of theߙ ௠௜௡ andߙ ௠௜௡, whereߙ  
values as projected out by different q-moments. 

In the figure below we present the width of the spectrum of multifractality that 
changes over time accordingly to the sliding window approach. The whole figure 
consists of both a three-dimensional plot (singularity spectrum) and two-dimensional 
representation of its surface (fig. 5). 

 
Fig. 5. Changes in the spectrum of multifractality in time. 

If the series exhibited a simple monofractal scaling behavior, the value of singularity 
spectrum ݂(ߙ) would be a constant. As can be observed, here our series exhibits a 
simple multifractal scaling behavior, as the value of singularity spectrum ݂  changes (ߙ)
dependently on ߙ, i.e., it exhibits different scalings at different scales. Moreover, with 
the sliding window of the corresponding length, we understand that at different time 
periods DJSI becomes more or less complex. The value of Δߙ gives a shred of 
additional evidence on it (fig. 6). 

As we can see from the presented results, the width of the singularity spectrum after 
the crisis starts to increase, which tells us that more violent price fluctuations are usually 
expected. With the decreasing width of the singularity spectrum, the series is expected 
to hold the trend. As the rule, it reaches its minimum before the crash of DJSI value. 

6 Heisenberg uncertainty principle and economic “mass” 
as a quantum measure of complexity 

In this section, we will demonstrate the possibilities of quantum econophysics on the 
example of the application of the Heisenberg uncertainty principle [46]. In our paper 
[41], we have suggested a new paradigm of complex systems modeling based on the 
ideas of quantum as well as relativistic mechanics. It has been revealed that the use of 
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quantum-mechanical analogies (such as the uncertainty principle, the notion of the 
operator, and quantum measurement interpretation) can be applied to describing socio-
economic processes. Methodological and philosophical analysis of fundamental 
physical notions and constants, such as time, space, and spatial coordinates, mass, 
Planck’s constant, light velocity from modern theoretical physics provides an 
opportunity to search for adequate and useful analogs in socio-economic phenomena 
and processes. 

 
Fig. 6. The comparison of the DJSI time series with the width of the multifractality spectrum 

measure. 

To demonstrate it, let us use the known Heisenberg’s uncertainty ratio which is the 
fundamental consequence of non-relativistic quantum mechanics axioms and appears 
to be 

 Δݔ ⋅ Δݒ ≥ ℏ
ଶ௠బ

, (3) 

where Δݔ and Δݒ are mean square deviations of x coordinate and velocity ݒ 
corresponding to the particle with (rest) mass m0, ℏ – Planck’s constant. Considering 
values Δݔ and Δݒ to be measurable when their product reaches their minimum, 
according to equation (3) we derive: 

 ݉଴ = ℏ
ଶ⋅Δ௫⋅Δ௩

,  

i.e., the mass of the particle is conveyed via uncertainties of its coordinate and velocity 
– time derivative of the same coordinate. 

Economic measurements are fundamentally relative, local in time, space and other 
socio-economic coordinates, and can be carried out via consequent and/or parallel 
comparisons “here and now,” “here and there,” “yesterday and today,” “a year ago and 
now,” etc. 

Due to these reasons constant monitoring, analysis, and time series prediction (time 
series imply data derived from the dynamics of stock indices, exchange rates, 
cryptocurrencies prices, spot prices, and other socio-economic indicators) become 
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relevant for the evaluation of the state, tendencies, and perspectives of global, regional, 
and national economies. 

Suppose there is a set of K time series, each of N samples, that correspond to the 
single distance T, with an equally minimal time step Δݐ௠௜௡: 

 ௜ܺ(ݐ௡), ௡ݐ = Δݐ௠௜௡݊, for ݊ = 0, 1, 2, . . . , ܰ − 1, for ݅ = 1, 2, . . . ,    .ܭ

To bring all series to the unified and non-dimensional representation, accurate to the 
additive constant, we normalize them, have taken a natural logarithm of each term of 
the series. Then, consider that every new series ௜ܺ(ݐ௡) is a one-dimensional trajectory 
of a certain fictitious or abstract particle numbered i, while its coordinate is registered 
after every time span Δݐ௠௜௡, and evaluate mean square deviations of its coordinate and 
speed in some time window Δܶ = Δܰ ⋅ Δݐ௠௜௡ =  Δܰ, 1<< ΔN<<N. The “immediate” 
speed of i particle at the moment tn is defined by the ratio: 

(௡ݐ)௜ݒ  = ௫೔(௧೙శభ)ି௫೔(௧೙)
Δ௧೘೔೙

= ଵ
Δ௧೘೔೙

݈݊ ௑೔(௧೙శభ)
௑೔(௧೙)

,  

with variance ܦ௩೔ and mean square deviation Δݒ௜. 
After some transformations, we can write an uncertainty ratio for this trajectory: 

 ଵ
௱௧೘೔೙

൬< ݈݊ଶ ௑೔(௧೙శభ)
௑೔(௧೙)

>௡,௱ே− ቀ< ݈݊ ௑೔(௧೙శభ)
௑೔(௧೙)

>௡,௱ேቁ
ଶ
൰~ ℎ

௠೔
,  

where mi – economic “mass” of an ௜ܺ series, h – value which comes as an economic 
Planck’s constant. 

Since the analogy with physical particle trajectory is merely formal, h value, unlike 
the physical Planck’s constant ℏ, can, generally speaking, depend on the historical 
period, for which the series are taken, and the length of the averaging interval (e.g., 
economical processes are different in the time of crisis and recession), on the series 
number i etc. Whether this analogy is correct or not depends on the particular series’ 
properties. 

 
Fig. 7. Dynamics of measure m, and its dynamics with the window size of 250 days and step of 

5 days. 
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Obviously, there is a dynamic characteristic values m depending on the internal 
dynamics of the market. In times of crashes and critical events marked by arrows, mass 
m is significantly reduced in the pre-crash and pre-critical periods (fig. 7). Obviously, 
m remains a good indicator-precursor even in this case. Value m is considerably reduced 
before a special market condition. The market becomes more volatile and prone to 
changes. 

7 Conclusions 

In this paper, for the first time, econophysical measures of complexity based on the 
analysis of entropy, multifractal, and quantum properties of time series are used for the 
analysis of sustainable development indices. Using the DJSI index as an example, it is 
shown that, firstly, all econophysical measures are complex measures and, secondly, 
they respond to critical and crisis conditions of the stock market. 

In the future, a similar study for a set of other indices would be of interest, as well 
as a comparison with the results of using other quantitative measures of complexity. 

References 

1.  Accelerating Green Finance: A report to Government by the Green Finance Taskforce. 
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_d
ata/file/703816/green-finance-taskforce-accelerating-green-finance-report.pdf (2018). 
Accessed 25 Oct 2018 

2.  Antonakakis, N., Babalos, V., Kyei, C.K.: Predictability of sustainable investments and the 
role of uncertainty: Evidence from a non-parametric causality-in-quantiles test. Applied 
Economics 48(48), 4655–4665 (2016). doi:10.1080/00036846.2016.1161724 

3.  Bandt, C., Pompe, B.: Permutation Entropy: A Natural Complexity Measure for Time 
Series. Phys. Rev. Lett. 88, 174102 (2002). doi:10.1103/PhysRevLett.88.174102 

4.  Bielinskyi, A., Soloviev, V., Semerikov, S.: Detecting Stock Crashes Using Levy 
Distribution. CEUR Workshop Proceedings 2422, 420–433 (2019) 

5.  Boltzmann, L.: Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. 
Sitzungsberichte Akademie der Wissenschaften 66, 275–370 (1872). 
doi:10.1142/9781848161337_0015 

6.  Castilla-Rubio, J.C., Zadek, S., Robins, N.: Fintech and sustainable development: Assessing 
the implications. International Environment House, Geneva. http://unepinquiry.org/wp-
content/uploads/2016/12/Fintech_and_Sustainable_Development_Assessing_the_Implicat
ions.pdf (2016). Accessed 21 Mar 2017 

7.  Cen, T., He, R.: Fintech, Green Finance and Sustainable Development. Advances in Social 
Science, Education and Humanities Research 291, 222–225 (2018). doi:10.2991/meeah-
18.2018.40 

8.  Clausius, R., Hirst, T.A.: The Mechanical Theory of Heat: With Its Applications to the 
Steam-engine and to the Physical Properties of Bodies. John van Voorst, London (1867) 

9.  Delgado-Bonal, A., Marshak, A.: Approximate Entropy and Sample Entropy: A 
Comprehensive Tutorial. Entropy 21(6), 541 (2019). doi:10.3390/e21060541 

10.  Delgado-Bonal, A.: Quantifying the randomness of the stock markets. Scientific Reports 9, 
12761 (2019). doi:10.1038/s41598-019-49320-9 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_d
http://unepinquiry.org/wp-


390 

11.  Derbentsev, V., Semerikov, S., Serdyuk, O., Solovieva, V., Soloviev, V.: Recurrence based 
entropies for sustainability indices. E3S Web of Conferences 166, 13031 (2020). 
doi:10.1051/e3sconf/202016613031 

12.  Duan, W.-Q., Stanley, H.: Volatility, irregularity, and predictable degree of accumulative 
return series. Phys. Rev. E 81, 066116 (2010). doi: 10.1103/PhysRevE.81.066116 

13.  Durand, R., Paugam, L., Stolowy, H.: Do investors actually value sustainability indices? 
Replication, development, and new evidence on CSR visibility. Strategic Management 
Journal 40(9), 1471–1490 (2019). doi:10.1002/smj.3035 

14.  Escrig-Olmedo, E., Fernández-Izquierdo, M.A., Ferrero-Ferrero, I., Rivera-Lirio, J.M., 
Muñoz-Torres, M.J.: Rating the Raters: Evaluating how ESG Rating Agencies Integrate 
Sustainability Principles. Sustainability 11(3), 915 (2019). doi:10.3390/su11030915 

15.  Fabregat-Aibar, L., Barberà-Mariné, M.G., Terceño, A., Pié, L.: A Bibliometric and 
Visualization Analysis of Socially Responsible Funds. Sustainability 11(9), 2526 (2019). 
doi:10.3390/su11092526 

16.  Feng, H., Chen, X., Heck, P., Miao, H.: An Entropy-Perspective Study on the Sustainable 
Development Potential of Tourism Destination Ecosystem in Dunhuang, China. 
Sustainability 6(12), 8980–9006 (2014). doi:10.3390/su6128980 

17.  Ganchuk, A., Derbentsev, V., Soloviev, V. N. Multifractal Properties of the Ukraine Stock 
Market. arXiv:physics/0608009v1 [physics.data-an] (2006). Accessed 17 Aug 2020 

18.  Gibbs, J.W.: Elementary Principles in Statistical Mechanics: Developed with Especial 
Reference to the Rational Foundation of Thermodynamics. C. Scribner's Sons, New York 
(1902). doi:10.5962/bhl.title.32624 

19.  Havrylenko, M., Shiyko, V., Horal, L., Khvostina, I., Yashcheritsyna, N.: Economic and 
mathematical modeling of industrial enterprise business model financial efficiency 
estimation. E3S Web of Conference 166, 13025 (2020). 
doi:10.1051/e3sconf/202016613025 

20.  Henri, M., Judge, G.: Permutation Entropy and Information Recovery in Nonlinear 
Dynamic Economic Time Series. Econometrics 7(1), 10 (2019). 
doi:10.3390/econometrics7010010 

21.  Hurst, H.E.: A Suggested Statistical Model of some Time Series which occur in Nature. 
Nature 180, 494 (1957). doi:10.1038/180494a0 

22.  Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A., Stanley, 
H.E.: Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: 
Statistical Mechanics and its Applications 316(1–4), 87–114 (2002). doi:10.1016/S0378-
4371(02)01383-3 

23.  Khvostina, I., Havadzyn, N., Horal, L., Yurchenko, N.: Emergent Properties Manifestation 
in the Risk Assessment of Oil and Gas Companies. CEUR Workshop Proceedings 2422, 
157–168 (2019) 

24.  Kung, O.Y.: "Green Finance for a Sustainable World" - Keynote Speech by Mr Ong Ye 
Kung, Minister for Education, Singapore and Board Member, Monetary Authority of 
Singapore, at SFF x SWITCH 2019 on 11 November 2019. 
https://www.mas.gov.sg/news/speeches/2019/green-finance-for-a-sustainable-world 
(2019). Accessed 28 Nov 2019 

25.  Kutner, R., Ausloos, M., Grech, D., Matteo, T.Di., Schinckus, C., Stanley, H.E.: 
Econophysics and sociophysics: Their milestones & challenges. Physica A: Statistical 
Mechanics and its Applications 516, 240–253 (2019). doi:10.1016/j.physa.2018.10.019 

26.  Liang, X., Si, D., Zhang, X.: Regional Sustainable Development Analysis Based on 
Information Entropy-Sichuan Province as an Example. International Journal of 
Environmental Research and Public Health 14(10), 1219 (2017). 

https://www.mas.gov.sg/news/speeches/2019/green-finance-for-a-sustainable-world


391 

doi:10.3390/ijerph14101219 
27.  Lucia, U., Grisolia, G: Exergy inefficiency: An indicator for sustainable development 

analysis. Energy Reports 5, 62–69 (2019). doi:10.1016/j.egyr.2018.12.001 
28.  Mandelbrot, B.B.: The Fractal Geometry of Nature. W. H. Freeman and Company, New 

York (1982) 
29.  Mayer, A.L., Donovan, R.P., Pawlowski, C.W.: Information and entropy theory for the 

sustainability of coupled human and natural systems. Ecology and Society 19(3), 11 (2014). 
doi:10.5751/ES-06626-190311 

30.  Mills, M., Wardle, M.: The Global Green Finance Index 4 (2019). 
doi:10.13140/RG.2.2.28337.33124 

31.  Miralles-Quiros, M.M., Miralles-Quiros, J.L., Arraiano, I.G.: Sustainable Development, 
Sustainability Leadership and Firm Valuation: Differences across Europe. Business 
Strategy and the Environment 26(7), 1014–1028 (2017). doi:10.1002/bse.1964 

32.  Mynhardt, H., Makarenko, I., Plastun, A.: Market efficiency of traditional stock market 
indices and social responsible indices: the role of sustainability reporting. Investment 
Management and Financial Innovations 14(2), 94-106 (2017). 
doi:10.21511/imfi.14(2).2017.09 

33.  Nassiry, D.: The Role of Fintech in Unlocking Green Finance: Policy Insights for 
Developing Countries. ADBI Working Paper Series 883. 
https://www.adb.org/sites/default/files/publication/464821/adbi-wp883.pdf (2018). 
Accessed 25 Oct 2019 

34.  Ohlson, J.A.: Earnings, Book Values, and Dividends in Equity Valuation: An Empirical 
Perspective. Contemporary Accounting Research 18(1), 107–120 (2001). 
doi:10.1506/7TPJ-RXQN-TQC7-FFAE 

35.  Peng, C.-K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L.: 
Mosaic organization of DNA nucleotides. Physical Review E 49, 1685 (1993). 
doi:10.1103/PhysRevE.49.1685 

36.  Pincus, S., Kalman, R.E.: Irregularity, volatility, risk, and financial market time series. 
PNAS 101(38), 13709–13714 (2004). doi: 10.1073/pnas.0405168101 

37.  Pincus, S.M.: Approximate entropy as a measure of system complexity. PNAS 88(6), 2297–
2301 (1991). doi:10.1073/pnas.88.6.2297 

38.  RobecoSAM: About RobecoSAM. https://www.robecosam.com/en/about-us/about-
robecosam.html (2020). Accessed 17 Aug 2020 

39.  S&P Dow Jones Indices: S&P Global BMI. 
https://www.spglobal.com/spdji/en/indices/equity/sp-global-bmi (2020). Accessed 17 Aug 
2020 

40.  S&P Global Switzerland: The Sustainability Yearbook 2020. 
https://www.spglobal.com/esg/csa/yearbook/ (2020). Accessed 17 Aug 2020 

41.  Saptsin, V., Soloviev, V.: Relativistic quantum econophysics – new paradigms in complex 
systems modelling. arXiv:0907.1142v1 [physics.soc-ph] (2009). Accessed 17 Aug 2020 

42.  Shannon, C.E.: A mathematical theory of communication. The Bell System Technical 
Journal 27(3), 379–423 (1948). doi:10.1002/j.1538-7305.1948.tb01338.x 

43.  Śliwiński, P., Łobza, M.: Financial Performance of Socially Responsible Indices. 
International Journal of Management and Economics 53(1), 25–46 (2017)  

44.  Soloviev, V., Belinskij, A.: Methods of nonlinear dynamics and the construction of 
cryptocurrency crisis phenomena precursors. CEUR Workshop Proceedings 2104, 116–127 
(2018) 

45.  Soloviev, V., Bielinskyi, A., Solovieva, V.: Entropy Analysis of Crisis Phenomena for DJIA 
Index. CEUR Workshop Proceedings 2393, 434–449 (2019) 

https://www.adb.org/sites/default/files/publication/464821/adbi-wp883.pdf
https://www.robecosam.com/en/about-us/about-
https://www.spglobal.com/spdji/en/indices/equity/sp-global-bmi
https://www.spglobal.com/esg/csa/yearbook/


392 

46.  Soloviev, V., Saptsin, V.: Heisenberg uncertainty principle and economic analogues of 
basic physical quantities. arXiv:1111.5289v1 [physics.gen-ph] (2011). Accessed 17 Aug 
2020 

47.  Soloviev, V., Semerikov, S., Solovieva, V.: Lempel-Ziv Complexity and Crises of 
Cryptocurrency Market. Advances in Economics, Business and Management Research  
129, 299–306 (2020). doi:10.2991/aebmr.k.200318.037 

48.  Soloviev, V., Serdiuk, O., Semerikov, S., Kohut-Ferens, O.: Recurrence entropy and 
financial crashes. Advances in Economics, Business and Management Research 99, 385–
388 (2019). doi:10.2991/mdsmes-19.2019.73 

49.  Soloviev, V., Solovieva, V., Tuliakova, A., Ivanova, M.: Construction of crisis precursors 
in multiplex networks. Advances in Economics, Business and Management Research 99, 
361–366 (2019). doi:10.2991/mdsmes-19.2019.68 

50.  Soloviev, V.N., Belinskiy, A..: Complex Systems Theory and Crashes of Cryptocurrency 
Market. In: Ermolayev V., Suárez-Figueroa M., Yakovyna V., Mayr H., Nikitchenko M., 
Spivakovsky A. (eds) Information and Communication Technologies in Education, 
Research, and Industrial Applications. ICTERI 2018. Communications in Computer and 
Information Science, vol 1007, pp. 276–297. Springer, Cham (2019) 

51.  Soloviev, V.N., Bielinskyi, A., Serdyuk, O., Solovieva, V., Semerikov, S.: Lyapunov
Exponents as Indicators of the Stock Market Crashes. CEUR Workshop Proceedings (2020, 
in press) 

52.  Soloviev, V.N., Yevtushenko, S.P., Batareyev, V.V.: Comparative analysis of the 
cryptocurrency and the stock markets using the Random Matrix Theory. CEUR Workshop 
Proceedings 2546, 87–100 (2019) 

53.  Sustainalytics: Index Research Services. https://www.sustainalytics.com/index-research-
services/ (2020). Accessed 10 Apr 2020 

54.  Thurner, S., Hanel, R., Klimek, P.: Introduction to the Theory of Complex Systems. Oxford 
University Press, Oxford (2018) 

55.  Tillmann, J.: The link between sustainability performance and financial performance – An 
event study on the impact of sustainability index changes on the market value of a company. 
Master Thesis, University of Tilburg (2012) 

56.  Tiwari, A.K., Albulescu, C.T., Yoon, S.-M.: A multifractal detrended fluctuation analysis 
of financial market efficiency: Comparison using Dow Jones sector ETF indices. Physica 
A: Statistical Mechanics and its Applications 483, 182–192 (2017)  

57.  Tsallis, C.: Introduction to Nonextensive Statistical Mechanics: Approaching a Complex 
World. Springer, New York (2009) 

58.  Wang, W., Zhao, X., Gong, Q., Ji, Z.: Measurement of Regional Green Economy 
sustainable development ability based on Entropy Weight-Topsis-Coupling Coordination 
Degree – A case study in Shandong Province, China. Sustainability 11(1), 280 (2019)  

59.  Wikipedia: Dow Jones Sustainability Indices. 
https://en.wikipedia.org/w/index.php?title=Dow_Jones_Sustainability_Indices&oldid=97
4037263 (2020). Accessed 20 Aug 2020 

60.  Wikipedia: List of stock market crashes and bear markets. 
https://en.wikipedia.org/w/index.php?title=List_of_stock_market_crashes_and_bear_mark
ets&oldid=984366080 (2020). Accessed 19 Oct 2020 

61.  Yahoo Finance: Dow Jones Industrial Average (^DJI). 
https://finance.yahoo.com/quote/%5EDJI?p=^DJI (2020). Accessed 17 Aug 2020 

62.  Yahoo Finance: Dow Jones Sustainability World (^W1SGI) Charts, Data & News. 
https://finance.yahoo.com/quote/%5EW1SGI/ (2020). Accessed 17 Aug 2020 

 

https://www.sustainalytics.com/index-research-
https://en.wikipedia.org/w/index.php?title=Dow_Jones_Sustainability_Indices&oldid=97
https://en.wikipedia.org/w/index.php?title=List_of_stock_market_crashes_and_bear_mark
https://finance.yahoo.com/quote/%5EDJI?p=
https://finance.yahoo.com/quote/%5EW1SGI/

