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Abstract
Recent studies have revealed that the performance of the FCM and K-means is completely related to
the distance measures. However, the literature does not provide evidence that the distance used for
data-clustering is useful for image segmentation. Therefore, a comparative study of the performance of
different distance measures applied to image segmentation, using the mentioned clustering methods is
proposed in this work. The selection of the distance measures was based on a literature study of their
benefits. As a consequence, the selected distances to be tested are Euclidean, Manhattan, Canberra,
and Spearman. Since our principal goal is to compare the effectiveness of the distance, the experiment
had been evaluated according to two centroids selected by the user. According to primary results, the
best-rated distance employed for image segmentation is the Canberra distance.
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1. Introduction

An essential objective in the computational analysis of images is the segmentation [1]. As con-
sequence, many segmentation algorithms have been developed by using certain mathemati-
cal and theoretical tools, such as fuzzy logic, genetic algorithm, neural network [1], pattern
recognition, wavelet, and so on. This article is focused on two specific methods for image
segmentation: K-means and Fuzzy C-means (FCM). K-means even thought to be an older algo-
rithm, presents an advantage as computationally faster for a large number of variables [2]. On
the other hand, the FCM is a semi-automatic segmentation algorithm since it combines both
manual and automatic segmentation. The manual process is performed by selecting the initial
centroids. Each data point resides in the clusters with a degree of membership. The mem-
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bership function is suitable for real-world applications where boundaries between clusters are
not well-defined [3]. In general, FCM gives better performance than the k-means algorithm
in different applications such as [4, 5]. However, in the field of image segmentation, it is not
clear which is the best method. Research as [6] explains that both algorithms are helpful for
segmentation purposes. On the other hand, experiments as [7] show superior results in FCM.

Some works have explored the distance efficiency of the methods as K-means [8] and FCM
[9] in existing data sets. However, there is no current research on the comparison of the dis-
tance efficiency between different methods of non-supervised clustering for the segmentation
of images. This work tries to fill this gap by introducing a comparative study of three different
distances applied to K-means [8] and FCM [9] algorithms.

The rest of the paper is divided as follows: Section 2 describes the most relevant related
works. The methodology used in this work is described in Section 3. Experimental results are
presented and discussed in Section 4. Finally, Section 5 deals with the concluding remarks.

2. Related Works

In the last years, clustering algorithms have been explored in several fields including but not
limited to computer sciences, medicine, economics, social sciences, and earth sciences [10,
11]. Some applications of clustering algorithms in computer sciences domain include image
segmentation such as: brain tumor identification [12], mammography image segmentation
[13], satellite image retrieval [14], among others.

Since the main goal of this work is to evaluate the influence of distance measures on the
effectiveness achieved by K-means [8] and FCM [9] algorithms for image segmentation pur-
poses, we review the literature mainly based on types of distance measures often used for
constructing clustering algorithms. For instance, [15] discusses the use of Manhattan and Eu-
clidean distances. It shows that the Manhattan distance outperforms the Euclidean distance
in the number of iterations k>7. Other distances such as Manhattan, Euclidean distance, and
Cosine distance have been explored and compared in [16], demonstrating that the computed
centroid with minimum distance is sensible to the distance method and the type of data.

From a data mining perspective, authors in [17] use K means method to evaluate the overall
performance of Euclidean, Chebyshev, Minkowski, and Manhattan, demonstrating that, Eu-
clidean distance outperforms when a cluster center is selected randomly.

The distances measures used in clustering algorithms are summarized in Table 1.
An effective choice of a distance measure to express the distance between data and cen-

troids is one important feature of clustering algorithms. Thus, the distances widely used in
clustering algorithms, such as Euclidean, Manhattan, Canberra, and Chebyshev are selected
and compared in this work for segmentation tasks.

3. Proposed Methodology

The proposed methodology for evaluating the performance of the Euclidean, Manhattan, Can-
berra, and Chebyshev distances in clustering algorithms applied to image segmentation is
schematized in Figure 1. First, the process reads an RGB image. Second, the RGB input image
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Table 1
Overview of distance measures used in clustering algorithms.

Distances Advantages Disadvantages

Minkowski
[18]

1. Gives the best result when the data set is
distinct or well separated from each other.

1. This algorithm does not work well for
categorical data, it is applicable only when
the meaning is defined.

2. Fast, robust, and easier to understand. 2. Algorithm fails for the non-linear data
set.

Euclidean
[19, 20]

1.- The distance within two objects is not
affected by the addition of new objects to
the analysis, which may be outliers.

1.- The distances can be greatly affected by
differences in scale among the dimensions
from which the distances are computed.

2.- Even if points may be in opposite direc-
tions, they may fall into the same cluster,
if the distance of both points from the cen-
troid is the same [20].

2.- If one of the input attributes has a rela-
tively large range, then it can overcome the
other attributes

Manhattan
[21]

1.-This distance method is not squared and
is less sensitive to noise.

1.-This distance does not deal in a deter-
ministic way when the dataset is high level

2.- The hierarchical search architecture
enables a high-speed search in a large
database.

2.- The one disadvantage is that it depends
upon the rotation of the coordinate sys-
tem.

Canberra
[22]

1.- This distance takes color vectors in the
RGB reference system is considered to ac-
tually made the computation.

1.- It is sensitive to a small change when
both coordinates are near to zero.

Spearman
[23]

1.- In comparison, its easier to calculate
than Euclidean distance.

1.- The disadvantage is that there is a loss
of information when data are converted to
rank.

2.- It offers the best cluster separation and
compactness.

Chebyshev
[23]

1.- The advantage is that it takes less time
to decide the distances between data sets.

1.-The disadvantage is that if the position
centers are near, they will not be optimal.

Cosine
[23]

1.- It produces a simple measure that can
be used to differentiate between similar
texts, rank order them by similarity, or use
the scores as a dependent variable in a re-
gression model

1.- It is unable to provide information on
the magnitude of the differences.

2.- It is also invariant to scaling
3.- Cosine is not invariant to shifts.

is converted to HSV color space. In this step, a graphical user interface is displayed to allow the
user to select the color pixels that represent the object of interest (airplanes and animals) and
the background. The pixels selected refer to the centroids that will be used in the clustering al-
gorithms. Third, a multidimensional matrix is built to merge the tuple pixels positions with the
color model matrices. Fourth, K-means of FCM is applied to the multidimensional matrix using
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Figure 1: Flowchart of the process for our implementation

the evaluated distance measures. To segment the object of interest in the case of K-means, it
classifies each pixel as foreground if the distance from the pixel to the foreground centroid is
less than the distance from the pixel to the background centroid. Otherwise, the pixel is classi-
fied as a background. It is worth mentioning that the centroids are selected by the user. On The
other hand, FCM although it is a similar process it counts with a variable called: the degree of
belonging which is linked inversely to the distance from the pixel to the foreground centroid.
Finally, the influence of the evaluated distance measures on the overall performance achieved
by K-means and FCM methods is determined in terms of accuracy metrics.
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3.1. RGB and HSV Color Spaces

Humans perceive colors in screens as a combination of 3 primary colors R (red), G(green), and
(blue). The laws of colorimetry state that any color can be derived by the combination of these
three primary colors being the combination unique. From RGB other color, representations
can be derived such as HSV. Selections of the best color space are one of the challenging tasks
in image segmentation [24]. We take RGB into account because it is the most commonly used
model for television systems, monitors, cameras, and smartphones. All these devices display
color images by modulating the intensity of the three primary colors (red, green, and blue). In
spite of RGB being widely used, it is not the most suitable color model for image segmentation
purposes.

On the other hand, HSV is one of the color models used in an attempt to use ones closer to
how humans perceive color. HSV has three components: hue (H), saturation (S), and value (V).
H represents the "color", S is the dominance of that color ranging from unsaturated (shades of
gray) to fully saturated (no white component), and V is the brightness. In recent years, HSV
color space has gained the ability to support applications in noisy color image segmentation
[25]. Also as it is stated in [26], HSV color space can recognize color with high intensities,
making it easier to distinguish the objects of interest from the background. Therefore, HSV-
based features are used in this work to explored the segmentation clustering algorithms as
FCM or K-means.

3.2. Distance Measures

The distance function 𝑑 is computed for each pixel represented by the vectors 𝑥𝑖 and 𝑥𝑗 .

• Euclidean: The euclidean distance is most commonly used [9], also it derives from
Pythagorean Theorem. This is influenced by greater units of measure and this vary with
the scale of each variable [8].

𝑑(𝑥𝑖 , 𝑥𝑗) =
√

𝑛
∑
𝑘=0

(𝑥𝑖𝑘 − 𝑥𝑗𝑘)2

• Manhattan: This distance stand out by calculating the absolute differences between
coordinates of a pair of objects[9], also it is less noise sensitive [8].

𝑑(𝑥𝑖 , 𝑥𝑗) =
𝑛
∑
𝑘=0

|(𝑥𝑖𝑘 − 𝑥𝑗𝑘)|

• Canberra: This distance examines the sum of series of a fraction differences between
coordinates of a pair of objects. This distance is very sensitive to a small change when
both coordinates are nearest to zero [27].

𝑑(𝑥𝑖 , 𝑥𝑗) =
𝑛
∑
𝑘=1

|𝑥𝑘𝑖 − 𝑥𝑘𝑗 |
|𝑥𝑘𝑖 | + |𝑥𝑘𝑗 |
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• Chebyshev: The Chebyshev distance also is known as the maximum value of distance
[9]. It is a defined metric in a vector space when the distance between two points is the
maximum of its difference along any of its coordinates dimensions [8].

𝑑(𝑥𝑖 , 𝑥𝑗) = 𝑚𝑎𝑥 |(𝑥𝑖𝑘 − 𝑥𝑗𝑘)|

• Spearman: The Spearman Distance is the square of the Euclidean distance within two
vectors. Since it is squared, its easier to calculate, hence its computational complexity is
reduced [18].

𝑑(𝑥𝑖 , 𝑥𝑗) =
𝑛
∑
𝑘=1

(𝑥𝑖𝑘 − 𝑥𝑥𝑗𝑘)2

3.3. Clustering Algorithms

• Fuzzy C-Means [9]: Classical approaches result in strict partitions where each data
point can only belong to one cluster. FCM clustering allows data points to belong to
more than one cluster [28]. Each cluster is associated with a function that indicates
the degree of each data point of belonging to an specific cluster. FCM performs the
clustering by iterative searching for a set of fuzzy clusters and their associated centers.
On this algorithm the user specify the number of clusters 𝑐 present in the set of data
to be grouped. Then FCM partition the data into 𝑐 clusters by minimizing the objective
function:

𝐽𝑚(𝑈 , 𝑉 ) =
𝑛
∑
𝑘=1

𝑐
∑
𝑖=1

(𝑈𝑖𝑘)𝑚 ‖𝑋𝑘 − 𝑣𝑖‖2 , (1)

1 ≤ 𝑚 ≤ ∞

where {𝑣𝑖}𝑐𝑖=1 are the centroids of the cluster 𝑐 and ‖.‖ is an inner-product norm (this is
the parameter that we will compare using distances previously mentioned) from the data
𝑥𝑘 to the 𝑖 − 𝑡ℎ cluster center.

The FCM algorithm starts with 𝑐 random initial cluster centers and, at every iteration,
it finds the fuzzy membership of each data point to every cluster using the following
equation:

𝑈𝑖𝑘 = 1
∑𝑐

𝑗=1( ‖𝑥𝑘−𝑣𝑖 ‖‖𝑥𝑘−𝑣𝑗‖ )
2

𝑚−1
(2)

and updating the centroids 𝑣𝑖 with:

𝑣𝑖 =
∑𝑛

𝑖=1 𝑈𝑚
𝑖𝑘 ⋅ 𝑋𝑘

∑𝑛
𝑖=1 𝑈𝑚

𝑖𝑘
(3)
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Algorithm 1 Pseudo-code of FCM Algorithm. Adapted from [29].
1: Fix 𝑐, 2 < 𝑐 < 𝑛;
2: Fix 𝜖, (e.g., 𝜖 = 0.001);
3: Fix maxIterations, (e.g., maxIterations = 100);
4: Choose any norm distance;
5: Fix 𝑚, 1 < 𝑚 < ∞, (e.g., 𝑚 = 2);
6: Randomly initialize 𝑉0 = 𝑣1, 𝑣2,… , 𝑣𝑐 cluster centers;
7: for 𝑡 = 1 to maxIterations do
8: Update the membership matrix U using Eq. 2;
9: Calculate the new cluster centers 𝑉 𝑡 using Eq. 3;

10: Calculate the new objective function 𝐽 𝑡𝑚 using Eq. 1;
11: if (𝑎𝑏𝑠(𝐽 𝑡𝑚 − 𝐽 𝑡−1𝑚 ) < 𝜖 then
12: break;
13: else
14: 𝐽 𝑡−1𝑚 = 𝐽 𝑡𝑚;
15: end if
16: end for

The pseudo-code of the FCM is shown in Algorithm 1.

This technique is an unsupervised method, which means that no tagged data is needed.
Therefore when applying it in image segmentation, it is very useful because we only
need the image to the segment as the input data. On the other hand, due to FCM uses
the inner-product norm to find the nearest pixels, the sensitivity to noise is reduced. This
method is often used in pattern recognition and segmentation of images.

• K-means [8]: K-means is a non-supervised and non-hierarchical clustering method.
Non-hierarchical methods are characterized by two main steps. First, it assigns a cluster
to each datum, and then clusters are recalculated from data assigned to them. Non-
hierarchical methods clusters according to two criteria: distance or similarity. Particu-
larly, K-means works with distance criteria [8].

The algorithm solves a minimization problem, where the function to be minimized is the
sum of the quadratic distances of each object to the centroid of its cluster, as the next
equation shows:

𝑚𝑖𝑛
𝑠

𝐸(𝜇𝑖) =
𝑘
∑
𝑖=1

∑
𝑥𝑗∈𝑆𝑖

∥ 𝑥𝑖 − 𝜇𝑗 ∥2 (4)

where 𝑘 is the number of clusters with their corresponding centroid 𝜇𝑖 and 𝑆 is the set
of data whose elements are the objects 𝑥𝑗 represented by vectors, where each of its ele-
ments represents a characteristic or attribute. Then, to update the centroids we use the
following equation:

𝜇(𝑡+1)𝑖 = 1
‖𝑆(𝑡)𝑖 ‖

∑
𝑥𝑗∈𝑆(𝑡)𝑖

𝑥𝑗 (5)
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Algorithm 2 Pseudo-code of K-Means Algorithm. Adapted from [30]
1: input: 𝑘 (number of clusters),
2: 𝐷 (a set of lift ratios);
3: output: a set of 𝑘 clusters;
4: Arbitrarily choose 𝑘 objects from 𝐷 as the initial cluster centers;
5: repeat
6: 1. Based on the mean value of the objects, assign or reassign each
7: object to the cluster.
8: 2. Calculate the mean value of the objects for each cluster; and
9: update the cluster means.

10: until no change;

The pseudo-code of K-means method is shown in Algorithm 2.

This method is very effective in producing tighter clusters than hierarchical clustering
when the clusters are globular.

3.4. Metrics

Sensitivity (𝑇𝑝/(𝑇𝑝 + 𝐹𝑛)), Specificity ((𝑇𝑛/(𝑇𝑛 + 𝐹𝑝)), and Accuracy ((𝑇𝑝 +𝑇𝑛)/(𝑇𝑝 + 𝐹𝑛 +𝑇𝑛 + 𝐹𝑝))
metrics were computed to determine how the different distance measures influence on the per-
formance achieved by clustering algorithms to correctly distinguish pixels of object of interest
from background ones. The parameters 𝑇𝑝 , 𝑇𝑛, 𝐹𝑝 , and 𝐹𝑛 are obtained from the confusion
matrix, and refer to the foreground pixels correctly classified as foreground, background pix-
els correctly classified as background, foreground pixels erroneously classified as background,
and background pixels erroneously classified as foreground, respectively. Thus, sensitivity
quantifies the ratio of pixels correctly classified as foreground over the total foreground pix-
els. Specificity quantifies the ratio of pixels correctly classified as a background over the total
background pixels, and Accuracy quantifies the ratio of pixels correctly classified.

4. Experimental Results

To test the proposed methodology, software routines were implemented in Python 3 using
libraries like Numpy, Sys, Opencv, and plplot. Experiments were performed in Ubuntu 18.04
with kernel 4.18 installed in a laptop with an AMD processor with two cores running at 1.6
Ghz.

For experimental purposes, FCM and K-means use two centroids and one iteration. Particu-
larly, FCM uses a fuzzier value of 1.5 based on the experimental setup introduced in [31].

This work uses a subset of 10 images from the Berkeley image dataset [32]. This dataset
contains 500 natural images in format jpg along with their corresponding ground-truth (images
correctly segmented). Each image of the subset contains one object of interest such as a swan,
a plane, and a wildebeest in external environments with a resolution of 481 × 321.

All of the software routines implemented for testing purposes is available online at the
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Table 2
Results obtained with different distance measures in FCM algorithm.

Input Segmented Image with Ground Truth

Euclidean Canberra Spearman Mahatan

repository: https://github.com/martinvelezf/Comparative-Study-of-Distance-Measures-for-FCM-
K-means-Applied-in-Image-Segmentation

4.1. Preliminary results

Experimental results depicted in the Tables 2 and 3 clearly exhibit that Canberra distance leads
to less noise and pixels erroneously classified as foreground and background pixels in the ma-
jority of evaluated images. In contrast, in terms of accuracy, Canberra distance is higher by a
value of 93.5%, in both FCM and K means implementations. However, based on Table 4, the
greater maximum values of sensitivity values are reached by FCM with Manhattan distance by
a 74.3%, meanwhile, K-mean outperforms when it uses Spearman one by a 74.2%. The other
metrics perform that their maximum value is achieved in Canberra distance for both methods,
FCM and K means.

Table 4 presents a comparison between averaged values between FCM and K-means. The
column "dif" is the difference between the average, and the column "best" represents the method
with the higher average value. Results presented in Figures 2, and 4 show that Canberra dis-
tance reaches the highest average value of accuracy and specificity. The performance was
better at images where the object of interest contrasted with the background or was in a sim-
ilar area. Besides, there was a background with a width color spectrum, so that some parts of
it were identified as objects of interest.
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Table 3
Results obtained with different distance measures in K-means algorithm.

Input Segmented Image with Ground Truth

Euclidean Canberra Spearman Mahatan

Euclidean Camberra Spearman Manhattan
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Figure 2: Comparison results: average accuracy of FCM and K-means

5. Conclusions

This work explores the combination of RGB and HSV color spaces for segmentation, however,
the segmentation is still a challenging task when the background and foreground are charac-
terized by similar color values. The manual selection of the centroids manually achieves better
outcomes than automatic selection approaches.
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Table 4
Performance metric values reached by K-means and FCM with different distance measures.

Distance Metric AVGFCM(%) AVGKM(%) DIF BEST

Euclidean
Accuracy 91.13 91.13 1.30E-05 K-means

Sensitivity 70.65 70.65 6.95E-05 K-means
Specificity 94.07 94.07 7.43E-06 K-means

Camberra
Accuracy 93.45 93.45 1.30E-05 K-means

Sensitivity 71.20 71.21 6.95E-05 K-means
Specificity 96.27 96.27 7.43E-06 K-means

Spearman
Accuracy 91.13 92.45 1.32E-02 K-means

Sensitivity 70.65 74.17 3.52E-02 K-means
Specificity 94.07 95.13 1.07E-02 K-means

Manhattan
Accuracy 92.53 91.05 1.48E-02 FCM

Sensitivity 74.26 70.63 3.63E-02 FCM
Specificity 95.21 93.98 1.24E-02 FCM

Euclidean Camberra Spearman Manhattan
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Figure 3: Comparison results: average sensitivity of FCM and K-means

The efficiency of the clustering algorithms, using different distance measures has been eval-
uated with the accuracy, sensitivity, and specificity metrics. According to the results, the Can-
berra distance gives the best accuracy and specificity. Furthermore, the best sensitivity was
achieved by the Manhattan distance applied in FCM, follow by the Spearman distance in K-
means.

A limitation of the proposed implementation is that the number and values of clusters to
be segmented out should be selected manually. In order to improve the utility, the proposed
implementation should be facilitated with mechanisms that could adaptively determine the
appropriate number of clusters to be segmented out. This is an important issue for future
work.
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Euclidean Camberra Spearman Manhattan
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Figure 4: Comparison results: average specificity of FCM and K-means
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