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ABSTRACT

Recommender systems aim to recommend items to users based on
their interests. Traditional models usually adopt batch processing.
Considering that user feedback is generated continuously, it be-
comes desirable to design models that are capable of learning as data
arrives. In this work, we propose an incremental graph of sequential
user interactions using implicit feedback from a data stream, with
the assumption that user behavior can be extracted from such se-
quence of interactions as time passes. The model was evaluated by
recommending items with different strategies, and such strategies
were compared with an incremental matrix factorization algorithm,
using a prequential approach. Results highlight the potential of
the proposed method, which obtained superior accuracy than the
baseline with generally better update and recommendation times.
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1 INTRODUCTION

Given the massive amount of data available in online services of
various sorts, ways of filtering information to users are necessary in
order to improve their interaction with the system. Recommender
systems are designed to filter such data, guiding users through the
item collection by presenting items based on their preferences.

Collaborative filtering (CF) is an effective technique to solve
this problem, in which the prediction of unknown user-item pref-
erences are inferred based on past user behavior. User feedback
can be explicit, e.g., a user assigns a specific rating to an item,
or implicit, which indirectly captures user behavior, for instance,
through browsing history [9]. Traditional CF approaches such as
neighborhood methods (K-nearest neighbors) and latent factor mod-
els (matrix factorization) usually adopt batch data processing.
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While such approaches are generally effective in terms of predic-
tive capability, there is the assumption that training data is always
available for updating the model, and usually temporal sequence is
disregarded. Considering that in many real scenarios intrinsically
time-dependent data is generated continuously at unprecedented
rates, it becomes impractical to update these models as new data is
generated.

In that sense, learning and updating a model with one (or few) ex-
ample(s) is preferable, and even required in real-world applications.
To that end, incremental algorithms can be used for recommen-
dation by treating feedback as a data stream, i.e., incorporating
feedback into the model as data arrives and discarding examples
after they are processed.

In this paper, we propose to incorporate implicit user feedback
into a graph in incremental fashion with the assumption that user
behavior can be extracted from the sequence of user interactions
as time progresses, capturing short-term and long-term interests.
To that end, edges are continuously included in the graph and their
weights are updated according to the sequential user interactions,
such that for each incoming user feedback in a data stream, a di-
rected edge connects the last item interacted by the user to the
current interaction, and the frequency in which this sequential
interaction occurs is reinforced in the weight of the edge. We eval-
uated the proposed model by recommending items with different
strategies and compare the results with an incremental matrix fac-
torization method [23] using a prequential protocol [21], obtaining
superior accuracy and generally better update and recommendation
times.

The remainder of this paper is organized as follows: Section 2
presents related work. Section 3 presents the proposed approach.
Section 4 presents experiments and results. Conclusions and future
work are presented in Section 5.

2 RELATED WORK

This section describes the related work, categorized as follows:
Time-dependent CF. These approaches treat feedback as a
chronological sequence, using time for modeling user preferences,
while implicitly capturing temporal dynamics [19]. Approaches
such as matrix and tensor factorization models have been studied
[8, 26]. In Das et al. [4], an approach for news recommendation
using pLSA, MinHash clustering and covisitation counts was pro-
posed. The covisitation is implemented as a graph, such that nodes
represent items and edges represent covisitation of items. Baluja
et al. [2] proposed personalized video recommendation based on
covisitation graphs. Assuming that recent data better reflects the
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interests of users, techniques to increase importance of recent feed-
back were proposed, such as decay functions [5, 6, 10] and sliding-
windows [13, 15, 22]. Data pre-processing approaches to capture
user interest drifts were studied by Cao et al. [3]. For comprehen-
sive reviews considering algorithms and methodologies related to
this topic, we refer the reader to the works of Vinagre et al. [25]
and Quadrana et al. [17].

Incremental CF. Recently, studies with incremental CF for im-
plicit feedback also known as one-class CF [16], have been devel-
oped. Vinagre et al. [21] proposed an incremental version of the
Stochastic Gradient Descent method [9] (ISGD), which updates the
model based solely on the current observation in a data stream.
The paper also proposes a prequential evaluation methodology
that allows the continuous monitoring of the systems’ predictive
capacity. Considering that in Vinagre et al. [21] all user feedback
is treated as positive, a follow-up study [24] proposed a recency-
based scheme to perform negative preference imputation into ISGD
(RAISGD). In Anyosa et al. [1], an incremental co-factorization al-
gorithm (CORAISGD) was proposed and compared to RAISGD on
music domain datasets, obtaining superior results. Ramalho et al.
[18] presented a robust comparison between incremental matrix
and tensor factorization.

Graph-based methods. Regarding graph-based methods for
time-dependent recommendation, the following papers are rele-
vant to the scope of the present work. Xiang et al. [26] incorporate
short-term and long-term user preferences into a bipartite graph,
Session-based Temporal Graph (STG), where nodes represents users,
items and sessions, and edges balance the influence of short-term
and long-term preferences. User and item nodes are connected
based on past user interactions, representing long-term preferences.
Item and user-session nodes are connected based on user inter-
actions in a time window, representing short-term interests. To
address cold-start issues, Trevisiol et al. [20] proposed the use of
two graphs, named BrowseGraph and ReferrerGraph to make news
recommendation to new users. BrowseGraph [11, 12] is built accord-
ing to users’ browsing behavior, where nodes represent web-pages
and edges connect nodes based on users’ transitions between pages.
ReferrerGraph is a subgraph of the BrowseGraph induced by user
sessions with the same referrer domain. To predict the next page to
a newcoming user, the neighbors of both graphs where considered
as candidates, and four strategies to select the next page where used:
random, content-based, most popular and edge-weight-based, with
the edge-based approach obtaining the best results. For location rec-
ommendations, Zhang et al. [27] proposed to incorporate sequential
patterns from users’ check-in behaviors in a location-location transi-
tion graph in incremental manner, where nodes represent locations,
edges represent transitions between locations, and edge weights are
based on transitions count. The proposed method, LORE, integrates
sequential influences with social and geographical information to
make recommendations.

Our work is influenced by Vinagre et al. [23] and Trevisiol et al.
[20]. Vinagre et al. [23] highlights the importance of updating a
model incrementally by proposing an online evaluation protocol
and also an algorithm capable of updating the model based solely
on the current observation in a data stream (ISGD). The work of
Trevisiol et al. [20] demonstrates the potential of the BrowseG-
raph approach for cold start issues, which is directly related to

Murilo F. L. Schmitt and Eduardo J. Spinosa

recommendation in an online manner. To that end, we compare our
approach with ISGD using the prequential evaluation described in
Vinagre et al. [21, 23].

3 PROPOSED APPROACH

This section presents the proposed approach, which treats the item
recommendation problem under a data stream framework. That
is, intrinsically time-dependent data (user feedback) is generated
continuously at unprecedented rate and unpredictable order. In
that sense, it is desirable to incrementally update the model, while
being able to include new concepts and adapt old ones as new data
arrives.

Considering the intrinsic relation between data and time, such
that user preferences adjust over time, we assume that the sequence
of user interaction can be important in defining user behavior. With
such definition, potentially relevant item recommendations can be
made to users based on past user behavior. As an example, the
release of a film can lead a user to watch the director’s past work
before watching the film. Another example is the birth of a child.
As time progresses, the family can direct their purchases towards
products intended for the children as they grow. In that sense, it
is reasonable to assume that the sequence of interactions can be
useful in modeling short-term and long-term user interest.

Consequently, the premise of this work is to learn user behav-
ior from implicit feedback as time progresses, representing the
interactions between users and items in a graph in incremental
manner, allowing the inclusion of new incoming users and items
continuously. Then, information extracted from past interactions
represented in the graph can be used to generate future recommen-
dations.

3.1 Incremental Graph of Sequential
Interactions

In order to continuously capture sequential interactions between
users and items, we create a directed graph, where nodes represent
items and edges represent user interactions, such that the edge
direction indicates the order in which items where visited, i.e.,
sequential interaction. Thus, an edge from item i to item j exists
if a user interacted with item i, and the next interaction was with
item j. Therefore, for each new user interaction, the feedback is
included into the graph by an edge that connects the last interacted
item to the item of the new interaction.

To distinguish the relevance of edges, each edge has an associ-
ated weight, where the weights are inversely proportional to the
frequency in which a transition is made by users. In other words, the
higher the frequency of a sequential interaction of two items, the
lower the edge weight between the two items, implicitly measuring
the relevance of the edge for future recommendations. Notation
used throughout this work is summarized in Table 1.

Figure 1 shows an example of the graph online maintenance,
illustrating two possible scenarios based on sequential interaction.
Consider the graph presented in Figure 1a and a user u, whose last
interaction was with item 5. At some time ¢, u interacts with item
0. Since there is no edge connecting item 5 to item 0, the edge from
item 5 to item 0 is inserted, as illustrated by the dotted edge in
Figure 1b. Now consider that after ¢, u interacts with item 1. Since
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Table 1: Table of notation.

Notation Description

U Set of users, U = {u1, ug, ..., Um}

I Set of items, I = {i1, i2, ..., in}

\%4 Set of nodes, V'

E Set of edges, E

w(e) Weight of edge e

Su Ordered list of interactions by user u
liy, Last item interacted by user u

an edge from item 0 to item 1 exists, its weight must be updated, as
denoted in Figure 1c.

We create a weighted directed graph G = (V, E, w), where V =
{v1,v9,...,up} C I denotes the set of nodes and E C V X V denotes
the set of edges. Each edge e has an associated weight w(e) €
Ry. We define S, = {(v1, t1), (v2, t2), ..., (Un, tn)} as a list of items
interacted by user u € U ordered according to time t. The last
interacted item by u is defined as li;, € I, i.e., the last element of S,,.
The graph is updated in an incremental manner considering the
current observed interaction.

User feedback is modeled as a data stream, where each observa-
tion is defined as < u, i, t >, indicating that user u interacted with
item i at time t, i.e., implicit feedback. When updating the graph
considering the current observation, it is desirable that the model is
able to include feedback from new incoming users and items, while
also updating older concepts. In that sense, there are four possible
scenarios, as presented in Algorithm 1:

(1) User and item are unknown by the system (u ¢ U and i ¢ I).
In this case, user and item are included in the system, a node
for i is added to V, (i, t) is included in Sy, and li;, « i;

(2) User is unknown and item is known by the system (u ¢ U
and i € I). In this case, user is included in the system, (i, t) is
included in Sy, and li;, < i. Given that i is the first interaction
of u and i is known, there is no change in the graph;

(3) User is known and item is unknown by the system (u € U
and i ¢ I). In this case, item is included in the system and
a node for i is added into V. In this scenario, u has already
interacted with at least one item before. Since this is the first
interaction by any user with i, an edge (liy, i) is included in
E, where w((liy,i)) = 1. Lastly, (i, ) is included in S, and
liy « i

(4) User and item are known by the system (u € U and i € I).
In this case, the current sequential interaction is iy, to i. If
such interaction has happened before, i.e., (liy, i) € E, then
w(e) is updated according to Equation (1):

w((liy, 1)) = w((liy, 1)) - p 1)

where p € (0,1) is a parameter that controls the impact of
the interaction in the edge weight. If this is the first time such
interaction happens, an edge (liy, i) is included in E, where
w((liy,i)) = 1. Lastly, (i, t) is included in S, and li;, « i.
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D =< u,i,t >: data stream;

li, = last item interacted by user u;

for < u,i,t > Ddo

if u € U then

if i € I then

if (liy,i) € E then

| w((in 1)) = w((liu, D) - p3

else
E « EU {(liy,1)};
w((liy, i) < 1;

end

else

I« 1U{i};

V « TU{i};

E «— EU{(liy,0)};

end

else

U« UU/{ul;

if i ¢ I then
I« T1U{i};
V « 11U {i};

end

end
Su — Sy U{(, 1)}

liy « i

end
Algorithm 1: Online graph update

3.2 Recommendation methods

To evaluate the information that is inserted in the graph over time,
we tested a few approaches to generate recommendations for users
based on items in the list of interactions S. As baseline for compar-
isons we use the in-degree centrality, that can be seen as a popularity
measure. The in-degree centrality captures the number of prede-

cessors that a node has, and is calculated as: indegree(v) = I\l\.;(ﬂ)l‘ ,

where P(v) is the set of predecessors of node v. A recommendation
is generated by calculating the in-degree centrality of all items
and then recommending the k items with the highest values. This
recommendation method does not distinguish users and simply
recommends items with high centrality. We refer to this algorithm
as in-degree.

To assess the influence of the most recent interaction on user
interest, two strategies based only on the last item interacted by the
user u, i.e., li,, were evaluated. In these approaches, candidate items
are filtered out as items that are successors to liy,. The first strategy
considers the in-degree centrality. To generate recommendations
to a user u, we calculate the in-degree centrality for all successors
of liy,. The k items with highest values are then recommended to u.
We refer to this algorithm as in-degree_li,. The second strategy,
edge_weight_liy, considers the weight of edges that connects /i,
to its successors as a measure of item relevance. Considering the
manner in which the graph is constructed, this approach values the
amount of times a sequential interaction happens. Candidate items
Jj are ordered according to the weight of the edge that connects
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(a) Example of a graph before updates based on user in-
teractions.
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(b) Insertion of edge from item 5 to item 0 based on a
sequential interaction.

(c) Weight update of edge from item 0 to item 1 based on

a sequential interaction.

Figure 1: An example of graph update based on a few user interactions. Considering the graph in (a) and a user u whose last
interaction was with item 5, (b) presents a scenario where u interacts with item 0 by inserting the edge connecting 5 to 0. In
(c), u interacts with item 1 after interacting with 0, and the weight of the edge connecting 0 to 1 is updated.

liy to j, and the k items with the lowest weight are recommended.
A similar approach has been shown to be effective in addressing
cold-start issues in Trevisiol et al. [20].

To model long-term interest, recommendations to a user u are
generated based on the entire list of interactions S,,. Two approaches
that filter candidate items as successors to nodes in S;, were tested.
The first approach measures the influence of sequential item in-
teraction, where the relevance of candidate items are measured
according to the weight of edges, similar to edge_weight_[i;,. The
value a(j) that represents a candidate item j is the lowest weight
between all the edges that connects a node in S, to j, i.e., a(j) =
min(w((v,Jj))),Yv € Sy, w((v,j)) < 1. The k items with lowest
a(j) are then recommended to u. We refer to this algorithm as
edge_weight_Sy. The second approach, path_count_S,, consid-
ers an item j to be relevant to u based on the number of short paths
between items in S, and j, i.e., an item j is relevant to u if j is succes-
sor to several items in S;,. To recommend k items to u, for each can-
didate item j we associate a value c(j) that counts the amount of pre-
decessors of j in Sy, ie., ¢(j) = X (o, j)eg 1, YV € Su, w((v,J)) < 1.
The k candidate items with highest c(j) are recommended. We dis-
card information from edges where w(e) = 1 since they indicate
that the sequential interaction occurred only once.

Assuming that user preferences change over time, we have
adapted strategies edge_weight_S,, and path_count_S,, to generate
recommendations based on the r most recent user interactions.

The resulting approaches, edge_weight_r and path_count_r, fil-
ter candidate items j for a user u as successors to the last r items
in the ordered list of interactions S,. Considering rS,, as the last
r items in Sy, edge_weight_r associates for each candidate item j
a value a, (j) = min(w((v, j))), Yo € rSy, w((v,j)) < 1 and recom-
mends the k items with the lowest a,(j). Algorithm path_count_r
associates for each candidate item j a value ¢, (j) = X (o, jjeg 1, Yv €
rSu, w((v, j)) < 1 and recommends the k items with highest ¢, (j).
The impact of parameter r is evaluated through experiments re-
ported in Section 4.4.

4 EXPERIMENTS

In this section we report the experiments performed to evaluate the
recommendations generated by the proposed approach, describe
the evaluation methodology and discuss the obtained results. We
compare the results with ISGD and present an analysis based on
the results.

4.1 Evaluation

In order to evaluate the proposed approach on a data stream, a
suitable evaluation methodology is required. In that sense, we use
the prequential evaluation protocol proposed by Vinagre et al. [21].
For each incoming event < u, i, ¢ >, the model is first tested and
then updated based on the following steps:

(1) If u is a known user, use the current model to recommend N
items to u, otherwise go to step 3;
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(2) Score the recommendation list given the observed item i;
(3) Update the model with the observed event;
(4) Proceed to the next observation;

We measure accuracy through the HitRate@N metric at cutoffs
of N € {1,5,10}. HitRate@N returns 1 if item i is within the N first
recommended items, and 0 otherwise.

4.2 Datasets

Two datasets from the movie domain were used, as summarized
in Table 2. The MovieLens-1M dataset! contains around 1.000.000
timestamped ratings in a 1 to 5 scale. The Netflix dataset? con-
tains around 100.000.000 timestamped ratings in a 1 to 5 scale. To
simulate continuous implicit feedback, we discarded ratings below
5 and sorted events chronologically, where events are defined as
< user, item, time >. For the Netflix dataset, we dropped users and
items with less than 10 interactions, and then selected ratings from
10.000 randomly selected users.

Table 2: Dataset description.

Dataset Events | Users | Items | Sparsity
MovieLens-1M | 226.310 | 6.014 | 3.232 98.84%
Netflix 666.178 | 10.000 | 5.309 98.75%

4.3 Methodology

We compare the accuracy of the recommendation methods de-
scribed in Section 3.2 with ISGD [23]. The initial models were built
on the first 20% of each dataset, while the remaining 80% were used
for incremental evaluation and learning, simulating a data stream.
For ISGD, recommendations are generated by estimating the rating
of all candidate items, sorting such estimations and selecting N
items with the highest values.

Besides HitRate@N to evaluate accuracy, we also measure the
average time to update the model and to generate recommendations.
As stated in Section 3.1, edge weights are updated based on Equation
1, that updates the weight of an edge based on parameter p. In the
subsequent experiments, we set p = 0.9. Applying the same value
of p for every update does not distinguishing the importance of an
interaction and simply decreases the weight based on the number
of sequential interactions. All experiments were implemented in
Python 2.7, with the NetworkX library [7] for graph manipulation,
and executed on an Intel Core i7-4770 of 3.4 GHz with 16 GB RAM
running Ubuntu 16.04.

4.4 Results

As discussed in Section 3.2, algorithms edge_weight_r and path_count_r

generate recommendations to a user u based on the r most recent
interactions in Sy,. To that extent, we conducted experiments to eval-
uate the impact of r in the accuracy of both algorithms with metric
HitRate@10. The results of these experiments for both datasets are
presented in Figure 2.

Uhttps://grouplens.org/datasets/movielens/1m/
Zhttps://netflixprize.com/
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For the MovieLens-1M dataset in Figure 2a, starting from r = 20,
we can see that accuracy increases for algorithm edge_weight_r as
r decreases until its peak at r = 3. For all values of r, edge_weight_r
obtained accuracy above 0.11%. We emphasize that r = 1 corre-
sponds to algorithm edge_weight_li;. For the path_count_r algo-
rithm, we can see that accuracy tends to grow as we decrease r until
its peak at r = 5, and then decreases considerably after r = 3. The
decrease occurs because it becomes more difficult to distinguish
candidate items with less edges to them.

For the Netflix dataset in Figure 2b, starting from r = 30, the
accuracy for algorithm edge_weight_r slightly increases as r de-
creases until reaching its peak at r = 7. After r = 7 the accuracy
remains steady until reaching r = 3 and then drops considerably.
For algorithm path_count_r, accuracy reaches its peak at r = 13
and then decreases as r decreases.

Overall, edge_weight_r is relatively stable to r, obtaining similar
accuracy for different values of r, while path_count_r is less stable,
given that it needs more feedback to distinguish candidate items.
We note that the recommendation time is associated with r, since
the algorithms iterate the successors to the last r nodes in Sy,. Thus,
recommendation time can be reduced by lowering r. In that sense,
considering that lower values of r can obtain reasonable accuracy
while generating faster recommendations, it is interesting to con-
sider the most recent interactions when modeling user behavior.
For overall results presented next, for the MovieLens-1M dataset
we set r = 3 to edge_weight_r and r = 5 to path_count_r. For the
Netflix dataset we set r = 7 and r = 13 respectively.

Table 3 presents overall results for all algorithms. Accuracy is
measured through HitRate@N with N € {1, 5, 10} and time is mea-
sure through average update and recommendation times, with the
best results highlighted in bold.

Observing the results presented in Table 3, we can see that
edge_weight_r has better accuracy compared to all other meth-
ods for both datasets, also being the second fastest method. ISGD
is outperformed in accuracy by all graph-based methods, and the
two in-degree methods obtained the worst accuracy among the
graph-based methods.

Although algorithms edge_weight_S;, and path_count_S;, ob-
tained superior results to the baselines, they have a high recom-
mendation time, since recommendation time is proportional to the
size of Sy, which can make these algorithms impractical in some
scenarios. However, time is substantially decreased with improved
accuracy with its counterparts that only consider the most r recent
interactions, i.e., edge_weight_r and path_count_r.

Comparing methods in-degree_li,, and edge_weight_li,, we can
see that edge_weight_li,, outperforms in-degree_li; both in accu-
racy and recommendation time, with edge_weight_li,, presenting
competitive results for MovieLens-1M, also being the fastest algo-
rithm overall.

For both datasets, the three strategies based on edge_weight
are among the four best algorithms, together with path_count_r.
These results suggest the potential of including information from
sequential interactions into the recommendations.

In terms of update time, both ISGD and graph-based methods
achieve competitive results, with graph-update being faster since
the update consists in inserting a new edge or updating an edge
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Figure 2: Impact of parameter r in the accuracy of algorithms edge_weight_r and path_count_r.

Table 3: Results for all algorithms. Accuracy is measure by HitRate@N with N € {1,5,10}, and time is reported by average
update and recommendation times in milliseconds, with the best results highlighted in bold.

. HitRate@N Time (ms)
Dataset Algorithm T z T Update | Rec.
ISGD 0.007 | 0.030 | 0.055 0.06 3.43
in-degree 0.012 | 0.046 | 0.080 0.01 1.87
in-degree_liy, 0.012 | 0.051 | 0.093 0.01 1.24
edge_weight_li;, | 0.032 | 0.093 | 0.134 0.01 0.10
MovieLens-1M | edge_weight_S,, | 0.017 | 0.064 | 0.105 0.01 5.00
path_count_Sy 0.014 | 0.058 | 0.102 0.01 4.77
edge_weight_r | 0.033 | 0.101 | 0.154 0.01 0.23
path_count_r 0.021 | 0.081 | 0.135 0.01 0.32
ISGD 0.002 | 0.011 | 0.021 0.06 5.68
in-degree 0.007 | 0.026 | 0.048 0.02 4.21
in-degree_liy, 0.007 | 0.027 | 0.047 0.02 3.13
edge_weight_li;, | 0.017 | 0.043 | 0.061 0.02 0.20
Netflix edge_weight_S,, | 0.018 | 0.052 | 0.078 0.02 24.96
path_count_Sy 0.009 | 0.035 | 0.061 0.02 23.97
edge_weight_r | 0.021 | 0.059 | 0.089 0.02 1.28
path_count_r 0.010 | 0.042 | 0.072 0.02 2.13

weight based on the current interaction. Considering recommenda-
tion time, all algorithms but those that generate recommendations
based on Sy, present acceptable time, since recommendation time
is proportional to the number of items. We note that ISGD is more
efficient in terms of space complexity since it grows linearly to
the number of users and items, while the space complexity for the
graph with an adjacency list is O(|V| + |E|).

In Figure 3 we present the accuracy of all algorithms over time
with a moving average of the HitRate@10 metric for both datasets
with a window of size n = 5000 to further evaluate the learning
behavior of all algorithms through time. The evolution reinforces
that edge_weight_r is superior than other algorithms throughout

most of the time for both datasets. For the MovieLens-1M, all algo-
rithms present similar behavior, with similar peaks and a decrease
at the end. For both datasets, graph-based methods outperforms
ISGD over time.

5 CONCLUSION AND FUTURE WORK

In this work, we proposed an incremental graph of sequential user
interactions using implicit feedback, with the assumption that user
behavior can be inferred from such sequence of interactions through
time. We evaluated the model by recommending items with differ-
ent strategies on two movie domain datasets and compared results
with an incremental matrix factorization algorithm, ISGD, using
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Figure 3: Evolution of HitRate@ 10 as events arrive for both datasets with window size n = 5000.

prequential evaluation. In terms of accuracy, the graph-based meth-
ods outperformed ISGD, generally with better recommendation
time. The best results were achieved by considering the weight of
the edges that connect the r most recent user interactions with the
candidate items.

A limitation of the proposed approach is that it requires suffi-
cient data from several users in order to distinguish items based
on the sequential interactions. In future work we aim to explore
ways to overcome this limitation. Another aspect is how to update
the edges according to user sessions. In that sense, future work
also include evaluation of dynamic values for p, for instance, based
on the time elapsed between the interactions of u with i, and
i, considering the similarity between li;, and i and based on the
number of interactions made by u. We also intend to include loss of
edge relevancy through time, explore different ways of generating
recommendations based on the graph, such as including informa-
tion from both edge_weight and path_count into recommendations
and make comparisons with other incremental algorithms, such as
item-based K-nearest neighbors [14], RAISGD [24] and CORAISGD

(1].
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