
Deploying a Cost-Effective and Production-Ready Deep News
Recommender System in the Media Crisis Context

Jean-Philippe Corbeil
Le Devoir
Canada

jpcorbeil@ledevoir.com

Florent Daudens
Le Devoir
Canada

fdaudens@ledevoir.com

ABSTRACT
In the actual context of the media crisis, online media compa-
nies need cost-effective technological solutions to stay competitive
against huge monopolistic software companies massively feeding
content to users. News recommender systems are well-suited so-
lutions, even if current commercial solutions are well above most
online media’s budget. In this paper, we present a case study of
our deployed deep news recommender system at Le Devoir, an
independent french Canadian newspaper in the province of Que-
bec. We expose the software architecture and the issues we have
met with their solutions. Furthermore, we present four qualita-
tive and quantitative analyses done with our custom monitoring
dashboard: offline performances of our models, embedding space
analysis, fake-user testing and high-traffic simulations. For a tiny
fraction of the available commercial solutions’ prices, our current
simple software architecture based on the Docker, the Kubernetes
and open-source technologies in the cloud has demonstrated to be
easily maintainable, scalable, and cost-effective. It also shows ex-
cellent offline performance and generates high-quality embeddings
as well as relevant recommendations.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Recommender System, News Recommendations, Sequential Rec-
ommendation, Media Crisis, Dashboard, Cloud Technology

Reference Format:
Jean-Philippe Corbeil and Florent Daudens. 2020. Deploying a Cost-Effective
and Production-Ready Deep News Recommender System in theMedia Crisis
Context. In 3rdWorkshop on Online Recommender Systems and User Modeling
(ORSUM 2020), in conjunction with the 14th ACM Conference on Recommender
Systems, September 25th, 2020, Virtual Event, Brazil.

1 INTRODUCTION
In the last couple of decades, the newspapers have seen their world
changed by the digital shift in the news market [4, 21, 23]. From
the newspapers to the online articles, the readers’ needs have also
shifted from the static paper format to the fast, dynamic and well-
synthesized display of the online news on mobiles [1, 13]. Moreover,
we have observed the colossal impact — financially and on the
behaviours of readers — of intermediary platforms such as news

ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

aggregator platforms and social networks that massively feed news
content to readers in a personalized fashion.

In this context, the online media companies need digital tools to
retain their readers on their platform and augment their conversion
goals. We can address all these issues by feeding a personalized
list of contents to the readers, making news recommender systems
the perfect solution. Nevertheless, most of the commercial data
solutions like Google Analytics 360 and Google Recommendations
AI are far beyond what most newspapers can afford. Can we build
a production-ready and cost-effective deep news recommender
system for news articles that leverage the cloud and open-source
technologies? At Le Devoir — an independent french Canadian
journal in the province of Quebec—, the conception and deployment
of this recommender system is a part of our digital shift plan. It is
also a part of our solution to reach our marketing goals by offering
tailored redactional content to our readers.

In this paper, our contributions are:

• The first case study on the deployment of a production-ready
cloud architecture of a recommender system with the docker
technology and a continuous integration and continuous
deployment (CI/CD) production cycle.
• The design of a cost-effective and scalable deep news recom-
mender system oriented on short-term recommendations.
• The demonstration of a considerable offline performance
while meeting our constraints: cost, scalability, training time
and serving time.
• The design of two qualitative experiments to assess the qual-
ity of a news recommender system before going online: the
embedding quality test and fake-user recommendation test.
• The design of a monitoring dashboard for our recommender
system.

In the next section, we discuss the previous works related to our
current news recommender system. Then, we elaborate on our sys-
tem architecture by explaining all the aspects of our methodology:
data processing, model training, recommendation delivering and
monitoring. Then, we discuss our model’s offline results, two quali-
tative validation methods and the traffic benchmark of our system.
Afterwards, we talk about our system limitations and future works.
We end with a conclusion summarizing our whole approach.

2 BACKGROUND
Garcin et al. (2013) [5] presented the Pen recsys, a framework for
a news recommender system, made with Java EE. They presented

ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil Jean-Philippe Corbeil and Florent Daudens

five models in an A/B testing setup: context-tree recommenda-
tions, most-popular recommendations, content-based recommen-
dations, collaborative recommendations and random recommenda-
tions. They had a web-based control panel to monitor the perfor-
mances and to modify some parameters. They demonstrated the
ability to deliver recommendations within 30 ms even at visit peaks.
We followed many aspects of their framework: an A/B testing setup
with many models, a monitoring dashboard and a traffic bench-
mark. Many aspects of their approach are yet dubious, given the
recent state-of-the-art in software engineering. First, the current
practice in software maintainability is far beyond their Java EE
setup. We used cloud-based and open-source technologies with
a CI/CD pipeline actionable by our GitHub repositories. Second,
their web-based control panel was very minimalist and did not
follow any design principles. We built our user interface based on
the dashboard principles of Sarikaya et al. (2018) [20], dividing it
into six tabs targeting specific monitoring and decision-making
goals. We included features like complete monitoring visualiza-
tions, actionable widgets and live tests of the models. Third, the
sequential nature of the news recommendation is known to require
deep sequential architecture [24]. Our collaborative deep learning
models are based on Pytorch [19] and take as input sequences.
We also prepare an A/B testing setup to test our models against
the most-popular recommendations and random ones. As future
works, we plan the conception of a content-based approach and
its hybridization with our collaborative approach. Finally, we dis-
cussed the financial impact of our system in terms of costs for our
newspaper company.

Karimi et al. (2018) [10] reviewed state of the art concerning
news recommender systems and made several suggestions. They
noticed that the scalability of systems is often an issue despite the
maturity of storing systems. An issue reported with deep learning
architecture by Zhang et al. (2019) [24] as well. Instead of following
their recommendation of using continuous learning, we suppressed
this issue by designing our system on a few-days basis. With this
peculiar design choice, we were able to remove the model depen-
dency on continual indexations of both items and users into a stable
model. Second, a major issue concerns the dynamic addition of pub-
lications throughout the day and the need to consider these articles
quickly. Karimi et al. mentioned the need to incorporate new arti-
cles within minutes to benefit from its momentum resulting in a
high click-rate-through. We followed their recommendation with
many quick training sessions within one hour. They also proposed
a hybrid solution mixing both efficient short-term predictions and
sophisticated long-term predictions — in line with the previous
works of Liu et al. [14]. We adopted this strategy in our system. In
the current paper, we are focusing on short-time predictions with
our news recommender system. The authors added critics about the
reproducibility in the news recommendation domain with many
proprietary datasets. In the context of our paper, we addressed
this issue by releasing the anonymized collaborative dataset we
used in our experiment. Finally, they mentioned the lack of cor-
respondence between offline and online results demonstrated by
Garcin et al. (2014) [6]. In our case, we reported the results on our
released dataset with further results from training the model many
times on evolving data. Despite relying only on offline results, our
architecture is very flexible. Even if such correspondence does not

happen when we start to provide recommendations online, we have
our custom dashboard containing widgets to modify the models,
its hyperparameters and the recommendation strategies in an A/B
testing setup. Furthermore, we design our system with a CI/CD
pipeline enabling us to make more profound modifications ready
to be released within the next ten minutes without any downtime.

Mohallick and Özgöbek (2017) [16] analyzed privacy in news
recommender systems. Despite many reported news recommender
systems relying on personal data, our system is in line with privacy
principles. We do not use more data than the required information
for a collaborative algorithm. We only need to activate the opt-out
option of Matomo on our website to be fully GDPR compliant.

3 METHODOLOGY
3.1 Architecture
We divided the dynamic of our system into two segments the ana-
lytics part and the recommender system part. We illustrated these
two parts in Figure 1.

The analytics side contains two technical components: the ana-
lytics platform Matomo [15] (previously Piwik) and the web site, in
our case ledevoir.com. As a first step, the readers come to our web-
site, and we track their page views anonymously. We respect our
readers’ privacy by assigning a random visitor id at the first visit
and by having no specific personal information1. Only a truncated
IP at 2 bytes — which is very general information — is recorded,
and no more than three months of detailed data is available locally.
At Le Devoir, the marketing department manages any other infor-
mation linked to the user accounts on a different CRM system. As
a second step, we added the recommender system part in the loop
to propose a personalized list of five articles.

Overall, we designed our recommender systemwith five essential
components: a serving virtual machine, a training virtual machine,
a GCP bucket, a MongoDB database and a monitoring dashboard.
We explained the interactions between all the components in the
following sections. We also address specific design considerations.

3.2 Design considerations
Our recommender system’s design must respect four significant
constraints: the cost, the scalability, the serving time and the train-
ing time. Thus, we made two major design choices: split our archi-
tecture into two virtual machines and limit the number of days.

We chose to split our architecture into two virtual machines
(VM): one Serving VM and one Training VM. The first VM is the
master VM. It is always online, and it serves recommendations
to our readers. The second VM has the only job of training the
model. We made this peculiar design choice to reduce the cost since
the Graphics Processing Unit (GPU), needed to train the model in a
reasonable amount of time, is the most expensive part of the system.
With this peculiar design choice, we estimated based on the GCP
Pricing Calculator to save near 80% of our total cost considering
5.5 hours of training per day. This training time is wisely split into
training sessions of about 7 to 10 minutes, with, on average, 4.8
minutes only to train the model (taken on our dashboard’s current
state and model tabs between May 29th, 2020 and May 31th 2020).

1We followed Matomo’s guideline on privacy: https://matomo.org/docs/privacy/.

https://matomo.org/docs/privacy/

Deploying a Cost-Effective and Production-Ready Recommender System ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil

Figure 1: Diagram of our recommender system architecture.

Thus, we can have a maximum of 6 training sessions by hours of
the day, leading to model updates of the same frequency on the
serving VM. We designed the number of training sessions to follow
the averaged daily traffic on our website in Figure 2 with some
delays. We apply this strategy to follow the principle of training
more often when more new data are available.

Figure 2: Interactive plot taken from our dashboard with
daily number of training sessions by hour of the day.

Second, we selected a maximum number of days to train and
from which we recommend articles. This design choice would make
the amount of input data steady and stabilize the system training
time. Furthermore, we reduced the overall dependency of the sys-
tem on keeping the previously trained model and maintaining the

indexations leading us to a scalable architecture with a simpler
sequential model that can be trained every time from scratch. We
fixed this number at four days, knowing that our articles’ active
lifespan is at most two days following the Nyquist rate [2, 17]. On
average, we then have around 1.9 million data points for each train-
ing session (taken on our dashboard’s model tab from May 29th,
2020 to May 31st, 2020).

3.3 Data analytics
To develop a news recommender system, we needed the right an-
alytics platform to have the necessary insight into our data. Two
major drawbacks from the widely used Google Analytics 360 is its
expensiveness and its data sampling. Thus, we solved both issues
by implementing the open-source Matomo Analytics Platform [15]
with a MySQL database. It is freely available, has a great community
and is easily deployable on any cloud computing virtual machine.
Thus, we implemented Matomo Analytics Platform on Google Cloud
Platform (GCP) for our high-traffic website.

3.4 Data pipeline
From Matomo’s database, we designed an intermediary MongoDB
database on MongoDB Atlas. This database is a crucial piece of
our design because our website’s traffic heavily solicits our central
database. This secondary database holds around a week of data
already pre-processed, and it is fed at every minute by cronjobs

ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil Jean-Philippe Corbeil and Florent Daudens

on the serving VM. Because Matomo records noisy data such as
404 URLs and pages that are not articles on our website, we had to
filter our data. We conceive it to consider the data with the right
URL format for articles and to validate its title before dumping the
results into our MongoDB. We also separated the article records
(URL, title, and ID) from the visit records (ID, article ID, reader
ID, and timestamp) to maintain a lower memory usage. Even with
this architecture, the download speed of the whole data at training
time was slow on the training machine — around 10 minutes. This
downtime can be costly on a virtual machine with a GPU, such as
our training virtual machine. Our solution was to pre-dump the
data progressively into a Google Cloud Bucket and download this
file instead, which resulted in a download time of less than a minute.
We kept the MongoDB in this part of our design for real-time access
to accelerate our cronjobs pre-processing and to maintain our data
integrity.

3.5 Models
At the core of our system, we have implemented the Spotlight
python library by Kula et al. [12]. It contains many state-of-the-
art deep sequential recommender system architectures in PyTorch
[19]. We used their sequential models, which includes four neural
models: 1D CNN [9, 18], LSTM [7], MixtureLSTM [11] and Pool
model [3].

We optimized our models with actual offline data from May
7th, 2020, to May 11th, 2020, containing 1,944,719 data points. We
made an anonymous version of this dataset on our GitHub2 to
promote our results. We encourage the community to improve our
results with better collaborative models. The data contains records
with anonymized reader identification number, anonymized article
identification number, and timestamp.

In our experimentation, we fixed some parameter values accord-
ing to both our pre-experiment and Spotlight’s documentation:
the number of epochs to 10, the learning rate to 1e-2, the random
state to 42, and we used no regularization. We took the adaptive
hinge loss function [22]. We did our experiments with an NVIDIA
RTX2070 GPU.

With Spotlight’s sequence parser, we parse all sequences of ar-
ticles with a minimum of 3 articles and a maximum of 7 articles
for each reader. Every sequence is also padded up to 7 articles. We
chose these bounds first to ensure that the sequences contain a
minimum of relevant articles and second to limit the length of the
model’s input. For the lower bound of three articles, we have a
significant part of our traffic that only consults one or two article(s)
and does not come back. We do not aim at recommending articles to
this type of reader. We prefer to recommend to our core readers at
first. For the upper bound, we did pre-experimentation, and seven
articles seemed a reasonable length. The Spotlight’s documentation
suggested five items as an upper bound, but it is short given our
lower bound.

Since we have a large number of sequences, we did our validation
with a training/testing split of 90%/10%, which resulted in a train
set of 215,200 samples and a test set of 22,625 samples. We separated
these sets according to users. Thus, readers in the train set and test

2https://github.com/LeDevoir/orsum2020_collaborative_datasets

set are mutually exclusive. We optimized all four models with the
following set of hyperparameters applying a grid search approach:
• Batch size = { 512, 1024, 2048, 4096, 8192 }
• Embedding size = { 32, 64 }
• Number of negative samples = { 100, 200, 300 }

3.6 Model dumping
Once themodel trained on the training virtual machine, we dump its
weights and configuration into our Google Cloud Bucket. Then, the
training machine notifies by HTTPS protocol the serving machine
to fetch the new model and to make it ready to serve. Finally, the
training machine can turn off until the serving machine calls the
next training session.

3.7 Continuous Integration and Continuous
Deployment Pipeline

We followed the Continuous Integration and Continuous Deployment
cycle principle from the software engineering field to ease the
maintainability of our system and to ensure zero downtime. Our
pipeline is illustrated in Figure 3. We hosted our recommender
system in a private GitHub repository. We activated a trigger to
watch for updates on the master branch and to call our continuous
integration (CI) platform CircleCI automatically on this event. The
CI runs the recommender system’s unit tests, which cover our
code at 100% to ensure strict control of our builds. If the tests are
all passed, the CI build from our repository a Docker image and
registers it on Google Container Registery (GCR) afterwards. Finally,
the CI deploys the new image into our Kubernetes cluster3 with
zero downtime by applying a rolling update. The serving VM and
the training VM are processed similarly by two different CI/CD
pipelines linked to their respective GitHub’s master branch. The
only difference is that the training image runs as a Kubernetes Job
on its cluster since we run it on demand.

Figure 3: Diagramof theCI/CDpipeline of the recommender
system.

3.8 Online validation strategy
To validate the model effectiveness when we launch it online, we
prepared an A/B testing setup inside the recommender system by
monitoring the Click-Through-Rate (CTR) distributions. In this
A/B testing, we compare our model’s recommendations to the ac-
tual top-5 article suggestions given to the readers in a box on the
website. Our model’s recommendations are given in a similar box
with the same disposition — see Figure 4. We decided that half the
readers get the model’s recommendations, and the other half get
recommendations using the best articles in the last 30 minutes. By
applying the Student’s T-test, we can measure the relevance of one

3Kubernetes is a system for automating deployment, scaling, and managing Docker
containers.

https://github.com/LeDevoir/orsum2020_collaborative_datasets

Deploying a Cost-Effective and Production-Ready Recommender System ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil

recommendation method over the other. Moreover, we can change
the A/B testing settings with our custom dashboard.

3.9 System monitoring
Many metrics and variables are recorded on the MongoDB to mon-
itor and control the system once online. This monitoring is done
with a custom dashboard made in Dash by Plotly [8]. Our pro-
totype has six different tabs: current state, performances, model,
execution settings, embedding space viewer and model testing in-
terface. In Figure 5, we have included an illustration of the current
state tab. We use it to monitor the training VM status, which is
useful to detect errors during training. We also use it to see the
current A/B testing results with two histograms with its T-test
values. The performances tab is designed to monitor the current
model offline performances (MRR and P@5, see section 4.1). The
model tab displays the training time and the number of input data
across time for monitoring purposes. The execution tab has many
variables to manipulate and modify the system. We can shut down
the recommendations, change the A/B testing settings, change the
number of recommendations and interact with a plot to set the
number of training sessions per hour of the day. The embeddings
tab (see Figure 7) is a live 3D plot of the embeddings space gener-
ated by the trained model compressed in 3 dimensions with the
TSNE algorithm. The test tab (see Figure 8) contains an interface
to test the recommendations of the current model. It has the list
of all current articles from which to make a selection. Then, this
selected list is sent to the server as a list of previously consulted
articles by a fake reader. We send back the recommendations of the
model. The last two tabs are interesting tools to evaluate the model
recommendations (see Sections 4.2 and 4.3).

4 RESULTS
4.1 Offline Model validation
Out of 120 possible experiments in our grid search, 12 finished with
an "out of GPU memory" error leaving us with 108 results. We kept
the top-5 for each model in Table 1. By fine-tuning the models’
hyperparameters, we found that the 1D CNN architecture is the
most optimal one for our task, followed by the LSTM. Since it is
faster to train than the LSTM by 38 seconds and saves memory
with smaller embeddings, we selected the CNN model as our first
state-of-the-art configuration. Overall, the MixtureLSTM model
takes more time to train for about slightly lower results than the
LSTM and the CNN. The Pooling model is largely under-performing
based on MRR, but competitive with the P@5 metric. We found
that a large negative sampling is improving the results as well as
a large embedding size in general. Moreover, smaller batch sizes
tend to get better results. For instance, we reported no batch size
of 8192 in these top-5 and only one 4096. Most of the 20 results
presented here obtain similar P@5, which means that in a list of
5 articles, we found most of the time one relevant article for our
reader. The MRR score indicates that, except for the Pooling model,
most models suggest this relevant article as first or as the second
article, between 1 and 0.5 respectively.

We supported the generalization of these results by providing
the histogram of MRRs measured from 22 training sessions between
May 26th, 2020 and May 28th, 2020, in Figure 6. We took this Figure

from our live dashboard’s performances tab. The input data given
to our 1D CNN model is live evolving data from a window of the
previous four days. We see a steady MRR performance across the
time of 0.69 ± 0.03 in line with current results when considering
an error based on three standard deviations.

4.2 Analysis of article embedding’s quality
In Figure 7, we analyzed the embedding space of our 1D CNN with
an embedding size of 32 dimensions using the TSNE algorithm to
project them into a 3D space. In Figure 7a, we took the data of May
20th, 2020, for five subjects: world, politics, culture, opinion and
economy. We did not consider the society subject, for which the
scope is vast and too similar to many other subjects. It would have
made the Figure harder to visualize. We omitted the lecture and
lifestyle subjects too because they usually contain only a couple
of articles each. By illustrating the subjects with colours for each
article, we notice clusters linked to the article’s subject. The exis-
tence of these clusters indicates that the model has learned relevant
representations for the articles. For instance, we distinguish the
opinion cluster (blue) and the culture cluster (green) on the left
and right of the Figure, respectively. We argue that this is due to
their different nature in the writing style and in the subject, which
attracts different readers. We also see the politic cluster (red) in
the center near the world cluster (gray) and the economy cluster
(orange). We argue that these three subjects are mostly related and
have a similar writing style, which attracts similar readers. Since
we integrated this view on our dashboard, we can further confirm
the appearance of similar cluster patterns emerge mostly every day
— see Figure 7b.

We know that the model learns the embeddings from our collabo-
rative data. Thus, they also integrate the influence of their locations
on our website partly. Thus, we plan to use this embedding viewer
and its dynamics as a management tool for our website display as
future work.

4.3 Analysis of fake-reader recommendations
We further tested and analyzed our recommender system’s recom-
mendations with the user interface in Figure 8 from our custom
dashboard. On this interface, we have a tool to send our recom-
mender system model a list of selected articles as an input and to
receive its recommendations. We design the experiment to assess
the quality of our recommendations. We selected two articles from
each five previously selected subjects: world, politics, culture, opin-
ion and economy. Then, we submitted two articles to the system
and analyzed the five recommended articles. The results are in Ta-
ble 2. First, our results show that our model tends to recommend
articles from the same subject about half the time in our samples
(13 out of 25 articles). We see strong links between the most recom-
mended articles and submitted articles. For instance, in the world
sample, we see both articles are about the COVID-19 pandemic
and that the last article is related to Trump. In the recommended
articles, we received a complete list of COVID-19 and the fourth
recommendation about Trump as well. Moreover, in the culture
sample, we see that the last submitted article is about a TV show
named "Occupation Double" and the first recommendation is about
the same TV show "OD" as well as the fourth recommendation.

ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil Jean-Philippe Corbeil and Florent Daudens

Figure 4: Implementation on our website of the recommendation box "VOS RECOMMANDATIONS" on the right.

Table 1: Top-5 results for each model sorted by MRR.

Model Embedding
size

Batch size Negative
samples

MRR P@5 Training
time (s)

CNN 32 2048 300 0.693 0.133 134
LSTM 64 1024 300 0.693 0.133 172
LSTM 64 2048 300 0.693 0.133 157
LSTM 64 512 300 0.691 0.133 219
CNN 64 2048 300 0.690 0.132 156
CNN 32 1024 300 0.690 0.132 154

MixtureLSTM 32 512 300 0.689 0.131 549
LSTM 64 512 200 0.687 0.131 159
LSTM 64 2048 200 0.687 0.123 108
CNN 64 2048 200 0.687 0.131 107

MixtureLSTM 64 512 200 0.687 0.122 614
CNN 64 4096 100 0.684 0.132 54

MixtureLSTM 32 1024 200 0.682 0.130 350
MixtureLSTM 32 512 200 0.680 0.128 381
MixtureLSTM 64 512 100 0.677 0.125 334

Pooling 64 512 300 0.478 0.131 211
Pooling 64 1024 300 0.478 0.133 167
Pooling 64 2048 300 0.477 0.133 155
Pooling 64 2048 200 0.476 0.132 106
Pooling 64 1024 100 0.476 0.132 65

Second, it is also interesting that not all articles are from the same
subject, which gives some serendipity to our recommendations.
From our observations with our website, we noted that the model
tends to use a good recommendation strategy by recommending a
list of articles mixing top-viewed ones and subject-related ones.

4.4 Traffic benchmark
We developed a script that repeatedly sends to the serving VM
real user identification numbers to benchmark the maximum traffic

Deploying a Cost-Effective and Production-Ready Recommender System ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil

Table 2: Five fake user tests done on May 20th, 2020. We send two submitted articles as a fake list of previously read articles
to our recommender system. Then, we receive five recommended articles. The names of the articles are in french.

Subject Submitted articles Recommended articles Section Result

Economy 1. L’intelligence artificielle au
service du transport de con-
teneurs

1. La COVID-19 fera fléchir les prix im-
mobiliers

Economy

2. Forte baisse des ventes de
maisons au Québec

2. Situation préoccupante pour les mé-
nages très endettés

Economy

3. Une deuxième vague «inévitable» au
Canada, disent les experts

Society 3/5

4. Masque sanitaire et burqa: une insulte
à l’intelligence

Opinion

5. Refroidissement immobilier Economy

Culture 1. Décès de la comédienne
Michelle Rosignol

1. Après OD, la vie Culture

2. Occupation double: rattrapé
par la réalité des beaux senti-
ments

2. Emmener Google au théâtre, et vice
versa

Culture

3. F1: Lawrence Stroll met la barre haute
pour Aston Martin dès 2021

World 3/5

4. Aimer résister à Occupation double Culture
5. Les mots de l’année (6/6): «Fake
news», les vraies fausses nouvelles

Society

World 1. Quel est le bilan véritable de
la pandémie de COVID-19?

1. Coronavirus: un «mini-Schengen» se
prépare en Europe pendant que d’autres
pays se referment

World

2. Un président qui défie la sci-
ence

2. Le masque non médical protège-t-il
celui qui le porte?

Society

3. Interdit ou pas avec le déconfine-
ment?

Society 2/5

4. L’«incompétence» de Pékin a provo-
qué une «tuerie de masse mondiale»,
selon Trump

World

5. Les libéraux n’ont pas respecté leurs
promesses, accuse Blanchet

Politics

Opinion 1. L’éclatant succès de Taïwan 1. Quel est le bilan véritable de la
pandémie de COVID-19?

World

2. Élèves abandonnés, parents
épuisés

2. Le masque non médical protège-t-il
celui qui le porte?

Society

3. D’égal à égal, le Québec, 40 ans plus
tard?

Opinion 2/5

4. Tout est affaire de décor pendant le
confinement

Society

5. Référendum 1980 – l’étrange cam-
pagne de sécurisation

Opinion

Politics 1. Une nouvelle aide fédéral
pour les PME

1. Interdit ou pas avec le déconfine-
ment?

Society

2. Le Québec déplore 51 nou-
veaux décès dus à la COVID-19

2. Pincez-moi, Docteur Horacio, je
rêve. . .

Opinion

3. Feu vert pour la réouverture des com-
merces à Montréal

Politics 3/5

4. Trois artères de Rosemont-La Petite
Patrie fermées aux voitures

Politics

5. La frontière entre le Canada et les
États-Unis reste fermée jusqu’au 21 juin

Politics

ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil Jean-Philippe Corbeil and Florent Daudens

Figure 5: Example of our custom dashboard’s user interface
in french. It is the current state tab ("état actuel") on our rec-
ommender system. We see our six navigation tabs: current
state, performances, model, execution settings, embedding
space viewer and model testing interface. In the first box be-
low our navigation, we have two indicators about the train-
ing status (last training status and model reloading status).
In the bottom, we have two CTR histograms that help us vi-
sualize the current A/B testing result with their T-test values
below — these are the results of our traffic benchmark (see
Section 4.4).

Figure 6: Distribution of MRR for our 1D CNN model, mea-
sured fromMay 26th, 2020, toMay 28th, 2020, across 22 train-
ing sessions. We took this Figure from our dashboard (per-
formances tab) on May 28th, 2020.

supported by our current configuration. With each received recom-
mendation list, we made a rule-based decision process to simulate
the click rate. If the recommendations come from the model (model),
we click on any recommendation with a probability of 1/2. If we
recommended using the top-viewed articles in the last 30 minutes
(top), we would click on any recommendation with a probability of
1/4. We fixed the number of readers per second at 3 with a pool of
2000 readers. The fake A/B testing results are on our dashboard’s
current state tab in Figure 5 — with very high significative results.
The CTR distributions are very close to our rule-based decision pro-
cess. We also measure the time elapsed between sending the request
and receiving the response, which we displayed in the histogram
of Figure 9. We see that our recommendations are made in three
seconds on average, which is okay since we feed our recommen-
dations box asynchronously. Knowing that our articles’ average
reading time is close to one minute, we have the time to fill the box
with recommendations since it appears half-way. We also looked
at the correlation between the order in which we sent the requests
and the time lapses, and we can report correlation of less than 0.05.
Since our morning peak hour has about 2.5 readers per second,
our current configuration is ready to feed our website in real-time.
Compared to Garcin et al. [5], which had a response of 30 ms with
a Java EE architecture, we note that our system is slow. We argue
that this is due to our serving VM in Python, serving with Flask
through gunicorn — known to be slower than Java. We also have
deep learning models served on CPU — which is a specific design
choice. Since we are meeting all constraints, we leave the service
response time optimizations to future works.

5 LIMITATIONS AND FUTUREWORKS
In our case study, many aspects have limitations and need further
improvements. We have short-term recommendations for the limi-
tations of the recommendations, small grid-search optimization, the
offline performance metrics (MRR and P@5), and the cold-start is-
sue. We chose to work on short-term recommendations to improve
the scalability of our system. We will make further developments
in the future to include long-term recommendations by adding a
content-based approach. We limited our approach to a small grid
search to optimize our models’ hyperparameters. We chose a small
set of values for each hyperparameter to train the models in a rea-
sonable amount of time based on insights from our pre-experiments.
We obtained good results, and we hope that other researchers will
try their approaches on our released dataset to push our state-of-
the-art. While the combination of both MRR and P@5 is relevant,
the first is limited to measure the appearance of the first relevant
item in the list, while the second is the proportion of relevant items
in the whole list. Since we chose these metrics because of our cur-
rent lack of specific relevance measurements, we plan on extracting
the reading time of articles from Matomo to compute the relevance
of our article for a given reader as recommendations. Then, we will
compute the NDCG@5, which is a better metric to evaluate our
offline performance. Finally, we also face the cold-start issue that
we did not address directly. Nevertheless, we design the recommen-
dation box to appear only in the article because of our short-term
recommendations. Therefore, readers coming for the first time on
our website will still get recommendations when they visit articles.

Deploying a Cost-Effective and Production-Ready Recommender System ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil

(a) May 20th 2020. (b) May 26th 2020.

Figure 7: Embedding projection of our article embeddings taken from our custom dashboard (embeddings tab) projected in 3
dimensions with TSNE and colored for 5 main sections of our website: world, politics, culture, opinion and economy.

Figure 8: Example of our fake-user test on our custom dash-
board — done on May 20th, 2020. We use the first dropdown
list to filter articles by subject, which has a pre-assigned
colour (e.g. red for politics). With the second dropdown, we
can select the articles consulted by the fake user. The result
is a list of five recommended articles displayed with subject
colours at the bottom.

We also have limitations with our embedding space study and
fake-user test study. Their main limitation is their generalization.
However, we argue that both studies are complementary and in-
sightful in their results, indicating the learning of both relevant
embeddings and relevant recommendations. We also demonstrated
the same observations in the embedding space for both May 20th,
2020, and May 26th, 2020.

6 CONCLUSION
To conclude, we presented a case study about our cost-effective
and production-ready deep news recommender system architecture
with open-source and cloud technologies. We designed it — with

Figure 9: Histogram of time lapses before receiving recom-
mendations. This traffic simulation is done with 2000 read-
ers and a rate of 3 readers per second.

two virtual machines (serving VM and training VM) and with a limi-
tation on the number of days — to meet our cost, scalability, training
time and serving time constraints. With a grid-search approach, we
found that the optimal model was the 1D CNN performing with an
MRR of 0.693 and a P@5 of 0.133 in only 134 seconds. We release an
anonymized version of our dataset to promote the reproducibility of
our results. In our architecture, the model is trained from scratch in
many training sessions wisely distributed according to our website
traffic. We estimated this strategy to save around 80% of our total
cost for the recommender system, which is less than 4$US per day.
Compared to commercial solutions costing thousands of dollars
per month, this percentage rises close to 98 %. We also evaluated
our systems with two more studies. Using our custom monitoring
dashboard, we observed a high relevance of our embeddings and
recommendations based on two complementary qualitative studies:
the embedding space study and the fake-user test study. Finally, we

ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil Jean-Philippe Corbeil and Florent Daudens

demonstrated the readiness of our system with a traffic simulation.
We hope our affordable and robust design inspires other online me-
dia companies to consider developing their recommender systems
to be competitive in the digital news market.

REFERENCES
[1] Kevin G Barnhurst. 2011. The new “media affect” and the crisis of representation

for political communication. The International Journal of Press/Politics 16, 4 (2011),
573–593.

[2] Harold S Black. 1953. Modulation theory. van Nostrand.
[3] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks

for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[4] Marc Edge. 2014. Newspapers’ Annual Reports Show Chains Profitable. Newspa-
per Research Journal 35, 4 (2014).

[5] Florent Garcin and Boi Faltings. 2013. Pen recsys: A personalized news rec-
ommender systems framework. In Proceedings of the 2013 International News
Recommender Systems Workshop and Challenge. 3–9.

[6] Florent Garcin, Boi Faltings, Olivier Donatsch, Ayar Alazzawi, Christophe Bruttin,
and Amr Huber. 2014. Offline and online evaluation of news recommender
systems at swissinfo.ch. In Proceedings of the 8th ACMConference on Recommender
systems. 169–176.

[7] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[8] Plotly Technologies Inc. 2015. Collaborative data science. Montreal, QC. https:
//plot.ly

[9] Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex
Graves, and Koray Kavukcuoglu. 2016. Neural machine translation in linear time.
arXiv preprint arXiv:1610.10099 (2016).

[10] Mozhgan Karimi, Dietmar Jannach, and Michael Jugovac. 2018. News recom-
mender systems–Survey and roads ahead. Information Processing & Management
54, 6 (2018), 1203–1227.

[11] Maciej Kula. 2017. Mixture-of-tastes models for representing users with diverse
interests. arXiv preprint arXiv:1711.08379 (2017).

[12] Maciej Kula. 2017. Spotlight. https://github.com/maciejkula/spotlight.
[13] Azi Lev-On. 2012. Communication, community, crisis: Mapping uses and grati-

fications in the contemporary media environment. New Media & Society 14, 1
(2012), 98–116.

[14] Jiahui Liu, Peter Dolan, and Elin Rønby Pedersen. 2010. Personalized news
recommendation based on click behavior. In Proceedings of the 15th international
conference on Intelligent user interfaces. 31–40.

[15] Stephan A Miller. 2012. Piwik web analytics essentials. Packt Publishing Ltd.
[16] Itishree Mohallick and Özlem Özgöbek. 2017. Exploring privacy concerns in

news recommender systems. In Proceedings of the International Conference on
Web Intelligence. 1054–1061.

[17] HarryNyquist. 1928. Certain topics in telegraph transmission theory. Transactions
of the American Institute of Electrical Engineers 47, 2 (1928), 617–644.

[18] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.
2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499
(2016).

[19] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch. NIPS 2017 Workshop Autodiff (2017).

[20] Alper Sarikaya, Michael Correll, Lyn Bartram, Melanie Tory, and Danyel Fisher.
2018. What do we talk about when we talk about dashboards? IEEE transactions
on visualization and computer graphics 25, 1 (2018), 682–692.

[21] Paul Starr. 2012. An unexpected crisis: The news media in postindustrial democ-
racies. The International Journal of Press/Politics 17, 2 (2012), 234–242.

[22] Jason Weston, Samy Bengio, and Nicolas Usunier. 2011. Wsabie: Scaling up to
large vocabulary image annotation. In Twenty-Second International Joint Confer-
ence on Artificial Intelligence.

[23] Dwayne Winseck. 2010. Financialization and the “crisis of the media”: The
rise and fall of (some) media conglomerates in Canada. Canadian Journal of
Communication 35, 3 (2010).

[24] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based rec-
ommender system: A survey and new perspectives. ACM Computing Surveys
(CSUR) 52, 1 (2019), 1–38.

https://plot.ly
https://plot.ly
https://github.com/maciejkula/spotlight

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Architecture
	3.2 Design considerations
	3.3 Data analytics
	3.4 Data pipeline
	3.5 Models
	3.6 Model dumping
	3.7 Continuous Integration and Continuous Deployment Pipeline
	3.8 Online validation strategy
	3.9 System monitoring

	4 Results
	4.1 Offline Model validation
	4.2 Analysis of article embedding's quality
	4.3 Analysis of fake-reader recommendations
	4.4 Traffic benchmark

	5 Limitations and Future Works
	6 Conclusion
	References

