
Recommending Accommodation Filters with Online Learning
Lucas Bernardi

lucas.bernardi@booking.com

Booking.com

Amsterdam, The Netherlands

Pablo Estevez

pablo.estevez@booking.com

Booking.com

Amsterdam, The Netherlands

Matias Eidis

matias.eidis@booking.com

Booking.com

Amsterdam, The Netherlands

Eqbal Osama

eqbal.osama@booking.com

Booking.com

Amsterdam, The Netherlands

ABSTRACT
Online Accommodations Platforms match guests searching for ac-

commodation with hospitality service providers. A fundamental

characteristic of efficient platforms is the ability to satisfy the needs

and preferences of the guests. To achieve this goal, a common

search tool is the Results Filtering capability which allows users to

refine query results with explicit criteria. However, as supply grows

and diversifies, more filtering options become available, reaching

hundreds of different criteria for one query, and making it hard

for customers to find the ones that are relevant to them. In this

work we present the implementation of an Accommodation Filters

Recommender System addressing this issue. The problem poses

several challenges around recommendations feedback, user experi-

ence constraints, and non stationarity among others. We provide

an end-to-end description of the System, discuss implementation is-

sues and provide techniques to address them including a large scale

distributed online learning architecture. The solution was validated

through several Online Controlled Experiments performed in Book-

ing.com, a top Online Travel Agency serving millions of daily users,

showing statistically significant results on various user behaviour

metrics indicating a strong positive effect on User Engagement.

CCS CONCEPTS
• Applied computing→ Online shopping; E-commerce infras-
tructure; • Information systems→Collaborative filtering;Con-
tent ranking; Search interfaces.

KEYWORDS
recommender systems, online machine learning, information filter-

ing, distributed systems

Reference Format:
Lucas Bernardi, Pablo Estevez, Matias Eidis, and Eqbal Osama. 2020. Rec-

ommending Accommodation Filters with Online Learning. In 3rd Workshop
on Online Recommender Systems and User Modeling (ORSUM 2020), in con-
junction with the 14th ACM Conference on Recommender Systems, September
25th, 2020, Virtual Event, Brazil.

ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil
Copyright© 2020 for this paper by its authors. Use permitted under Creative Commons

License Attribution 4.0 International (CC BY 4.0).

1 INTRODUCTION
With the advent of e-commerce, customers have access to a broad

supply when searching for an item to purchase, which brings many

benefits, but also choice and information overload [10]. The preva-

lence of these issues in tourism has been highlighted in [18] and

[20]. [8] gives an extensive revision of the literature on this topic.

Given this context, the ability to apply filters such as Pet Friendly
Hotels or Breakfast Included is an important tool benefiting all par-

ties, helping users to browse a large supply of options as well as

accommodation suppliers to better market their services and also

the platform, by eliciting explicit guests preferences which can be

used to further personalize the user experience, potentially increas-

ing the probability of a purchase. On the other hand, the constant

growth of available filters due to supply diversification (such as

vacation rentals) and the increase of product details available to

use as filtering criteria, defeats the very purpose of this tool. This

motivates the need of filter recommendations that allow users to

refine their query without scanning a long list of options. These

recommendations can be displayed for example, on the side of the

Search Results Page as a quick access shortlist of filters before the

full list of options. In this paper we describe a Recommender Sys-

tem for the case of Accommodation Filters. The problem poses

several common challenges like Large Scale, Continuous Cold Start

[2] and Sparsity among others. Previous work has addressed some

of these issues in similar scenarios (e.g. [9] [11] [16] and [3]), but

our setting deviates from them and the standard Recommender

Systems or Information Retrieval settings, mainly because the item

space, the filters, are not what users are interested in, but a means

to find accommodations that fit their preferences. This brings sev-

eral uncommon challenges around feedback and user experience

consistency. Our work focuses on the design of an integral system

considering all the intricacies of a full recommender system relying

on well established and effective techniques, putting focus on their

composition into a fully functional system that allows us to exper-

iment with different approaches. The contributions of this work

are:

• A thorough description of a Recommender System success-

fully deployed in Booking.com helping millions of new users

daily to browse millions of accommodations options

• An architecture for Online Recommender Systems capable

of producing a clean, well-formed and reliable data stream,

suitable for incremental learning.

ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil Bernardi, et al.

• An algorithm-agnostic architecture for Large Scale Distributed

Online Learning

• Online Controlled Experiments that demonstrate the effec-

tiveness of our approach at improving the shopping experi-

ence through more effective filtering actions

The paper is organized as follows: Section 2 presents the problem,

main challenges and related work. Section 3 describes the solution

framework. Section 4 details the system architecture while Section

5 focuses on a Machine Learning Model as implemented in Book-

ing.com. Section 6 reports experiments on their website and Section

7 concludes.

2 PROBLEM STATEMENT AND RELATED
WORK

Our goal is to construct a system that recommends Accommoda-

tion Filters maximizing the utility users get from them with the

following requirements: ability to quickly on-board new filters un-

der specific User Experience Guidelines, in particular, browsing

consistency; it must scale to hundreds of millions of daily users and

thousands of filters; it must be available at all times, globally, with

latency < 100ms . The problem poses many challenges, we highlight

three of them that we consider of particular relevance and strongly

influenced the design of our architecture.

User Feedback: Implicit, Delayed and Split. We elicit Filter Utility

from implicit signals based on user behaviour such as applying

a filter, clicking on an accommodation to see further details, or

completing a reservation. Several characteristics of these signals

make learning from them challenging. First, the feedback is delayed

with delays ranging from minutes to days, and since the negative

feedback can only be implicitly assumed by the lack of positive

feedback after certain time elapsed, it is necessary to model the

delay (at least in principle), this has been studied by [5] and more

recently by [12] and references therein. Delayed Feedback requires

to keep track of the state of each impression which at the scale of

large e-commerce platforms is an engineering challenge. Another

issue is the Split Feedback Problem: in the classic recommender

system setting, the feedback indicates both the degree of satisfaction

of a specific item, and which item is receiving such feedback. In

our case, these two pieces of information are split; first we observe

that the user applied a filter, but only later, when and if the user

clicks through or completes a transaction we observe the utility.

To the best of our knowledge this problem has not been explicitly

addressed by the relevant literature.

User Experience Consistency. Filter recommendations impose cer-

tain consistency constraints. In principle, it is critical that the rec-

ommendations don’t flicker with each page load, but there are some

nuances since in some situations the system must return the same
recommendations (e.g. right after the user applied a filter), but in

other situations the system can return new recommendations (e.g.

when the query dates change), and in others the systemmust return
new recommendations (e.g. when the destination changes). Which

variables trigger a new recommendation is a design choice that

trades off User Experience Consistency with number of samples to

learn from. Related work like [7] focuses on recommendations con-

sistency under small deviations of the user profile while [15] studies

the effect of recommending the same items multiple times and fo-

cuses on the diversification-accuracy trade off. To our knowledge,

no previous work focused specifically on guaranteeing the system

is compliant with the User Experience Consistency constraints.

Non Stationarity. Stationarity is a rather strong assumption. For

example, the set of matching results after applying a filter depends

on the number of available rooms, which are constantly booked,

cancelled, and replenished. A filter giving very few results might

suddenly match many options, drastically affecting its utility. Ex-

periments in other areas such as the Ranking Algorithm or the

User Interface (UI) also affect filters utility. Last, new filters af-

fect the utility of other filters, for example, introducing a Family

Friendly Property filter, reduced the utility of Family related facili-

ties. Non Stationarity motivates exploration which introduces the

exploration-exploitation trade off. This has been largely studied by

the contextual-bandits literature in for example [14], [17] and more

recently by [22] and references therein.

All these issues (and others, omitted due to space limitations)

motivate the construction of a complex system that enables their

systematic treatment. As proposed in [4], we adopt the Online

Recommender System Setting that considers an event stream pro-

duced by user interactions, and relies on incremental algorithms.

The following sections describe the architecture including com-

ponents that produce a reliable data stream and components that

host general incremental algorithms at scale, highlighting how they

contribute to the solution of the Accommodation Filters Recom-

mendations.

3 SOLUTION FRAMEWORK
The main abstraction in our system is the Feedback Loop, which

models the interactions between the UI and our Recommender

System. In its simplest version a Feedback Loop is defined by the

following sequence:

(1) The UI requests recommendations (opens the loop).

(2) The System recommends filters based on the query, context

and filter features.

(3) The UI provides feedback (closes the loop).

(4) The System uses closed loops to update the model.

This simple framework captures the dynamic nature of the problem

providing flexibility to experiment with different ways to address

the aforementioned issues and abstracting away specific implemen-

tations. The Feedback Loop sequence needs to be extended in order

to address two issues. The first one is Censored Recommendations,
which occurs when filters are not seen by the user (e.g. because

they didn’t scroll enough) introducing ambiguity since the lack of

feedback might be caused by either dissatisfaction or by censor-

ship. To solve this issue we introduce another step in between 2

and 3: the exposure report, which notifies the System that a user

was exposed to a filter, indicating that lack of positive feedback

implies negative feedback. If no exposure report is received the

observation is not used for learning since the user never saw the

recommendation. The second issue, rather specific to our setting,

is Split Feedback which appears when the item and the level of

satisfaction are reported separately. For example if the user applies

a filter and then completes a reservation we would like to credit

that filter with positive feedback. But these two events are usually

Recommending Accommodation Filters with Online Learning ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil

separated by many other browsing events (clicking back and forth

the search results page), making it hard at reservation time to know

which filters where applied by the user, and therefore impossible to

send a feedback report. Another instance occurs when different UI

components know different pieces of the feedback. This is the case

of after filtering click-through: we would like to credit an applied

filter if it leads to a click on a details card. Which filter is applied is

known by the Search Engine but whether a click happens or not,

is known by the Details Page Service which has no information

about the applied filters. This is addressed by a technique that we

call Confirmable Feedback, which splits the feedback report (step

3): first, the user interface reports unconfirmed feedback as soon as

the filter is applied, indicating which item might be credited. The
System waits for confirmation before using it to learn. The user

interface sends the confirmation for example when a reservation

is made or a details page loaded, without the need to know which

filters were applied. As a result of a confirmation the loop is closed

and the system can learn from it. If no confirmation is sent (e.g.

the user applied a filter but no click or reservation happened), the

system ignores the unconfirmed feedback. Finally, if a confirmation

is received but not feedback was sent before, the confirmation is

ignored.

The main benefit of this framework is that the state of a loop

is maintained by the System, the UI is stateless and relies on four

simple primitives: open loop, report exposure, report feedback and

confirm feedback, requiring minimal interventions in the UI soft-

ware which is a key factor to successfully deploy the full system

into production.

4 ARCHITECTURE
The Architecture implements the Feedback Loops framework and

consists of two main components described below.

Instrumentation Layer. This component implements the full Feed-

back Loops sequence, it is used by the UI to integrate the recom-

mendations in the platform. Its first responsibility is serving rec-

ommendations requests using the Machine Learning Model (ML

Model) and providing User Experience Consistency guarantees.

User Experience Consistency presents a trade-off with sampling

efficiency which is addressed by a technique we call Contextual
Caching: the first time a specific user requests for recommenda-

tions, the ML Model is invoked, a new loop is initialized, and the

recommended filters stored in a cache together with the query,

context and filter features. Subsequent requests are served from

the cache, but if at least one feature included in the Refresh Trigger
Feature Set changes, the loop is finalized, the cache is invalidated,

and a new loop is initialized with a new request to the ML Model.

Notice that at most one loop is active for a given user at any point

in time, and that one loop encapsulates information about the set
of recommended filters. This approach allows us to control the

trade-off by specifying which features must trigger a loop reset.

The second responsibility is to produce a data stream based on the

interactions with the UI, suitable to train a ML Model in an online

fashion. The instrumentation layer maintains a state machine for

each loop consisting of all the feature values when the loop was

opened, which filters were recommended, which ones were actually

seen by the user, their expiration status, the feedback received so far,

etc. This state is updated as the UI reports exposure and feedback.

From this transitions a data stream is produced containing all the

information needed to train a machine learning model. This process

is very dependent on the way we handle Delayed Feedback. We

considered two approaches: Fully Delayed, where the state machine

waits for a fixed period before assuming negative feedback, and

Fake Negatives Calibration where the negative feedback is assumed

on exposure as described in [12]. In our experiments both methods

were effective showing no significant difference. We favored Fake

Negatives Calibration due to its robustness to changes in the delay

distribution.

The life-cycle of a loop is enforced prohibiting invalid state

transitions. This brings high robustness to chaotic UI interactions

(users refreshing pages, clicking copied links, multiple browser tabs,

etc.), guaranteeing a well formed stream of events that can be used

to train robust machine learning models in an online fashion.

Distributed Online Machine Learning. This component is respon-

sible for maintaining a model to recommend filters when requested

by the Instrumentation Layer and for updating it as soon as feed-

back is available. In order to handle high requests volume, we

distribute the model in a cluster, each node runs one model in-

stance serving a random sample of the recommendations requests

(sharding) while learning from the full feedback stream produced

by the Instrumentation Layer (replication), which is consumed from

a persistent message queue. The feedback is consumed in the order

it is produced, so although each node learns independently without

node-node interaction, all the models are exact replicas. To achieve

high availability, a special node saves checkpoints of the model to

a persistent storage. The checkpoint contains the serialized model,

learning state and a pointer to the last feedback message processed

in the queue. If a node fails, a new one is created which reads

the latest available version from the checkpoint and continues the

learning process from the corresponding point in the stream.

This design is agnostic from concrete learning algorithms. Spe-

cific implementations can be constructed with little attention to

fault tolerance, high availability and latency. This is an important

advantage when deploying models to production since it simplifies

algorithm development and debugging. Another important conse-

quence is that all changes have an immediate effect, accelerating

experimentation allowing us to quickly asses modeling techniques

such as the Refresh Trigger Feature Set, the Delayed Feedback

approach, etc. ultimately streamlining the iterative process.

5 MACHINE LEARNING MODEL
The model must select ~10 Filters out of ~20000 optimizing the total

Utility. The latency requirement is strict, if fulfilling a request takes

more than 100ms, it is canceled by the UI and no recommendations

are shown to the user. This limit involves all the steps including net-

work latency, Contextual Caching and Ranking. Because of this, we

favor simple, fast and scalable models, in particular we rely on the

library Vowpal Wabbit[13] embedded in an on-line process. We use

a point-wise model estimating the expected utility conditioned on

context, query and filter features. At recommendation time we rank

by the estimated expected utility modeled with logistic regression.

Most of the users are not logged-in while browsing, which means

user history is not available, therefore we rely on query, context and

ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil Bernardi, et al.

item features. Example Query Features are number of guests, des-

tination, number of children, anticipation, length of stay, traveler

type (couple, family, etc.); Contextual Features include temporal

and geographical attributes; and some item features are Category,

Id and Number of Matching Properties. The Refresh Trigger Feature
Set contains all the query features except anticipation plus all the

temporal features. Quadratic interaction features are created be-

tween the Filter and the Query and Context Features, keeping the

linear and independent terms. The full model with Fake Negatives

Calibration[12] is given by Equation 3, where r ∈ {0, 1} is the binary
output, f , q and c are the Filter, Query and Context feature vectors

with dimensions df ,dq and dc respectively. All the Greek letters

are model parameters. θ0 ∈ R is the global bias, θ ∈ Rdf , ω ∈ Rdq ,

ϕ ∈ Rdc are linear parameters, α ∈ Rdqxdf and β ∈ Rdcxdf are the

interaction weights of Query and Context with Filter features.

z (f ,q, c) = θ0 +

df∑
i

fiθi +

dq∑
i
qiωi +

dc∑
i
ciϕi

+

dq∑
i

df∑
j
qi fjαi j +

dc∑
i

df∑
j
ci fjβi j

(1)

b (f ,q, c) =
1

1 + e−z (f ,q,c)
(2)

p̂ (r = 1| f ,q, c) =
b (f ,q, c)

1 − b (f ,q, c)
(3)

The filter representation includes the unique id which allows

the model to learn the specifics of the particular filter option, the

number of matching options, which captures contextual utility (a

generally very useful filter in a context where it matches many

properties might be less useful) and the category (e.g. Facilities)

that captures general properties across filters in the same category,

which is effective to address the cold start problem: when a new fil-

ter is added, it inherits what is known about its category. In practice,

all the features except Number of Matching Properties are categor-

ical and are encoded using the hashing trick [21]. We estimated

about 8 millions features (including interactions), following [1] we

used a hashing space of 2
28

buckets which resulted in about 3% col-

lision rate. All parameters are learned through Stochastic Gradient

Descent with constant learning rate and Normalized Updates [19]

(Algorithm 1).

To address non stationarity, we rely on active exploration for

which we adopt the contextual ϵ-greedy algorithm [6] in which

a proportion ϵ of the recommendation requests (after Contextual

Caching) is served with random uniform recommendations (ex-

ploration), and the rest by choosing the best according to the es-

timations of the model (exploitation). Two small adaptations are

required for our case. First, since our system recommends many

items, the exploration branch is computed by sampling from a uni-

form distribution between 0 and 1 for each candidate filter, and

returning the top-k filters. The exploitation branch, simply sorts

the candidate filters by their estimated utility given the context and

query, and returns the top-k. Second, the model cannot be updated

right after the recommendations are made since the feedback is

delayed. We update the model independently from the recommen-

dations requests, as soon as the feedback is available. All weights

are initialized with zero and ties are broken randomly uniformly

(see Algorithm 1).

Algorithm 1 top-k Delayed Contextual ϵ-Greedy

ϵ : exploration factor

k : number of filters to recommend

c,q: context and query features

F : set of candidate filters
procedure recommendFilters(ϵ,k, c,q, F)

With probability ϵ : ▷ (explore)

for each filter Fi in F with features f do
scores[Fi]← sample from Uniform(0,1)

end for
or with probability 1 − ϵ : ▷ (exploit)

for each filter Fi in F with features f do
scores[Fi]← p̂ (r = 1| f ,q, c) ▷ as given by Eq. 3

end for
return topk(scores , k) ▷ (breaks ties uniformly)

end procedure
c,q: context and query features, f : rewarded filter, ro : observed
feedback

procedure onFeedbackAvailable(c, f ,q, ro)
Update p̂(r=1|c, q, f) with ro ▷ detailed update rule in

Algorithm 1 in [19])

end procedure

6 EXPERIMENTS
We performed several Online Controlled Experiments to validate

our approach. We highlight 2 where our model was used to feed

a quick filters section of the search results page of Booking.com.

50% of the traffic was exposed to the current baseline model, and

50% to our new model. Statistical significance was computed at 90%

confidence (two-sided) using g-test at a predefined time duration.

In these experiments we used click after filtering as feedback with

ϵ = 2%. The baseline is a popularity model based on the same

features with a thick layer of business logic on top, blacking out

some filters, up-ranking others, etc. It is based on years of data

on filter usage and it is updated manually at arbitrary moments.

It is considered a robust baseline since many attempts of using

more complex models failed in the past. The metrics of interest for

these experiments are: Overall Filter Usage (proportion of users

using at least one filter), Recommended Filter Usage (proportion of

users using at least one recommended filter), After Filtering Click

Through Rate (AFCTR, proportion of users filtering (any filter) and

landing on a property detail page), Recommended Filter Utility

(ratio between number of users applying a recommended filter and

number of users applying any filter). All these metrics indicate the

utility of the recommendations from the users point of view. In

particular, Recommended Filter Utility is a strong indicator since it

quantifies how easy is for customers to find a relevant filter.

First, an experiment was run for two weeks to validate the tech-

nical health of the system. The variance of the cluster was very

Recommending Accommodation Filters with Online Learning ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil

Figure 1: Logarithmic loss of model predictions. Figure 2: Prediction variance of replicas across 6 nodes.

Figure 3: Cumulative Uplift w.r.t. Baseline on After Filtering
CTR with 90% CIs

Figure 4: Weekly Uplift w.r.t. Baseline on After Filtering CTR
with 90% CIs

Table 1: Experiments results with 90% CIs. All statistical significant with p-value < 0.001.

Metric Uplift w.r.t. Baseline (%) Exp 1. After 2 weeks After 4 weeks Exp. 2 After 2 weeks After 4 weeks

Overall Filter Usage 0.26 ± 0.06 0.22 ± 0.04 0.19 ± 0.06 0.22 ± 0.03

Recommended Filter Usage 37.59 ± 0.1 40.85 ± 0.08 38.02 ± 0.1 32.98 ± 0.05

After Filtering CTR 0.19 ± 0.1 0.23 ± 0.08 0.30 ± 0.1 0.24 ± 0.05

Recommended Filter Utility 37.22 ± 0.1 40.53 ± 0.07 32.67 ± 0.1 37.75 ± 0.07

low, (median 8.2e-6, 99th percentile 0.0012) indicating that the mod-

els are indeed close replicas. Figure 2 shows the hourly average

for the first 2 weeks of the experiment. The peaks around hour

220 are due to one of the nodes lagging behind (due to uneven

resource allocation which is dynamic and not uniform across the

cluster), but quickly caught up. Themodel starts with all the weights

set to 0 (making random recommendations), so we measured the

time to learn reasonable recommendations defined as the moment

where the AFCTR matches the baseline (y=0 in Figure 3) which

was roughly 20 hours. This is evidence of the ability of the model

to effectively incorporate new filters and contexts since at the be-

ginning, all filters and features are new for the model. Logarithmic

ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil Bernardi, et al.

Table 2: Challenges and corresponding techniques applied in our system.

Problem Techniques

User Experience Consistency Contextual Caching

Delayed Feedback Fake Negatives Calibration [12]

Censored Recommendations Exposure Reports

Split Feedback Confirmable Feedback

Non Stationarity Online Learning and ϵ-greedy

Low Latency Sharded Inference, Replicated Learning

High Availability Replicated Learning, Redundant Checkpoints

Continuous Cold Start ϵ-greedy and Item Features

loss (Figure 1) showed a periodic pattern, likely following the gen-

eral probability of clicking after filtering during the day. The peaks

are likely due to changes in the environment. The general trend is

negative, suggesting that the system is able to adapt to changes. We

remark that many new filters were added while this experiment was

running, and some of them were consistently picked in the top 10.

Regarding the latency requirement, we observed a degradation in

total page load time of 15ms which is inline with the requirements.

We let the experiment run for two more weeks to make sure results

are stable.

In a second experiment we stress-test the adaptability of the

system by allowing automated traffic from scrapers and crawlers

for a few days during week 6 which completely changes the utility

of almost all filters (the proportion of automated traffic was signifi-

cant). The system degraded but after normalization of the traffic it

recovered, we interpret this as evidence of adaptability to changes

in the environment. This behaviour is depicted in Figure 4.

Results of both experiments are summarized in Table 1. From

these results we conclude that our system is able to make recom-

mendations that are useful for our customers and superior to the

ones by the baseline model. We also conclude that the system is

reliable, stable and robust, meeting all the requirements specified

in Section 2.

7 CONCLUSION
This work presented a Recommender System for Accommodation

Filters, a relevant problem for Booking.com and other e-commerce

platforms. Our solution features the implementation of well es-

tablished techniques for which practical aspects were discussed

in detail, and new ideas addressing several setting-specific prob-

lems. The Feedback Loops Framework and the Distributed Online

Learning Learning Architecture allowed us to address requirements

and trade-offs in a systematic way enabling a fast iterative process.

The effectiveness of our solution was demonstrated by Online Con-

trolled Experiments conducted in Booking.com, on millions of users

and accommodations options, showing clear positive effects on User

Engagement. Table 2 summarizes challenges and techniques ad-

dressing them. Looking forward, the presented system will allow us

to experiment with more advanced online learning algorithms such

as tree based models and more sophisticated exploration techniques

and to solve new and different business cases.

REFERENCES
[1] Lucas Bernardi. 2018. Don’t be tricked by the Hashing Trick. https://booking.ai/

dont-be-tricked-by-the-hashing-trick-192a6aae3087 Retrieved 2020-06-16.

[2] Lucas Bernardi, Jaap Kamps, Julia Kiseleva, and Melanie JI Müller. 2015. The

continuous cold start problem in e-commerce recommender systems. arXiv
preprint arXiv:1508.01177 (2015).

[3] Lucas Bernardi, Themistoklis Mavridis, and Pablo Estevez. 2019. 150 successful

machine learning models: 6 lessons learned at booking. com. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 1743–1751.

[4] Shiyu Chang, Yang Zhang, Jiliang Tang, Dawei Yin, Yi Chang, Mark A Hasegawa-

Johnson, and Thomas S Huang. 2017. Streaming recommender systems. In

Proceedings of the 26th International Conference on World Wide Web. 381–389.
[5] Olivier Chapelle. 2014. Modeling Delayed Feedback in Display Advertising.

In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and DataMining (New York, New York, USA) (KDD âĂŹ14). Association
for Computing Machinery, New York, NY, USA, 1097âĂŞ1105. https://doi.org/

10.1145/2623330.2623634

[6] David Cortes. 2018. Adapting multi-armed bandits policies to contextual bandits

scenarios. ArXiv abs/1811.04383 (2018).

[7] P. Cremonesi and R. Turrin. 2010. Controlling Consistency in Top-N Recom-

mender Systems. In 2010 IEEE International Conference on Data Mining Workshops.
919–926.

[8] Basak Denizci Guillet, Anna Mattila, and Lisa Gao. 2019. The effects of choice set

size and information filtering mechanisms on online hotel booking. International
Journal of Hospitality Management (2019), 102379.

[9] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine

Atallah, Ralf Herbrich, Stuart Bowers, et al. 2014. Practical lessons from predicting

clicks on ads at facebook. In Proceedings of the Eighth International Workshop on
Data Mining for Online Advertising. 1–9.

[10] Sheena S Iyengar and Mark R Lepper. 2000. When choice is demotivating: Can

one desire too much of a good thing? Journal of personality and social psychology
79, 6 (2000), 995.

[11] Rishabh Iyer, Nimit Acharya, Tanuja Bompada, Denis Charles, and Eren Man-

avoglu. 2018. A Unified Batch Online Learning Framework for Click Prediction.

arXiv preprint arXiv:1809.04673 (2018).
[12] Sofia Ira Ktena, Alykhan Tejani, Lucas Theis, Pranay Kumar Myana, Deepak

Dilipkumar, Ferenc Huszár, Steven Yoo, and Wenzhe Shi. 2019. Addressing

delayed feedback for continuous training with neural networks in CTR prediction.

In Proceedings of the 13th ACM Conference on Recommender Systems. 187–195.
[13] John Langford, Lihong Li, and Alex Strehl. 2007. Vowpal wabbit online learning

project. http://hunch.net/?p=309

[14] John Langford and Tong Zhang. 2007. The epoch-greedy algorithm for contextual

multi-armed bandits. In Proceedings of the 20th International Conference on Neural
Information Processing Systems. Citeseer, 817–824.

[15] Neal Lathia, Stephen Hailes, Licia Capra, and Xavier Amatriain. 2010. Temporal

diversity in recommender systems. In Proceedings of the 33rd international ACM
SIGIR conference on Research and development in information retrieval. 210–217.

[16] Cheng Li, Yue Lu, Qiaozhu Mei, Dong Wang, and Sandeep Pandey. 2015. Click-

through prediction for advertising in twitter timeline. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
1959–1968.

[17] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. 2010. A contextual-

bandit approach to personalized news article recommendation. In Proceedings of
the 19th international conference on World wide web. 661–670.

[18] Jeong-Yeol Park and SooCheong Shawn Jang. 2013. Confused by too many

choices? Choice overload in tourism. Tourism Management 35 (2013), 1–12.

https://booking.ai/dont-be-tricked-by-the-hashing-trick-192a6aae3087
https://booking.ai/dont-be-tricked-by-the-hashing-trick-192a6aae3087
https://doi.org/10.1145/2623330.2623634
https://doi.org/10.1145/2623330.2623634
http://hunch.net/?p=309

Recommending Accommodation Filters with Online Learning ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil

[19] Stéphane Ross, Paul Mineiro, and John Langford. 2013. Normalized online learn-

ing. arXiv preprint arXiv:1305.6646 (2013).
[20] Nguyen T Thai and Ulku Yuksel. 2017. What can tourists and travel advisors learn

from choice overload research? Consumer Behavior in Tourism and Hospitality
Research (2017), 1.

[21] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh

Attenberg. 2009. Feature hashing for large scale multitask learning. In Proceedings
of the 26th annual international conference on machine learning. 1113–1120.

[22] Qingyun Wu, Naveen Iyer, and Hongning Wang. 2018. Learning contextual

bandits in a non-stationary environment. In The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval. 495–504.

	Abstract
	1 Introduction
	2 Problem Statement and Related Work
	3 Solution Framework
	4 Architecture
	5 Machine Learning Model
	6 Experiments
	7 Conclusion
	References

