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ABSTRACT
Mobile gaming has become increasingly popular due to the grow-
ing usage of smartphones in day to day life. In recent years, this
advancement has led to an interest in the application of in-game
recommendation systems. However, the in-game recommendation
is more challenging than common recommendation scenarios, such
as e-commerce, for a number of reasons: (1) the player behavior and
context change at a fast pace, (2) only a few items (few-shot) can be
exposed, and (3) with an existing hand-crafted heuristic recommen-
dation, performing randomized explorations to collect data is not a
business choice that is preferred by game stakeholders. To that end,
we propose an end-to-end model called DFSNet (Debiasing Few-
Shot Network) that enables training an in-game recommender on
an imbalanced dataset that is biased by the existing heuristic policy.
We experimentally evaluate the performance of DFSNet both in
an offline setup on a validation dataset and online in a real-time
serving environment, illustrating the correctness and effectiveness
of the trained model.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies→ Neural networks.
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1 INTRODUCTION
As smartphones expand the gamingmarket [21], mobile gaming has
become a significant segment of the video game industry. Although
recommendation systems such as [12] and [25] are widely adopted
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in e-commerce, the integration with mobile games is a relatively
new area of research. Previous works have mostly focused on rec-
ommending game titles to potential players (e.g., [2], [13], [14], [23],
and [24]). A few recent works have also explored in-game recom-
mendation [3, 5, 8, 19], however, to the best of our knowledge the
large-scale and real-time recommendation of in-game items has
not reached its maturity in the industrial scenarios. One of the
common business models in modern mobile games is free-to-play
where the game can be played free of charge, and monetization oc-
curs through micro-transactions of additional content and in-game
items [1]. Therefore, in-game contents are continuously added to
the game, which may easily overwhelm the players, causing an in-
crease in churn probability. In-game item recommendation systems
help to alleviate this problem by ranking items and selecting the
ones that are more relevant to players in order to improve player
engagement.

In-game recommender systems utilize user interaction data that
describes historical behavior and current context of individual play-
ers to expose each player the right item at the right time. However,
despite a few in-game recommendation trials [3, 5, 8, 19] evaluated
mostly in an offline and batch fashion, there have not been many
successful industrial applications of online in-game recommenda-
tion systems. This is mainly attributed to three unique requirements
from mobile games:

(1) The recommendation is often calculated on remote servers
and delivered to game clients in near-real-time with low la-
tency (e.g., within the range of 100 milliseconds). Because of
the fast-evolving game dynamics, the behavior of players and
their context keep changing quickly; consequently, the rec-
ommendations (calculated from behavior and context data)
become outdated easily. As a result, the optimal solution
should continuously perform recommendation calculation
and always deliver up-to-date predictionwhen item exposure
is triggered. That is why the offline batch recommendation
might only provide a suboptimal average policy.

(2) In mobile games, the items to purchase or to play are usu-
ally carefully crafted by game designers. To avoid distract-
ing the players with an overloaded small mobile screen, i.e.
only a minimal subset (e.g. as small as one to three items,
hence termed few-shot) of those items is displayed at each
exposure occasion. Therefore, the players’ experience and
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(a) LiveOps (dynamic content) (b) Daily gifts

Figure 1: Examples of scenarios where item recommendation can be applied in CCS (1a) and CCSS (1b).

Figure 2: Illustration of collecting features and label for one player and one exposure trigger.

behavior will be more sensitive to recommendations than in
e-commerce applications where a large number of items can
be displayed at a time, leading to a stronger direct feedback
loop [18].

(3) The carefully designed in-game items are often exposed to
players following a pre-defined heuristic policy that contains
a set of hard-coded rules regulating the particular item(s) to
be exposed to player group(s) with certain attributes (e.g., IF
a player has wonmore than z games in a day, THEN show item
A instead of item B). The recommendationmodels largely fall
into two main categories: Supervised Learning [10] and Rein-
forcement Learning [7], both of which work only when item
exposure can be randomly explored. However, the existing
heuristic policy heavily biases the experience of the players
and hence the dataset, which makes it extremely difficult to
train an unbiased model directly. Collection of randomized
data is not often trivial. In many cases, stakeholders prefer
to continue working with reasonably good heuristics which
might not be optimal but avoid any potential business risks
caused by randomization.

Our literature survey (till the date when this paper is written)
shows that none of the related works [3, 5, 8, 19] managed to si-
multaneously address the three aforementioned challenges. The
contributions of this paper is threefold: (1) we propose a Debiasing
Few-Shot Network (DFSNet) that enables training an in-game item
recommender merely using heavily biased and imbalanced data, (2)
we discuss an approach to benchmark the trained DFSNet offline
and (3) we put the model live to recommend items in real-time,
and demonstrate how to monitor, evaluate, interpret, and iterate
on DFSNet in a controlled A/B test framework.

2 THE PROPOSED APPROACH
There are many scenarios where in-game recommendations could
be applied. In Figure 1, we exemplify a couple of examples for two
of the King1 games: Candy Crush Soda Saga (CCSS) and Candy
Crush Saga (CCS). We notice that some occasions allow only one
item (a.k.a. one-shot) to be exposed at a time such as Figure 1b,
while others (e.g., Figure 1a) can display a few more (a.k.a. few-shot)
items. Items can have no values specified as shown in these two
examples, or have values attached. To simplify the introduction of
our method and experiments, we use the one-shot setup where only
one item k with value vk can be recommended upon each trigger
of an exposure opportunity. We will show that our approach can be
easily applied to scenarios with few-shot exposure and items with
no values. The overall optimization objective is to maximize the
expected value of the potentially clicked items. In this section, we
present a walk-through of our debiasing few-shot recommendation
approach.

2.1 Features and Label
Each sample in the dataset corresponds to a complete item exposure
event triggered at time t for a player. As illustrated in Figure 2, we
calculate the player features, noted as x ∈ RD , using historical data
of the last N days before the time t . The D-dimensional features
fall into two categories: behavioral (e.g., the total number of game
rounds played) and contextual (e.g., the latest inventory status). In
addition, at time t , the exposed item k (following a heuristic policy)
is recorded. Within the time window that item k is exposed, we
log if the player eventually clicks on it or not, which is treated as a

1https://king.com
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Figure 3: The architecture of DFSNet (best viewed in color). In the example shown here, we set K , the number of items, to 5.

binary label y ∈ {0, 1}2. The raw dataset is extremely biased due to
the presence of the existing heuristic policy, and it is imbalanced
concerning the label and distribution of exposed item types.

2.2 The End-To-End Model: DFSNet
In this section, we propose to train a debiasing few-shot network,
DFSNet, to perform a few-shot in-game recommendation using
only the heavily biased and imbalanced dataset. The goal of DFSNet
is to rank K items where the k-th item has a value vk for a player
(that is represented by a D-dimensional feature vector x ∈ RD ), in
order to maximize the expected click value. As shown in Figure 3,
DFSNet consists of three modules: preference predictors, confidence
predictors, and meta ranking. The training is conducted in a mini-
batch fashion; the input is a matrix X = {x(m) }Mm=1 ∈ R

M×D ,
whereM is the number of samples in each mini-batch and D is the
number of features in each sample. For the sake of conciseness, we
use the general terms x andX to denote any sample and mini-batch,
respectively.

2.2.1 Preference Predictors. For a player x, the preference predic-
tor module (cf. the red dashed bounding box in Figure 3) predicts
the probability ŷk that player x will click item k if this item is ex-
posed. During training, the mini-batch X is firstly divided into K
subsets (noted asX1, . . . ,XK ), so that the k-th subsetXk ∈ R

Mk×D

only contains the Mk players that were exposed to the k-th item.
As a result, each item k has its own architectural branch, which
sequentially propagates Xk through a sample balancer and a prefer-
ence predictor, and eventually yields the click/non-click probability
Ŷk ∈ RMk×2.

Since the number of clicked items usually represents a small
fraction of the entire exposed item set, there are far more negative
samples (y=[1,0]) than the positive ones (y=[0,1]) in Xk . In many
recommendation methods such as [16, 20], positive and negative
samples are manually balanced by random sampling, and the rich

information embodied by negative samples is lost. We propose a
minority subsampling technique (cf. sample balancers in Figure 3)
to automatically balance Xk during training. We split Xk into two
sets X+k and X−k , where X

+
k contains all M+k positive samples, X−k

contains theM−k negative samples, andM+k ≪ M−k . We randomly
pick (without replacement) max (min(M+k ,M

−
k ), 1) samples from

X−k and put them in a set X̃−k . We construct the balanced mini-batch
subset X̃k by

X̃k = X+k ∪ X̃−k , where X̃k ∈ R
[max(min(M+k ,M

−
k ),1)+M

+
k ]×D . (1)

This minority subsampling balancer is conceptually similar to the
negative sampling in [22] that enforces each mini-batch to contain
only one positive sample; therefore, our approach results in a far
more balanced mini-batch. Similarly to negative sampling, in mi-
nority subsampling, Xk must contain at least one sample of the
minority class.

The output of the Sample Balancer from the k-th branch (i.e. X̃k
in Figure 3) is then fed to a preference predictor implemented with
a 4-layer Deep Neural Network (DNN) binary classifier. The ELU
(Exponential Linear Unit) activation function [9] is applied to all
hidden layers except the last one, which is a softmax layer with
two neurons. Dropout could be applied to avoid overfitting, yet we
choose to empirically scale the first three layers of the k-th DNN
proportionally (from a base architecture 32-16-8) to the exposure
ratio of the corresponding item:Mk/

∑K
k=1Mk . The loss to optimize

the preference predictor module, Lp , is formulated as

Lp =
1
2K

K∑
k=1



1
M̃k

M̃k∑
m=1

−y
(m)
k ∗ log

(
ŷ(m)
k

)1

, (2)

where “∗” represents the element-wise multiplication,
M̃k = max(min(M+k ,M

−
k ), 1) +M

+
k is the number of samples in X̃k ,

the notation y(m)
k is the label (one-hot encoded vector) of them-th
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sample in X̃k , and ŷ(m)
k is the predicted probability vector for the

same sample.

2.2.2 Confidence Predictors. To explicitly model the bias from the
pre-dominant heuristic, we introduce a confidence predictor module
(cf. the green dashed bounding box in Figure 3) to DFSNet. The
confidence predictors estimate the probability ck that player x has
recently been exposed to the item k . Thus, ĉk can be treated as an
approximation of the confidence we have for the predicted click
probability ŷk . Similar to preference predictors, this module also
employs K branches (for K items), each of which has a sample
balancer and a DNN binary classifier.

The mini-batch input X ∈ RM×d is fed into the sample balancer
of each branch indiscriminately. To prevent the confidence pre-
dictors from simply memorizing the heuristic rule and lose the
generalization capability, it is important to remove the features (if
any) that are used in heuristic policy, henceX’s second dimension d
may be smaller than the original dimension D. The sample balancer
in this module first divides X into two subsets Xk ∈ R

Mk×d and
X¬k ∈ R(M−Mk )×d , where Xk only contains Mk players exposed
to item k , and X¬k has the rest M −Mk samples. Due to the pre-
existing heuristic policy, the item exposure was not randomized,
making the size of Xk and X¬k imbalanced. To that end, we need a
sample balancer for each branch to produce a balanced mini-batch
Xk using

Xk =



X¬k ∪
(
X′k ∈ R

[max(M−Mk ,1)]×d
)
,Mk ≥ M −Mk

Xk ∪
(
X′
¬k ∈ R

[max(Mk ,1)]×d
)

,Mk < M −Mk
, (3)

where X′k and X′
¬k are obtained via minority subsampling (with-

out replacement); specifically, the former term contains max(M −
Mk , 1) samples randomly selected from Xk , and the latter contains
max(Mk , 1) randomly picked samples from X¬k .Mk denotes the
number of samples in Xk , hence Xk ∈ R

Mk×d .
Xk is then fed to a confidence predictor implemented in the same

way as in preference predictors except that each DNN is scaled
proportionally to factorMk/

∑K
k=1Mk . The loss Lc to optimize this

module has a similar form to Equation (2):

Lc =
1
2K

K∑
k=1



1
Mk

Mk∑
m=1

−c
(m)
k ∗ log

(
ĉ(m)
k

)1

, (4)

where c(m)
k ∈ {0, 1}2 is the constructed confidence label specifying

if them-th player/sample inXk actually saw itemm or not, and ĉ(m)
k

is the predicted confidence probability vector for the same sample.
The preference and confidence predictors are jointly optimized with
a total loss L = Lp + Lc .

2.2.3 Meta Ranking. During model serving/prediction, the sample
balancers will be omitted, meaning that the input X ∈ RM×D
(representingM players) will be directly fed to DNNs in all branches,
in order to simultaneously generate real-valued preference (Ŷ ∈
[0, 1]M×K×2) and confidence (Ĉ ∈ [0, 1]M×K×2) predictions. The
second values in the last dimension of Ŷ are the click probabilities,
while those of Ĉ are the confidence levels expressed as probabilities.
To simplify the discussion that follows, we will use ŷk and ĉk to
denote, respectively, the predicted click probability and confidence

level of item k for an individual player x. The meta ranking module
(cf. the right-most box in Figure 3) ranks items by calculating a
propensity score Rk for each item using three factors: ŷk , ĉk , and
vk ; the term vk is the value of item k , which is usually predefined.
We propose a piece-wise formula for computing Rk :

Rk =



vk
min(v) , (ĉk ≥

1
2 ) ∧ (ŷk ≥

1
2 )

ĉk · ŷk ·
vk

max(v) , otherwise
, (5)

where functions min(v) and max(v) respectively return the min-
imum and maximum element from vector v = [v1, . . . ,vK ]. Gen-
erally speaking, Rk is obtained by calibrating ŷk with ĉk and vk ,
so that random exploration data would not be mandatory (at least
initially). To the best of our knowledge, only [17] discussed the
possibility of removing item position bias using an adversarial net-
work, yet our approach manages to deal with much stronger item
exposure bias using a more explainable strategy; and explainabil-
ity is valued highly in industrial environments [11]. If vk is not
available (Figure 1b and 1a), we can adapt Equation (5) to

Rk =



ŷk , (ĉk ≥
1
2 ) ∧ (ŷk ≥

1
2 )

ĉk · ŷk , otherwise
. (6)

We can conveniently assume that K items are already sorted by
their values v, hence the propensity scores R = [R1, . . . ,RK ] are
also sorted accordingly. An overly drastic change of item exposure
(e.g. a player who used to see item 1 according to the heuristic
which suddenly gets item K from a newly deployed recommender
system) may undermine the player experience and game ecosystem.
To avoid that situation, it is a good practice to enforce a heuristic
deviation threshold (noted as ks ∈ {1, . . . ,K − 1}) in the online
production environment. Specifically, we mask Rk with

R̃k =



0 , |kh − k | > ks

Rk , otherwise
, (7)

where kh is the item from the pre-existing heuristic policy. With
R̃ = [R̃1, . . . , R̃K ], both one-shot and few-shot in-game recommen-
dation are possible. When recommending items based on R̃, we can
sometimes choose to apply ϵ-greedy to slowly accumulate more
diversified data for follow-up model iterations.

3 EXPERIMENTATION AND EVALUATION
We apply DFSNet to a real-time item recommendation scenario for
the CCSS game. There is a total of five items (K=5) in this scenario,
yet only one item k can be shown on the mobile screen when the
player triggers the exposure event. The item k has a valuevk . Items
are sorted by value in an ascending order, i.e., v1 < v2 < v3 < v4 <
v5. If a player clicks on the exposed item k , a valuevk will be added
to the game ecosystem; and we choose to maximize the value of
the clicked item. The details of the concrete use case and items are
considered to be sensitive proprietary information and therefore
anonymized in this paper.

As illustrated in Figure 4, the raw dataset is collected (cf. Sec-
tion 2.1) using a Flink2 based stateful streaming platform [6]. The
collected dataset contains approximately 22 million samples, each
of which has D = 48 features. We apply different transformations

2https://flink.apache.org
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Figure 4: High-level system topology of offline model development and online model serving.

(e.g., min-max, z-score, and logarithmic) to numerical features and
perform either one-hot encoding or embedding to categorical fea-
tures. The dataset pre-processing and model development is carried
out on a machine learning platform developed by King.

We will present both offline (training and evaluation) and online
(serving and monitoring) evaluation of DFSNet in the following
sections. DFSNet is implemented in Tensorflow3; the preference and
confidence DNNs are scaled as depicted in Figure 3. The training
is carried out with Adam optimizer [15], using 70,000 steps and a
mini-batch size of 2,048. The learning rate is initialized to 5 × 10−3,
and then it exponentially decays to 2 × 10−6. During serving, we
set ks = 2 in Equation 7 to obtain one single item to recommend.

3.1 Offline Performance: Model Training and
Validation

To perform offline model evaluation, we create a validation dataset
(noted as U = {x(u ) }Uu=1) by randomly selecting 1% data from the
raw dataset (thusU ≈ 0.22 million), and use the rest for training.

3.1.1 Generalization evolvement during training. We evaluate the
performance of the current model on the validation dataset during
the training. Since the datasets are highly imbalanced, accuracy is
not an informative metric to monitor during training. We also find
that recall and precision are having a hard time competingwith each
other (showing no clear trend) during the training, hence not ideal
for monitoring the training performance. AUC-ROC (Area Under
the Curve of Receiver Operating Characteristics), on the other hand,
is a stable metric that reliably tells how much the model is capable
of distinguishing between classes; therefore, the evolution of per-
item AUC-ROCs (see Figure 5) indicates how the generalization
ability of the model improves during the training process. At the
end of the training, we also measure the recall and precision for
each item, which are visualized as red bars in Figure 12.

3.1.2 Policy change quantization: heuristic vs. DFSNet. We use the
trained DFSNet to obtain predictions on the validation dataset. We
first measure the overall change of item exposure distribution. The
results are reported in Figure 6a. In our experiment, we observed no
significant change in item allocation for players due to the strong
confidence constraint imposed, yet there is a slight shift towards
the higher-valued items. The ratio of players that see a different
item (than heuristic) is about 7.4%. To decompose the policy change,

3https://www.tensorflow.org

we illustrate, in Figure 6b, a Policy Transition Matrix (PTM), where
each cell at position (i, j) indicates the ratio of players who were
supposed to get item j, according to heuristic policy, but are now
exposed to item i according to DFSNet. It can be seen that the
diagonal has the majority of the unchanged exposures, and each
row largely follows a truncated normal distribution.

3.1.3 Distribution of preference and confidence predictions. For
each sample in the validation dataset, DFSNet produces ten proba-
bilities: five click probabilities (ŷ1 to ŷ5) and five confidence prob-
abilities (ĉ1 to ĉ5). Figure 7 visualizes ŷk and ĉk jointly to answer
four questions:

(1) Does ŷk reflect the low click ratio of item k? The five red
area plots on the diagonal are the distributions of ŷk , all of
which show that clicking tends to be a rare event.

(2) Does ĉk match the exposure ratio of item k? The five green
bar plots on the diagonal represent the distributions of ĉk ;
the majority of exposures come from item 1, which coincides
with the heuristic item exposure distribution in Figure 6a.

(3) Does ŷk show general item preference? The lower triangu-
lar portion has pair-wise scatter plots of click probabilities.
Each data point in the plot for item i and j has a coordinate
of (ŷi , ŷj ), thus if the point is below the line of ŷi=ŷj , the
corresponding player prefers item i over j , and vice versa. To
examine the general trend, we fit linear models (red straight
lines going through the original points) for pair-wise plots.
We observe that in average, players prefer items with lower
values.

(4) Can DFSNet be confident with multiple items for the same
player? The upper triangular portion in Figure 7 contains
pair-wise scatter plots of confidence probabilities ĉk . Every
point in the plot for item i and j is located at (ĉi , ĉ j ). In-
tuitively, implied by Equation (5), the points (representing
players) in the green shaded areas are likely eligible to more
than one item.

3.1.4 Best-effort estimation of recall, precision, and uplifts. On the
offline validation dataset U ∈ RU×D , it is impossible to measure
the “quality” of a recommendation that is different than what was
actually exposed; hence, a sub-optimal solution is to create a subset
(fromU) containing only the players for whom both DFSNet and the
heuristic policy recommended the same item. We use U′ ∈ RU ′×D
(U ′ < U ) to denote that subset. On that subset, we measure per-
item recall and precision for preference predictors (cf. the red
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(a) Item 1 (b) Item 2 (c) Item 3 (d) Item 4 (e) Item 5 (f) ROC for all items

(g) Item 1 (h) Item 2 (i) Item 3 (j) Item 4 (k) Item 5 (l) ROC for all items

Figure 5: Training performance of confidence predictors (a-f) and preference predictors (g-l). (a-e),(g-k) The AUC of ROC
measured on the validation dataset for each item during training. (f),(l) The item ROCs on the validation dataset at the end of
the training.

(a) Comparison of item distribution. (b) PTM.

Figure 6: Comparison of heuristic and DFSNet policy on the validation dataset: (6a) overall item exposure distribution and (6b)
policy transition matrix (PTM). Each row in PTM adds up to 1.0.

bars in Figure 12). To provide uplift baselines of average click rate
( #_clicked_items#_items ) and click value ( total_value_of_clicked_items#_clicked_items ), we
calculate both metrics for both the heuristic and DFSNet policies.
The results are presented in Table 1. Offline uplifts will be then
compared with the ones obtained during online model serving (cf.
Section 3.2.3).

3.2 Online Performance: Real-Time Serving
and Monitoring

After the DFSNet model is trained and validated in an offline envi-
ronment, it is then deployed in a Tensorflow Serving4 cluster. As
illustrated in Figure 4, a prediction client (sharing the entire feature
collection logic described in Section 2.1) is also deployed on the
streaming cluster. To validate the online performance of the DFSNet
model, we run an A/B test on a small fraction of players on CCSS.

4https://www.tensorflow.org/tfx/guide/serving

For each game player in the test group, the prediction client makes
a request to the DFSNet prediction service (in real-time) as soon
as any pre-defined triggering event emerges. In the life cycle of a
real-time recommendation system, it is often required to iterate on
the model serving periodically (cf. Figure 8 for an example of two
serving iterations) to incorporate bug fixes or new models trained
on more recent data.

During online serving, we track several metrics (aggregated
into temporal windows of 5 minutes) to monitor the key system
performance, some examples of which include model response
time, model exceptions, and model raw output distribution. The
definition of those system metrics remains the same for different
recommendation models. These metrics are indicators of the system
health, and therefore, they play a critical role in the validity of
the model. To monitor model performance, we log all features,
predictions, and labels in a BigQuery5 database, and visualize them
5https://cloud.google.com/bigquery
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Figure 7: The visualization of preference (red plots) and confidence (green plots) predictions.

Table 1: The estimated click rate and value obtained from the validation dataset. For the DFSNet policy, if item k (with a
predicted click probability ŷk ) is ranked highest, and if ŷk > 0.5, we assume the player will click the recommended item k ,
generating a value vk .

Metrics (obtained on validation dataset) Heuristic Policy DFSNet Policy Uplift (%)
Average click rate 0.1022 0.1312 28 %
Average click value 1.52 1.92 26 %

in a dashboard that is updated on hourly basis. We will hereafter
emphasize our online evaluation on several key perspectives, all of
which are adapted from the monitoring dashboard.

3.2.1 Heuristic deviation trend. The foremost questions to answer
about model performance are twofold: (1) what the scale of the
model impact is and (2) how this impact evolves along the timeline.
To answer these two questions, we illustrate the overall heuristic
deviation trend of two adjacent model serving iterations in Figure 8,

where the red curve shows the ratio of players (in the DFSNet A/B
test group) for which DFSNet and the heuristic policy recommended
different items. As reported in Section 3.1.2, this ratio is approxi-
mately 7.4% (represented by a straight green line) when measured
on the offline validation dataset. So, the expectation is that the
ratio of impact should reach around 7.4%; this trend can be clearly
seen in each model serving iteration. However, some input features
need individual players to respond to certain game components,
which takes about three days in the use case discussed here; and
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Figure 8: The ratio of players that see different items from the heuristic policy: a span of 27 days containing twomodel serving
iterations.

items are served using the heuristic policy to players that still have
incomplete features. As a result, for each model serving iteration,
the ratio always starts from a fairly low point before reaching 7.4%.
Furthermore, between two subsequent iterations, the ratio drops,
in this use case, for three days while rebuilding features before
picking up the ascending trend again. We believe that the daily
monitoring of the heuristic deviation trend helps tracking the scale
of the model impact effectively.

3.2.2 Player Transition Matrix (PTM). To have a better insight of
the underlying changes contributing to the overall model impact,
we break down the impact analysis further using PTMs. Here, a PTM
is a 2D matrix that puts players into each grid cell according to how
their experience changed from the default heuristic policy (rows)
to the model policy (columns). Figure 9 summarizes the results over
a period of 14 days since Day11 (cf. Figure 8) and illustrates four
different PTMs (a-d) that enable model impact decomposition from
four different perspectives:

(a) Grid cell (i, j ) denotes the number of players that are now
exposed to the item i but would have originally got item j.
The gray-scale background of Figure 9a is also used in (c)
and (d).

(b) Calculated by dividing each number in (a) by the sum of the
corresponding row. It should have the highest ratio values
on the diagonal, as obtained in the offline evaluation and
reported in Figure 6b. Because the presence of incomplete
features leads to a policy fallback (to the heuristic, as men-
tioned in Section 3.2.1), the results presented in Figure 9b
are more conservative than those shown in Figure 6b.

(c) To inspect how the moved players impact the click prob-
ability on PTM, we calculate the click percentage (of item
i) for the player cohort in each grid cell, and then over-
lay the percentage values on top of Figure 9a’s gray-scale
background, resulting in Figure 9c. The blue values in the
diagonal cells are the click percentage for the control group.
Each off-diagonal cell (i, j )i,j contains the players that are
moved from cell (j, j ) to cell (i, i ). Intuitively, we expect the
model to guarantee the click percentage in (i, j )i,j to be
larger than either percentage values in cell (i, i ) or (j, j ); we
use red boxes to highlight the cells that fail to satisfy that

expectation. In practice, it is acceptable to have a few red
boxes as long as most of the densely populated cells satisfy
the expectation.

(d) The PTM in Figure 9d principally serves the same purpose
as Figure 9c except that it computes the average click value
of item i instead.

Based on the PTM analysis, we expect to see an improvement in
the user engagement with the examined game feature compared
to using the heuristic solution. Further analysis of the PTM can
help us to understand better user behaviors. In our analysis, we
used an eight-dimensional space to describe players behavior. Fig-
ure 10 shows different user behavioral patterns (in the form of radar
charts) on top of the grayscale background from Figure 9a. The
KPI calculation and the actual values are considered to be sensitive
proprietary data and therefore removed from the charts.

3.2.3 Uplifts of click ratio, count, and value. The previous sections
presented a drill-down process of analyzing the model behavior
in comparison with the heuristic policy. We now zoom out and
compare the item click dynamics with the control group. We choose
to focus on the accumulated 14-day uplift of three metrics: click
count, click ratio, and click value (these metrics are defined in
Section 3.1.4). The online uplift is computed by subtracting the
metrics (normalized by the population size of A/B test groups) of
the control group from the ones of the DFSNet group. Hence, uplift
can have both positive and negative values. All uplift values are
considered sensitive proprietary data and therefore scaled.

Figure 11a shows that DFSNet group is losing clicking counts
on items 1 and 4 while gaining more click counts on other items;
therefore, the players moved away from those buckets are mostly
item clickers, and they bring more absolute click counts for items 2,
3, and 5. However, the click ratio of item 5 is reversed in Figure 11b,
which is a consequence of the lower click ratio in the player cohort
moved to item 5. Figure 11c shows the uplift of accumulated click
value for each item. We observe that the loss of click value (from
items 1 and 4) is compensated by the increased click value for items
2, 3, and 5, leading to a net positive value uplift (approximately
+0.71% over the control group). As a result, the offline uplift esti-
mations (Table 1) are overly optimistic compared to that measured
online.
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(a) Number of players “moved” from j to i . (b) Ratio version of (a): each row sums to 1.

(c) Click percentage of item i for players who should see item j ac-
cording to the heuristic.

(d) Average click value of item i for players who should see item j
according to the heuristic.

Figure 9: The player transition matrices: each grid cell at coordinate (i, j ) indicates (9a-9b) the volume, (9c) average click ratio,
and (9d) average click value for players who would have been exposed to item j according to the heuristic policy and got
recommended item i fromDFSNet. The blue numbers along the diagonal in 9c, 9d denote the corresponding statistics obtained
from the control group in A/B test.

3.2.4 Iterating on the DFSNet model. The dataset used to train DF-
SNet is highly biased due to the pre-existing heuristic rules. Our
approach achieves debiasing by incorporating confidence predic-
tors, thus demonstrating a mild impact of less than 8% (cf. Figure 8).
Nonetheless, that impact continuously changes the players’ experi-
ences, which nudges the input feature distributions around. This
creates a direct feedback loop, which gradually compromises the gen-
eralization and discriminative capability of the model being served.
It is a form of analysis debt [18], in which it becomes increasingly
difficult to predict the behavior of a given model before it is released.
Iterating the model periodically using more recently collected data
can reduce the intensity of the feedback loop. However, we need a
metric to determine the time to train a new model. Accuracy is not
an option since the logged data is heavily imbalanced (click event
is rare), and we care more about correctly predicting the clicking
events. Practically, AUC-ROC (cf. Section 3.1) and response distri-
bution charts [4] can also be used to monitor the feedback loop,
yet they are not as sensitive as precision and recall. We propose to
monitor the precision and recall of preference predictors (i.e., the
green bars in Figure 12) to identify the “right” moment for model
iteration.

In Figure 12, the red bars represent the precision and recall
estimated using a subset of the validation dataset (as explained
in Section 3.1.4), while the green bars in Figure 12a and 12b are
respectively precision and recall calculated 14 days after the model
got deployed (a snapshot on Day24 in Figure 8). We observe that
online precision and recall reachmuch higher values than the offline

reference initially, hence we argue that the offline evaluation tends
to underestimate the true values of precision and recall. Figure 12c
and 12d reflect the situation four days later. The trend is clear:
in four days, both precision and recall have declined significantly;
when the majority of green bars go under the red bars, it is probably
the time to retrain/finetune the DFSNet using fresher data.

4 CONCLUSION AND PERSPECTIVES
In-game recommendation aims to enable providing more relevant
items to each player. The in-game recommendation use cases usu-
ally allow exposing only a few items at a time; thus, change in
the choice of items can have a large impact on game dynamics
leading to a short feedback loop. In addition, player preferences
change quickly due to the change in the game dynamics and player
context. As a result, the model gets outdated sooner in real-time
prediction. In-game item exposures are mostly dominated by some
hand-crafted heuristics, which heavily bias the data, and random-
ized exploration to train an unbiased recommendation model is
usually not favored by stakeholders. We propose DFSNet that en-
ables training an unbiased few-shot recommender using only the
biased and imbalanced data.

During training, AUC-ROC is a stable indicator of themodelâĂŹs
generalization ability. We demonstrate several ways to estimate the
model performance offline on a validation dataset. We also evalu-
ate the online DFSNet performance in an A/B test. We start with
monitoring the overall model impact by looking at the heuristic de-
viation trend. Then, we further decompose the model impact using
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Figure 10: The overlay of player behavioral features (in an eight dimensional space visualized in radar charts) over the policy
transition matrix; each player dimension is calculated over a period of the past N days and then rescaled to the range of [0,1].

(a) Uplift of click counts. (b) Uplift of click ratio. (c) Uplift of click value.

Figure 11: The accumulative scaled uplift (DFSNet over control A/B test group) of (11a) click count, (11b) click ratio, and (11c)
click value per exposed item type.

PTMs. We carried out data analysis to understand user behaviors
and discern the key factors causing players to be exposed to a differ-
ent item than the heuristic recommendation. This work proposes
a solution to address the problem of bias and imbalanced data in
the domain of in-game recommender systems. We suggest offline

and proxy metrics as a way to have an estimate of model online
performance. We discuss and showcase the challenges of an online
solution in an A/B test. The comparison between the control and
DFSNet test groups show a net +0.71% uplift of click value, which is
less optimistic than the best-effort offline estimation. We show that
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(a) Precision of click prediction up till Day24. (b) Recall of click prediction up till Day24.

(c) Precision of click prediction up till Day28. (d) Recall of click prediction up till Day28.

Figure 12: The online precision and recall of DFSNet preference predictions compared to the offline best-effort estimates.

continuous comparison of offline and online precision/recall can
help determine the appropriate time to retrain the model. Further
analysis is required before putting the proposed solution live. In
the scenario presented in this paper, we chose the click-through
rate as one of the evaluation metrics, which is widely adopted in
e-commerce. However, this metric might not be a good proxy for
business metrics for an in-game recommender system. Future work
will explore the choice of metrics that constitute a better proxy of
the model’s online performance.

In addition, future work includes (1) designing long-term labels
that better approximate the business targets, (2) explicitly modeling
the interactions between different in-game features to eliminate
the implicit feedback loop, and (3) replacing model iteration with
online reinforcement learning approaches.
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