
Loss Functions for Clustering in Multi-instance Learning

Marek Dědič1,2, Tomáš Pevný3, Lukáš Bajer2, Martin Holeňa4

1 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, Prague, Czech Republic
2 Cisco Systems, Inc., Karlovo náměstı́ 10, Prague, Czech Republic

3 Faculty of Electrical Engineering, Czech Technical University in Prague, Karlovo náměstí 13, Prague, Czech Republic
4 Institute of Computer Science, Czech Academy of Sciences, Pod vodárenskou věží 2, Prague, Czech Republic

Abstract: Multi-instance learning belongs to one of re-
cently fast developing areas of machine learning. It is a su-
pervised learning method and this paper reports research
into its unsupervised counterpart, multi-instance cluster-
ing. Whereas traditional clustering clusters points, multi-
instance clustering clusters bags, i.e. multisets of points or
of other kinds of objects. The paper focuses on the problem
of loss functions for clustering. Three sophisticated loss
functions used for clustering of points, contrastive predic-
tive coding, triplet loss and magnet loss, are elaborated for
multi-instance clustering. Finally, they are compared on 18
benchmark datasets, as well as on a real-world dataset.

1 Introduction

Multi-instance learning (MIL) belongs to recently fast de-
veloping areas of machine learning. Though it is a super-
vised learning method, this paper addresses its application
to unsupervised learning – clustering. Whereas traditional
clustering is one of points, multi-instance clustering clus-
ters multisets of points, also known as bags. Such a group-
ing of the points into bags is considered a property of the
problem at hand and therefore sourced from the input data.

While there have been some previous attempts at multi-
instance clustering, they use pairwise relations between all
points in all bags, quickly becoming unwieldy and compu-
tationally infeasible. Our work uses multi-instance learn-
ing as a general toolkit for learning representations of bags
and then clusters the bags using those representations. This
builds on previous works by the authors and enables clus-
tering of arbitrary data-structures by expressing them as
hierarchies of multi-instance problems and then using the
internal structure to better solve the problems at hand.

Multi-instance clustering is evaluated in Section 4 in
the application domain of computer and network security.
While this is only one of many possible applications of
MIL due to its general expressive power for structured data,
it is the domain of choice for the authors. Here, MIL is
used to represent user activity as a bag of network con-
nections for each user in a fixed time window. For clus-
tering, this enables detection of compromised users based
on their complex behaviours. Clustering opens a new win-
dow of opportunity here by e.g. grouping servers with sim-
ilar behaviour together, allowing a human analyst to boost

Copyright ©2020 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

their work significantly by deciding about whole clusters
of servers instead of each one individually.

A key prerequisite for the application of multi-instance
learning to clustering is that loss functions for clustering,
originally proposed for points, are adapted for bags. In this
paper, such an adaptation is outlined for three sophisticated
loss functions: contrastive predictive coding, triplet loss
and magnet loss.

Of the three proposed methods, triplet loss and magnet
loss utilize some labels as part of the training process and
so are not truly unsupervised. As such, the authors expect
them to outperform the method based on contrastive pre-
dictive coding, which on the other hand is the most promis-
ing and innovative approach from the theoretical point of
view.

In the next section, basic properties of multi-instance
learning and clustering are briefly introduced. The adapta-
tion of the three considered loss functions is explained in
Section 3. A comprehensive comparison of them is then
presented in Section 4.

2 Multi-instance Learning and Clustering

Multi-instance learning (MIL) was first described by [7].
In its original form, it was developed and used for su-
pervised learning. Some prior art also exists for unsu-
pervised learning, such as [5, 31], however, it uses pair-
wise instance distances as a basis for clustering, which
doesn’t properly utilize the inherent structure of the data
and quickly becomes computationally infeasible.

The MIL paradigm is a type of representation learning
on data which has some internal structure. Therefore, it
views a sample as a bag (i.e. a multiset) of an arbitrary
number of objects. The basic elements of MIL are sam-
ples from a space X and their corresponding labels from a
spaceY (a space of classes). Compared to usual supervised
learning, MIL replaces individual instances with bags of
instances from the space X such that every instance in X
belongs to at least one bag from the bag-space B.

[7] provides an example of a multi-instance problem
where each bag represents a key chain with some keys (in-
stances). To solve the problem of finding which key opens
a particular lock, a “proxy” MIL problem is presented – de-
termining which key chain opens that particular lock. This
line of thinking leads to the pivotal definition of the label
of a bag as being positive iff the bag contains at least one

positive instance. In later works such as [23], this interpre-
tation of MIL is abandoned in favor of a more general one.
An instance is no longer viewed as having a meaning in and
of itself, but only in the context of its bag. The notion of
an instance-level label is dropped because in this interpre-
tation, the bag is the atomic unit of interest. To this end,
the embedded-space paradigm, described in Section 2.2, is
used.

2.1 A probabilistic formulation of multi-instance
learning

A probabilistic way of describing multi-instance learning
was first introduced in [23] and builds on the previous work
[19].

Let for the space X exist a measurable space (X ,A),
where A is a σ-algebra on X . Let PX denote the set of
all probability measures on (X ,A). A bag B is viewed as
a random sample with replacement of a random variable
governed by a particular probability distribution pB ∈ PX ,
that is

B = {xi|xi ∼ pB , i ∈ {1, . . . ,m}} where m ∈ N. (1)

2.2 Embedded-space paradigm for solving
multi-instance problems

While it is possible to use several approaches to solv-
ing multi-instance problems, in this work, the embedded-
space paradigm was used. For an overview of the other
paradigms, see [6].

In the embedded space paradigm, labels are only defined
on the level of bags. In order for these bag labels to be
learned, an embedding function of the form φ : B → X̄
must be defined, where X̄ is a latent space, which may or
may not be identical to X . Using this function, each bag
can be represented by an object φ (B) ∈ X̄ , which makes it
possible to use any off-the-shelf supervised learning algo-
rithm acting on X̄ . Among the simplest embedding func-
tions are, e.g. element-wise minimum, maximum, and
mean. A more complicated embedding function may for
example apply a neural network to each instance of the bag
and subsequently pool the instances using one of the afore-
mentioned functions.

Specifically to the experiments presented in Section 4,
[22] present an approach to learning to classify HTTP traf-
fic by utilizing sets of URLs. Neural networks are used
to transform both instance-level and bag-level representa-
tions. The model is as follows: A neural network fI :
X1 → X2 is used to transform instances, followed by an
aggregation function

g : BX2
→ X̄1.

Finally, a second deep neural network fB : X̄1 → X̄2 is
used to transform the representation of each bag. Combin-
ing these functions gives the embedding function

φ (B) = fB (g ({fI (x)|x ∈ B})) .

The functions fI and fB are realized by a deep neural net-
work using ReLU as its activation function. The aggrega-
tion g is realized as an element-wise mean or maximum of
all the vectors.

The structure of the data is highly exploited using the
embedded-space paradigm. The approach uses multiple
layers of MIL nested in each other – the instances of a
bag do not necessarily need to be feature vectors, but can
be bag in themselves. The HTTP traffic of a particular
client is therefore represented as a bag of all second-level
domains the client has exchanged datagrams with. Each
second-level domain is then represented as a bag of indi-
vidual URLs which the client has connected to. Individual
URLs are then split into 3 parts, domain, path and query,
and each part is represented as a bag of tokens, which can
then be broken down even further. In the end, the model
consists of 5 nested MIL problems.

A benefit of MIL is also its easy use for explainability
and interpretability. The authors of [22] present a way to
extract indicators of compromise and explain the decision
using the learned MIL model.

2.3 Clustering
Clustering is a prime example of a problem typically asso-
ciated with unsupervised learning. The problem at hand,
however, is not one of clustering ordinary number vectors
in a linear space. Instead, a clustering of objects repre-
sented by bags is explored, as that is the problem solved for
datasets introduced later in Section 4. While [28] present a
clustering of bags using a modified Hausdorff distance on
bags and [17] present a clustering using maximum mean
discrepancy, a different approach to clustering of bags is
used in this work. Among the main reasons for this choice
is the prohibitively high computational complexity of the
previously mentioned approaches on large datasets and the
possibility of utilizing the representations previously intro-
duced in [22].

An approach based on the embedded-space paradigm for
MIL was chosen. In order to utilize the structure of the
data, a MIL model is used to represent each bag in the la-
tent space X̄ . This presents the issue of how to train the em-
bedding function φ, because its learning in standard MIL
is supervised.

The embedding function φ can be actually written as
φ = φ (B,θ) where B ∈ B and θ are the parameters of the
embedding, typically learned during the training phase. In
the context of clustering, these parameters still need to be
learned over some kind of training. This itself presents an-
other challenge though – off-the-shelf algorithms typically
work in some constant Hilbert space, whereas the latent
space needs to change over the learning period. As is the
case for MIL itself, end-to-end learning is used. A cluster-
loss function LC : B → R is chosen and used to express
the actual loss for the embedding model φ and its parame-
ters θ as

L (φ,θ) = LC ({φ (B,θ)|B ∈ B}) . (2)

If the cluster-loss LC is chosen correctly, minimizing L
over the learning period will yield a latent space X̄ in which
the bags are already naturally clustered according to the
design of the cluster-loss function. Applying any off-the-
shelf clustering algorithm on X̄ will then give good results.
How to choose the cluster-loss function LC is the focus of
Section 3.

2.4 Clustering evaluation metrics

In our research, several clustering evaluation metrics have
been used. The primary metrics are based on the Silhou-
ette coefficient, the secondary ones on the kNN algorithm.
The metrics are somewhat different to the ones traditionally
used in evaluating clustering methods as all the datasets
used in this work are originally classification datasets and
therefore have classes available. Each class can then be
viewed as a cluster target and the learned clustering evalu-
ated against these targets.

The first two metrics measure the homogeneity of clus-
ters (that is the property of instances of one cluster being
close to one another) and their separation (that is the prop-
erty of instances of different clusters being far apart), see
[9]. To measure the non-homogeneity of a cluster, the av-
erage distance between items in a cluster is measured and
averaged over all clusters, giving the following metric for
items xj in clusters Ci:

nonhomo (C1, . . . , Cn) =
1

n

n∑
i=1

∑
xj∈Ci

‖xj − µ (Ci)‖ ,

where
µ (Ci) =

1

|Ci|
∑

xj∈Ci

xj ,

with |Ci| being the number of instances in the bag Ci.
To measure the separation of clusters, the average dis-

tance between cluster centres was taken:

sep (C1, . . . , Cn) =
2

n (n− 1)

∑
i,j∈n̂
i<j

‖µ (Ci)− µ (Cj)‖ .

The final primary metric is the Silhouette coefficient:

silhouette (C1, . . . , Cn) =
sep (C1, . . . , Cn)

nonhomo (C1, . . . , Cn)
. (3)

For the secondary metrics, the kNN algorithm in the rep-
resentation space is used and its accuracy measured. While
the primary metric measures the quality of the clustering
in general, this metric focuses on the utility of the learned
representation to a specific and useful task - classification.
The training data of the kNN classifier is chosen randomly
and is in this work referred to as seed data to avoid confu-
sion with the data used to train the embedding. The value
of k = 3 was chosen by experimental evaluation. This
gives an insight into the robustness of the clustering, as

high-quality embeddings would need only a small amount
of seed data points to reach relatively high accuracy. For
this measure, the kNN algorithm was run thrice and the re-
sults averaged to compensate for high dependence on the
particular seed points chosen.

3 Investigated Loss Functions

In Section 2.4, a method for learning a representationφwas
described. In order to learn the parameters of the represen-
tation, a clustering-loss function is required in the form

LC : PM
(
X̄
)
→ R.

In this section, three ways of constructing such a clustering-
loss function are explored. First, an unsupervised method
constructing a clustering loss-function is presented, fol-
lowed by two supervised methods.

3.1 Contrastive Predictive Coding

Contrastive predictive coding (CPC) is a technique first
introduced by [21]. The method builds the model on the
ideas from predictive coding [8]. CPC represents time se-
ries by modelling future data from the past. To this end, the
model learns high-level representations of the data and dis-
cards noise. The further in the future the model predicts,
the less shared information is available and thus the global
structure needs to be inferred better.

The core concept taken from CPC is a loss function
called InfoNCE in the prior art. Given a time series of
values xt, an autoregressive model produces a context ct
from all xi up to the point t. For a training set X, predicted
future value xt+k, the current context ct, and a model fk,
the InfoNCE loss is defined as

− EX

log fk (xt+k, ct)− log
∑
xj∈X

fk (xj , ct)

 .

Optimizing this value will result in fk modelling the den-
sity ratio

fk (xt+k, ct) ∝
p (xt+k|ct)
p (xt+k)

and therefore in maximizing the mutual information be-
tween xt+k and ct.

The actual application to MIL is based on the following
idea. If a bag is split into two parts, it is reasonable to ex-
pect that the representations of these two parts would be
close to one another. On the other hand, if a random bag
were to be drawn from the data (as a simple random sample
with replacement), it is reasonable to expect it to be rela-
tively far from any actual bag present in the data. These as-
sumptions can be proven correct by using the probabilistic
formalism for MIL (see Subsection 2.1). Given that each
bag Bk is viewed as a set of realizations of a probability
distribution Pk ∈ PX , it follows that the two parts of the

bag, B(1)
k and B

(2)
k , are sets of realizations from the same

distribution Pk and therefore should be statistically indis-
tinguishable. On the other hand, a randomly sampled bag
B′

j does not share the same probability distribution. Us-
ing these assumptions, the following clustering loss is con-
structed:

LCPC = log
∥∥∥φ(B(1)

k

)
− φ

(
B

(2)
k

)∥∥∥2
− log

K∑
j=1

∥∥∥φ(B(1)
k

)
− φ

(
B′

j

)∥∥∥2 .
where the value K ∈ N is a hyper-parameter of this
method. The first term of the loss function depicts the
notion that the representations of the two parts of the bag
should be close to one another and corresponds to the first
term of InfoNCE, which maximizes the prediction of a
matching future sample from the current context. The sec-
ond term depicts the notion that a random bag should be
far from all the bags1 and corresponds to the second term
of InfoNCE, which minimizes the prediction of a random
sample from the current context. Choosing to only use the
first part of the bag in the second term has no effect as the
two parts are chosen randomly.

This method can be further modified to make it less com-
putationally complex. In order not to have to draw a lot of
random bags, it can be reasonably expected that, on aver-
age, the representations of two parts of two mismatched
bags B(1)

k1
and B

(2)
k2

should be far apart. A matrix D is con-
structed as

Dij =
∥∥∥φ(B(1)

i

)
− φ

(
B

(2)
j

)∥∥∥2 . (4)

The distances of the corresponding halves are found on the
diagonal of D, whereas the distances of mismatched halves
are in the rest of the matrix. Under this assumption the final
loss for the CPC method is

LCPC =
1

n

n∑
i=1

log (Dii)− log
n∑

j=1
j 6=i

Dij

 , (5)

where n is the number of bags.
Out of the three methods presented in this section, the

approach based on contrastive predictive coding seems the
most promising, as it is the only unsupervised method and
could therefore be used in a broader class of applications.
This, however, also has its drawbacks – unsupervised meth-
ods are generally harder to learn correctly. For that reason,
the two supervised methods were selected as a safer option.

3.2 Triplet Loss

The performance of the k-nearest neighbour algorithm de-
pends heavily on the distance metric used. Typically, the

1On the off-chance a random bag would be close to B
(1)
k , this would

be outweighed by the other terms.

Euclidean distance is used. However, ideally, the metric
should adapt to the problem at hand. [29] present a way to
learn a Mahalanobis distance for kNN such that it has the
homogeneity and separation properties of clustering. This
distance, the description of which follows, has been uti-
lized in this work as the basis for the desired loss function
LC .

Let {(xi, yi)}ni=1 be a training dataset with xi ∈ Rd and
yi discrete class labels. In the original work, the goal is to
learn a linear transformation

L : Rd → Rd.

This linear transformation is then used to compute squared
distances as

D (xi,xj) = ‖L (xi − xj)‖2 .

A helper matrix y is used such that

yij =

{
0 for yi 6= yj

1 for yi = yj
.

In addition to this, for each input xi, k target neighbours
are defined that are supposed to be close to xi. Euclidean
distance may be used to find the target neighbours. A ma-
trix η is used to indicate target neighbours where ηij = 1
if xj is a target neighbour of xi and 0 else.

The cost function features two competing terms. The
first term depicts the notion that an input should be close
to its target neighbours. The second term depicts the no-
tion that inputs of a different class should be far from one
another. The loss is of the form

n∑
i,j=1

ηij ‖L (xi − xj)‖2 + c

n∑
i,j,l=1

ηij (1− yil)

max
(
0, 1 + ‖L (xi − xj)‖2 − ‖L (xi − xl)‖2

)
,

where c > 0 is a hyper-parameter of this method.
To adapt the original method, the definitions need to be

modified to leverage the bagging of the data. The matrix y
is defined in the same way, only with labels on the level of
bags. The value ηij = 1 iff the bag Bj is a target neigh-
bour for the bag Bi. Then, using the matrix D defined in
equation 4 directly instead of the linear transformation, the
loss function can be expressed as

Ltriplet =
∑
ij

ηijDij+

+c
∑
ijl

ηij (1− yil)max (0, 1 +Dij −Dil) , (6)

where c > 0 is again a hyper-parameter of the method.
Although [29] suggest finding η as the k-nearest neigh-
bours of a data point, the loss has been simplified by setting
ηij = yij for i, j = 1, . . . , n in this work, making all the
neighbours of a cluster its target neighbours.

3.3 Magnet Loss

Magnet loss is an enhancement of the previously described
triplet loss, first introduced by [26]. Whereas the triplet
loss function essentially goes over all triplets of a data
point, its target neighbour and a point from a different class
and optimizes their distances, magnet loss maintains an
explicit model of the distributions of different classes in
the representation space. To capture the distributions, the
model uses simple clustering models for each class. Dif-
ferently to triplet loss, for which the target neighbourhood
is set a priori and is based on similarity in the original in-
put space, magnet loss uses similarity in the space of rep-
resentations and updates it periodically. Magnet loss also
pursues local separation instead of global – representations
of different classes should be separated, but can be inter-
leaved.

Let {(xi, yi)}ni=1 be a training dataset where xi ∈ Rd

and yi are one of C discrete class labels. A general param-
eterized map f (·; Θ) embeds the inputs into a representa-
tion space:

ri = f (xi; Θ) .

For each class c, K cluster assignments are obtained with
the K-means++ algorithm [18, 2] where K ∈ N is a hyper-
parameter of the method:

Ic
1, . . . , Ic

K = arg min
Ic
1 ,...,I

c
K

K∑
k=1

∑
r∈Ic

k

∥∥∥∥∥∥r − 1

|Ick|
∑
s∈Ic

k

s

∥∥∥∥∥∥
2

.

The centre of each cluster is denoted µc
k:

µc
k =

1

|Ic
k|
∑
r∈Ic

k

r.

For each input, the centre of the cluster in which its repre-
sentation falls is denoted as

µi = arg min
µc

k

‖ri − µc
k‖

and the squared distance of its representation from the cen-
tre of the cluster is denoted as

Ni = ‖ri − µi‖2 .

The variance of the distance of the representations from
their respective centres can then be calculated as

σ2 =
1

n− 1

n∑
i=1

Ni.

For ri, the dissimilarity to all the inputs of different classes
is calculated as

Mi =
∑
c 6=yi

K∑
k=1

exp
(
− 1

2σ2
‖ri − µc

k‖
2

)
.

The magnet loss is then defined as

Lmagnet =
1

n

n∑
i=1

max

(
0, 1 + log

exp
(
− 1

2σ2Ni − α
)

Mi

)
,

(7)
where α ∈ R is a hyper-parameter of the method. Since
the method standardizes both of the terms of the innermost
fraction by σ2, α is the desired cluster separation gap ex-
pressed in the units of the variance.

The magnet loss is taken almost verbatim from the orig-
inal article. The only change needed is a different way to
obtain the representation space by taking

ri = φ (Bi) .

In this usage, yi is the class label assigned to the bag Bi

(making magnet loss a supervised method) and n is the
number of bags in the dataset.

Due to the choice of the hyper-parameter K being non-
obvious for most problems, alternative clustering meth-
ods that would not need hyper-parameter tuning were ex-
plored. One such method, self-tuning spectral clustering
[30] was implemented as a replacement for the K-means al-
gorithm used in the original method. Section 4.3 presents
a comparison of the performance of these two methods.

Since magnet loss is an enhancement of triplet loss, it
is reasonable to assume it would perform the same or bet-
ter than triplet loss. One drawback of magnet loss is the
higher number of hyper-parameters which need to be tuned
in order for the method to work correctly. This problem is
partially solved by the introduction of self-tuning spectral
clustering [30], however, that is outside the scope of this
paper.

4 Experimental Comparison

The three loss functions presented in Section 3 were exper-
imentally evaluated on 18 publicly available datasets and
on a corporate dataset from the domain of computer secu-
rity. The 2 metrics presented in Section 2.4 were used, i.e.
the Silhouette coefficient and the accuracy of a kNN clas-
sifier built on the embedding. Both of these metrics were
tracked over the learning period to also evaluate how the
models are learning in addition to their final performance.

4.1 Datasets

The evaluation was done on a set of 18 publicly available
datasets, listed in Table 1. All the datasets as used were
also made public2.

The models were also evaluated on a proprietary dataset
provided by Cisco Cognitive Intelligence, consisting of
records of network connections from clients (e.g. user
computers or mobile devices) to some on-line services.

2https://github.com/marekdedic/MilDatasets.jl

Source Datasets

[4] BrownCreeper, WinterWren
[1] Elephant, Fox, Tiger
[7] Musk1, Musk2
[27] Mutagenesis1, Mutagenesis2
[33] Newsgroups1, Newsgroups2, Newsgroups3
[24, 25] Protein
[15] UCSBBreastCancer
[32] Web1, Web2, Web3, Web4

Table 1: The 18 publicly available datasets used.

The dataset represents HTTP traffic of more than 100 com-
panies. Two datasets were collected, each spanning 1 day
of traffic. The training data was traffic from 2019-11-18,
while the data used for testing was collected the follow-
ing day, 2019-11-19. For each connection, a proprietary
classification system based on [14] provided labels, clas-
sifying the connections either as legitimate or malicious
(connected to malware activity). The data was sampled to
include 90 % of negative bags and 10 % of positive bags.
For each connection, 20 connection features were used, as
well as a MIL model of the server URL, which is visualized
in Figure 1.

4.2 Experimental Design

The models for evaluation were implemented in the Julia
programming language [3] using the Flux.jl framework for
machine learning [13] and the Mill.jl framework for multi-
instance learning3.

The particular architecture of the models was chosen
based upon previous experience with using neural net-
works in multi-instance setting [22]. Several architec-
tures were tested and the best one selected for the exper-
iments. The embedding φ was realised by a MIL neural
network consisting of 2 per-instance layers of 30 neurons,
followed by aggregation formed by concatenating element-
wise mean and element-wise maximum of all instances in
a bag, followed by 2 per-bag layers of 30 neurons. All the
neurons used the ReLU activation function [12]. Layer
weights were initialized using Glorot initialization [11],
bias vectors were initialized to zeros. ADAM [16] was used
as the optimization method.

For each of the datasets, 80 % of bags were randomly
chosen as the training data, with the rest being testing data.
The models were trained using 100 mini-batches of size of
50.

In order to provide some baseline against which the
models could be compared (as there is no prior art for
this problem), two other models were introduced. A
non-machine-learning model was introduced as a baseline,
which all models should surpass. This model implements
the embedding φ as an element-wise mean of all instances

3https://github.com/pevnak/Mill.jl

of a bag. This is a natural embedding of a bag as its ex-
pected value. This model is referred to as the mean model
in the rest of this work. A classification model has been
introduced as a target to beat. This model was realised by
a MIL neural network identical to the previously described
one, with a final layer of 2 output neurons with an iden-
tity activation function added. The accuracy of the model
has been evaluated by selecting the optimal threshold on its
output. This model mirrors the model used in the proposed
methods, but replaces the clustering with simple classifica-
tion. This model is referred to as the classification model
in the rest of this work.

Some of the three proposed clustering-losses have some
hyper-parameters which need to be tuned. A range of val-
ues was tried for each hyper-parameter in order to select
the best configuration for each on each of the datasets.
For Ltriplet, the values c ∈ {0.01, 0.1, 1, 10, 100} have
been tested. For Lmagnet, the values K ∈ {2, 3, 8, 16},
α ∈ {0, 0.1, 0.5} and the cluster index update frequency
in {5, 10, 25, 70} have been tested.

4.3 Comparison of Results

Table 2 lists the accuracy of a kNN classifier build on the
embedding for all of the methods and all of the datasets.
Figure 2 shows the value of the Silhouette coefficient and
the accuracy on 3 selected datasets. As can be seen, CPC
is the worst performing of the methods overall, and, more
significantly, shows no clear improvement over the learn-
ing periods for both the Silhouette coefficient and the kNN
classifier accuracy. Between triplet loss and magnet loss,
magnet loss is somewhat better in the classification accu-
racy, whereas triplet loss is somewhat better in the Silhou-
ette coefficient, indicating better separation of individual
clusters. Of note is also the differing behaviour for var-
ious datasets, for example the clear dominance of triplet
loss w.r.t. the Silhouette coefficient on the Web3 dataset.
This shows that none of the methods is a clear winner in all
scenarios and the best one needs to be carefully selected.

4.4 Statistical significance of the results

The null hypothesis that all three methods are the same as
measured by the accuracy can be rejected at a 5 % level
of significance by the Friedman two-way analysis of vari-
ance by ranks [10]. Triplet and magnet losses are better
than CPC at a 5 % level of significance by the post-hoc
Nemenyi pairwise test [20]. However, the null hypothesis
that magnet loss and triplet loss are the same cannot be re-
jected at the 5 % significance level by this test. This further
supports the differing results between these two methods as
mentioned in the previous subsection.

4.5 HTTP dataset

Table 3 compares the three methods on the proprietary
dataset from Cisco Cognitive Intelligence. Here, magnet

designed token features learned features of URL parts learned features of an URL learned features of a SLD

evil
evilψ

d
(1)
1 . . . d(1)n

com
comψ

d
(2)
1 . . . d(2)n

path
path

ψ
p
(1)
1 . . . p(1)n

file
fileψ

p
(2)
1 . . . p(2)n

key=val
key=val

ψ
q
(1)
1 . . . q(1)n

get=exploit.js
get=exploit.js

ψ
q
(2)
1 . . . q(2)n

φD

evil.com

d1 . . . dn

φP

path/file

p1 . . . pn

φQ

key=val&get=exploit.js

q1 . . . qn

φU

http://evil.com/path/file?key=val&get=exploit.js

u1 . . . u3n

c1 . . . cm

φSLD
evil.com
s1 . . . sk

Figure 1: Hierarchical model of a URL. The vector c1, . . . , cm represents the connection features.

Dataset CPC Triplet loss Magnet loss

BrownCreeper 0.900 0.882 0.900
Elephant 0.575 0.900 0.825
Fox 0.400 0.675 0.725
Musk1 0.667 0.889 0.889
Musk2 0.750 0.950 0.950
Mutagenesis1 0.658 0.816 0.912
Mutagenesis2 0.708 1.000 1.000
Newsgroups1 0.533 0.950 1.000
Newsgroups2 0.600 0.900 0.950
Newsgroups3 0.683 0.700 0.850
Protein 0.820 0.923 0.897
Tiger 0.642 0.825 0.825
UCSBBreastCancer 0.333 0.667 1.000
Web1 0.667 0.733 0.800
Web2 0.689 0.800 0.733
Web3 0.733 0.800 1.000
Web4 0.622 0.800 0.930
WinterWren 0.936 0.955 0.936

Table 2: The accuracy of the final models for the publicly
available datasets.

Variant CPC Triplet loss Magnet loss

2 classes 0.920 0.910 0.930
20 classes 0.893 0.868 0.904

Table 3: The accuracy of the final models for the corporate
datasets.

loss is the best of the three methods, however, only by a
small margin over the other 2 methods. Since the datasets
consisted of 90 % of negative samples however, none of the
results is particularly remarkable and some further tuning
would be needed if any of the methods were to be used in
real environment.

5 Conclusion

In our work, the underexplored research area of multi-
instance clustering was investigated. Three methods for
clustering of bags were introduced, of which one is unsu-
pervised (CPC) and two are supervised (Triplet loss and
Magnet loss). For each of the methods, the prior art it
builds on was presented, along with its modification for
the purposes of multi-instance clustering. All three meth-
ods were theoretically and experimentally evaluated and
compared. The experiments were conducted first on pub-
licly available datasets in a reproducible fashion. Follow-
ing that, a corporate dataset of network security data was
used as it is the intended application domain for this work.

Comparing the methods on the publicly available
datasets shows the method based on contrastive predictive
coding to perform the worst, with the other having no statis-
tically significant difference between them. Similar results
were also obtained on the corporate dataset of HTTP traffic,
albeit none of the results were as good as anticipated. The
method based on contrastive predictive coding performed
poorly on both the publicly available datasets and the cor-
porate one, however, the comparison might not be fair as
the CPC method is unsupervised, whereas the other two
can utilize labels on the training data, giving them a strong
advantage.

The initial expectation of CPC being outperformed
proved to be true. Even as such, the result is interesting
and has a value of its own in providing a baseline and a
comparison for these and future methods.

Acknowledgement

The research reported in this paper has been supported by
the Czech Science Foundation (GAČR) grant 18-21409S
and partially supported by the GAČR grant 18-18080S.

0 25 50 75 100
0.0

0.5

1.0

1.5

Learning step

R
at

io

CPC
Triplet
Magnet

Mean model

(a) Musk2, Silhouette coeff.

0 25 50 75 100

0.5

0.6

0.7

0.8

0.9

1.0

Learning step
A

cc
ur

ac
y

CPC
Triplet
Magnet

Classification model

(b) Musk2, accuracy

0 25 50 75 100

0.0

0.5

1.0

1.5

2.0

Learning step

R
at

io

CPC
Triplet
Magnet

Mean model

(c) UCSBBreastCancer, Silhouette coeff.

0 25 50 75 100

0.4

0.6

0.8

1.0

Learning step

A
cc

ur
ac

y

CPC
Triplet
Magnet

Classification model

(d) UCSBBreastCancer, accuracy

0 25 50 75 100

0

25

50

75

100

Learning step

R
at

io

CPC
Triplet
Magnet

Mean model

(e) Web3, Silhouette coeff.

0 25 50 75 100

0.4

0.6

0.8

1.0

Learning step

A
cc

ur
ac

y

CPC
Triplet
Magnet

Classification model

(f) Web3, accuracy

Figure 2: Accuracy and the Silhouette coefficient on three selected datasets.

References

[1] Stuart Andrews, Ioannis Tsochantaridis, and
Thomas Hofmann. “Support Vector Machines
for Multiple-Instance Learning”. In: Advances in
Neural Information Processing Systems 15 (Jan.
2002), pp. 561–568.

[2] David Arthur and Sergei Vassilvitskii. k-means++:
The Advantages of Careful Seeding. Technical
Report 2006-13. Stanford InfoLab, June 2006,
pp. 1027–1035. url: http://ilpubs.stanford.
edu:8090/778/.

[3] J. Bezanson et al. “Julia: A Fresh Approach to Nu-
merical Computing”. In: SIAM Review 59.1 (Jan.
2017), pp. 65–98. issn: 0036-1445. doi: 10.1137/
141000671. url: https : / / epubs . siam .
org / doi / 10 . 1137 / 141000671 (visited on
09/01/2018).

[4] Forrest Briggs, Xiaoli Fern, and Raviv Raich.
“Rank-loss support instance machines for MIML
instance annotation”. In: Proceedings of the ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining. Aug. 2012. doi: 10.
1145/2339530.2339616.

[5] Ying Chen and Ou Wu. “Contextual Hausdorff
dissimilarity for multi-instance clustering”. In:
Fuzzy Systems and Knowledge Discovery (FSKD).
Sichuan, China: IEEE Computer Society Press, May
2012, pp. 870–873. isbn: 978-1-4673-0024-7. doi:
10.1109/FSKD.2012.6233889. url: https://
ieeexplore.ieee.org/abstract/document/
6233889/ (visited on 05/14/2018).

[6] Marek Dědič. “Optimalization of distances for
multi-instance clustering”. MA thesis. Prague:
Czech Technical University in Prague, Jan. 2020.

[7] Thomas G. Dietterich, Richard H. Lathrop, and
Tomás Lozano-Pérez. “Solving the multiple in-
stance problem with axis-parallel rectangles”. In:
Artificial Intelligence 89.1 (Jan. 1997), pp. 31–71.
issn: 0004-3702. doi: 10.1016/S0004-3702(96)
00034-3. (Visited on 05/31/2017).

[8] P. Elias. “Predictive coding–I”. In: IRE Transactions
on Information Theory 1.1 (Mar. 1955), pp. 16–
24. issn: 2168-2712. doi: 10.1109/TIT.1955.
1055126.

[9] Brian S. Everitt, Sabine Landau, and Morven Leese.
Cluster Analysis. 4th ed. Taylor & Francis, 2001.
isbn: 978-0-340-76119-9.

[10] Milton Friedman. “The Use of Ranks to Avoid the
Assumption of Normality Implicit in the Analysis of
Variance”. In: Journal of the American Statistical
Association 32.200 (Dec. 1937). Publisher: Taylor
& Francis, pp. 675–701. issn: 0162-1459. doi: 10.
1080/01621459.1937.10503522. url: https:

//www.tandfonline.com/doi/abs/10.1080/
01621459.1937.10503522.

[11] Xavier Glorot and Yoshua Bengio. “Understanding
the difficulty of training deep feedforward neural
networks”. In: Proceedings of the Thirteenth Inter-
national Conference on Artificial Intelligence and
Statistics. Mar. 2010, pp. 249–256. url: http://
proceedings.mlr.press/v9/glorot10a.html
(visited on 09/01/2018).

[12] Richard H. R. Hahnloser et al. “Digital selection and
analogue amplification coexist in a cortex-inspired
silicon circuit”. In: Nature 405.6789 (June 2000),
pp. 947–951. issn: 1476-4687. doi: 10 . 1038 /
35016072. url: https : / / www . nature . com /
articles/35016072 (visited on 08/27/2018).

[13] Mike Innes. “Flux: Elegant machine learning with
Julia”. In: Journal of Open Source Software (2018).
doi: 10.21105/joss.00602.

[14] Ján Jusko. “Graph-based Detection of Malicious
Network Communities”. PhD thesis. Prague: Czech
Technical University in Prague, 2017. url: https:
//dspace.cvut.cz/handle/10467/73702 (vis-
ited on 04/02/2019).

[15] Melih Kandemir, Chong Zhang, and Fred A.
Hamprecht. “Empowering Multiple Instance
Histopathology Cancer Diagnosis by Cell Graphs”.
In: Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2014. Ed. by
Polina Golland et al. Lecture Notes in Computer
Science. Cham: Springer International Publishing,
2014, pp. 228–235. isbn: 978-3-319-10470-6. doi:
10.1007/978-3-319-10470-6_29.

[16] Diederik P. Kingma and Jimmy Ba. “Adam:
A Method for Stochastic Optimization”. In:
arXiv:1412.6980 [cs] (Jan. 2017). arXiv:
1412.6980. url: http : / / arxiv . org / abs /
1412.6980 (visited on 06/25/2020).

[17] J. Kohout and T. Pevný. “Network Traffic Fin-
gerprinting Based on Approximated Kernel Two-
Sample Test”. In: IEEE Transactions on Information
Forensics and Security 13.3 (Mar. 2018), pp. 788–
801. issn: 1556-6013. doi: 10.1109/TIFS.2017.
2768018.

[18] J. MacQueen. “Some methods for classification and
analysis of multivariate observations”. In: Proceed-
ings of the Fifth Berkeley Symposium on Mathe-
matical Statistics and Probability. Vol. 1. Berke-
ley, California: University of California Press, 1967,
pp. 281–297.

[19] Krikamol Muandet et al. “Learning from Distri-
butions via Support Measure Machines”. In: Ad-
vances in neural information processing systems.
2012, pp. 10–18. url: http://papers.nips.cc/
paper/4825-learning-from-distributions-

http://ilpubs.stanford.edu:8090/778/
http://ilpubs.stanford.edu:8090/778/
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://epubs.siam.org/doi/10.1137/141000671
https://epubs.siam.org/doi/10.1137/141000671
https://doi.org/10.1145/2339530.2339616
https://doi.org/10.1145/2339530.2339616
https://doi.org/10.1109/FSKD.2012.6233889
https://ieeexplore.ieee.org/abstract/document/6233889/
https://ieeexplore.ieee.org/abstract/document/6233889/
https://ieeexplore.ieee.org/abstract/document/6233889/
https://doi.org/10.1016/S0004-3702(96)00034-3
https://doi.org/10.1016/S0004-3702(96)00034-3
https://doi.org/10.1109/TIT.1955.1055126
https://doi.org/10.1109/TIT.1955.1055126
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1080/01621459.1937.10503522
https://www.tandfonline.com/doi/abs/10.1080/01621459.1937.10503522
https://www.tandfonline.com/doi/abs/10.1080/01621459.1937.10503522
https://www.tandfonline.com/doi/abs/10.1080/01621459.1937.10503522
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1038/35016072
https://doi.org/10.1038/35016072
https://www.nature.com/articles/35016072
https://www.nature.com/articles/35016072
https://doi.org/10.21105/joss.00602
https://dspace.cvut.cz/handle/10467/73702
https://dspace.cvut.cz/handle/10467/73702
https://doi.org/10.1007/978-3-319-10470-6_29
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/TIFS.2017.2768018
https://doi.org/10.1109/TIFS.2017.2768018
http://papers.nips.cc/paper/4825-learning-from-distributions-via-support-measure-machines
http://papers.nips.cc/paper/4825-learning-from-distributions-via-support-measure-machines

via - support - measure - machines (visited on
06/29/2017).

[20] PB Nemenyi. “Distribution-free multiple compar-
isons (doctoral dissertation, princeton university,
1963)”. In: Dissertation Abstracts International
25.2 (1963), p. 1233.

[21] Aaron van den Oord, Yazhe Li, and Oriol Vinyals.
“Representation Learning with Contrastive Predic-
tive Coding”. In: arXiv:1807.03748 [cs, stat] (Jan.
2019). arXiv: 1807.03748. url: http://arxiv.
org/abs/1807.03748 (visited on 12/29/2019).

[22] Tomas Pevny and Marek Dedic. “Nested Multiple
Instance Learning in Modelling of HTTP network
traffic”. In: arXiv:2002.04059 [cs] (Feb. 2020).
arXiv: 2002.04059. url: http : / / arxiv . org /
abs/2002.04059 (visited on 06/25/2020).

[23] Tomáš Pevný and Petr Somol. “Using Neural Net-
work Formalism to Solve Multiple-Instance Prob-
lems”. In: Advances in Neural Networks - ISNN
2017. Springer, Cham, June 2017, pp. 135–142.
isbn: 978-3-319-59072-1. doi: 10 . 1007 / 978 -
3 - 319 - 59072 - 1 _ 17. url: https : / / link .
springer.com/chapter/10.1007/978-3-319-
59072-1_17 (visited on 05/23/2018).

[24] Soumya Ray and Mark Craven. “Learning Statistical
Models for Annotating Proteins with Function Infor-
mation using Biomedical Text”. In: BMC Bioinfor-
matics 6.1 (May 2005), S18. issn: 1471-2105. doi:
10.1186/1471-2105-6-S1-S18. url: https:
//doi.org/10.1186/1471-2105-6-S1-S18
(visited on 01/01/2020).

[25] Soumya Ray and Mark Craven. “Supervised ver-
sus multiple instance learning: An empirical com-
parison”. In: Proceedings of the 22nd Interna-
tional Conference on Machine Learning. Jan. 2005,
pp. 697–704. doi: 10.1145/1102351.1102439.

[26] Oren Rippel et al. “Metric Learning with Adaptive
Density Discrimination”. In: arXiv:1511.05939 [cs,
stat] (Mar. 2016). arXiv: 1511.05939. url: http:
/ / arxiv . org / abs / 1511 . 05939 (visited on
06/05/2020).

[27] A. Srinivasan, Stephen Muggleton, and Robert
King. “Comparing the use of background knowl-
edge by inductive logic programming systems”. In:
Proceedings of the 5th International Workshop on
Inductive Logic Programming. 1995, pp. 199–230.

[28] Jun Wang and Jean-Daniel Zucker. “Solving
Multiple-Instance Problem: A Lazy Learning
Approach”. In: Proceedings of the Seventeenth
International Conference on Machine Learning.
Ed. by Pat Langley. Stanford University, Stanford,
CA, USA: Morgan Kaufmann, 2000, pp. 1119–
1125. url: http : / / cogprints . org / 2124/
(visited on 07/01/2017).

[29] Kilian Q Weinberger, John Blitzer, and Lawrence K.
Saul. “Distance Metric Learning for Large Margin
Nearest Neighbor Classification”. In: Advances in
Neural Information Processing Systems 18. Ed. by
Y. Weiss, B. Schölkopf, and J. C. Platt. MIT Press,
2006, pp. 1473–1480. url: http : / / papers .
nips . cc / paper / 2795 - distance - metric -
learning - for - large - margin - nearest -
neighbor-classification.pdf.

[30] Lihi Zelnik-manor and Pietro Perona. “Self-Tuning
Spectral Clustering”. In: Advances in Neural Infor-
mation Processing Systems 17. Ed. by L. K. Saul, Y.
Weiss, and L. Bottou. MIT Press, 2005, pp. 1601–
1608. url: http://papers.nips.cc/paper/
2619-self-tuning-spectral-clustering.
pdf (visited on 01/06/2020).

[31] Min-Ling Zhang and Zhi-Hua Zhou. “Multi-
instance clustering with applications to multi-
instance prediction”. en. In: Applied Intelligence
31.1 (Aug. 2009), pp. 47–68. issn: 1573-7497. doi:
10.1007/s10489-007-0111-x. url: https:
//doi.org/10.1007/s10489-007-0111-x
(visited on 07/30/2020).

[32] Zhi-Hua Zhou, Kai Jiang, and Ming Li. “Multi-
Instance Learning Based Web Mining”. In: Applied
Intelligence 22.2 (Mar. 2005), pp. 135–147. issn:
1573-7497. doi: 10.1007/s10489-005-5602-z.
url: https://doi.org/10.1007/s10489-005-
5602-z (visited on 01/01/2020).

[33] Zhi-Hua Zhou, Yu-Yin Sun, and Yu-Feng Li.
“Multi-Instance Learning by Treating Instances As
Non-I.I.D. Samples”. In: Proceedings of the 26th
International Conference On Machine Learning,
ICML 2009 (July 2008). doi: 10.1145/1553374.
1553534.

http://papers.nips.cc/paper/4825-learning-from-distributions-via-support-measure-machines
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/2002.04059
http://arxiv.org/abs/2002.04059
https://doi.org/10.1007/978-3-319-59072-1_17
https://doi.org/10.1007/978-3-319-59072-1_17
https://link.springer.com/chapter/10.1007/978-3-319-59072-1_17
https://link.springer.com/chapter/10.1007/978-3-319-59072-1_17
https://link.springer.com/chapter/10.1007/978-3-319-59072-1_17
https://doi.org/10.1186/1471-2105-6-S1-S18
https://doi.org/10.1186/1471-2105-6-S1-S18
https://doi.org/10.1186/1471-2105-6-S1-S18
https://doi.org/10.1145/1102351.1102439
http://arxiv.org/abs/1511.05939
http://arxiv.org/abs/1511.05939
http://cogprints.org/2124/
http://papers.nips.cc/paper/2795-distance-metric-learning-for-large-margin-nearest-neighbor-classification.pdf
http://papers.nips.cc/paper/2795-distance-metric-learning-for-large-margin-nearest-neighbor-classification.pdf
http://papers.nips.cc/paper/2795-distance-metric-learning-for-large-margin-nearest-neighbor-classification.pdf
http://papers.nips.cc/paper/2795-distance-metric-learning-for-large-margin-nearest-neighbor-classification.pdf
http://papers.nips.cc/paper/2619-self-tuning-spectral-clustering.pdf
http://papers.nips.cc/paper/2619-self-tuning-spectral-clustering.pdf
http://papers.nips.cc/paper/2619-self-tuning-spectral-clustering.pdf
https://doi.org/10.1007/s10489-007-0111-x
https://doi.org/10.1007/s10489-007-0111-x
https://doi.org/10.1007/s10489-007-0111-x
https://doi.org/10.1007/s10489-005-5602-z
https://doi.org/10.1007/s10489-005-5602-z
https://doi.org/10.1007/s10489-005-5602-z
https://doi.org/10.1145/1553374.1553534
https://doi.org/10.1145/1553374.1553534

	Introduction
	Multi-instance Learning and Clustering
	A probabilistic formulation of multi-instance learning
	Embedded-space paradigm for solving multi-instance problems
	Clustering
	Clustering evaluation metrics

	Investigated Loss Functions
	Contrastive Predictive Coding
	Triplet Loss
	Magnet Loss

	Experimental Comparison
	Datasets
	Experimental Design
	Comparison of Results
	Statistical significance of the results
	HTTP dataset

	Conclusion

