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Abstract: Convolutional Neural Network (CNN) has be-
come one of the most popular techniques in image classifi-
cation. Usually CNN models are trained on a large amount
of data, but in this paper, it is discussed CNN usage on
data shortage and class imbalance issues. The study is
conducted on a small dataset of vine leaves images on a
classification task with five classes using two different ap-
proaches. In the first approach, a simple CNN model is
used, while in the second approach, the Visual Geometry
Group (VGG) model with transfer learning is used. It is
shown that using different deep learning techniques such
as transfer learning, stratified sampling, data augmenta-
tion, and the state of arts CNN models such as VGG gives
a relatively very good model performance with up to 87%
accuracy.

1 Introduction

Deep Learning (DL) was inspired by the human brain and
try to simulate how humans learn. In DL, networks of neu-
rons organized in multiple layers analyze large amounts of
data to find the underlying structure or pattern, the main
idea is to do that automatically without explicitly program-
ming it, the computer learns how to classify text, sounds
and images. In Computer Vision (CV) tasks, the computer
is trained on huge amount of images by encoding these
images pixels into internal representation, so the classifier
can find the patterns on the input images [1]].

DL outperforms other solutions in multiple domains, in-
cluding speech, vision, video and natural language pro-
cessing, it also reduces the use of feature engineering stage
which is one of the most time-consuming tasks in machine
learning [2]]. The other reason, that made DL so famous in
the last few years, is a huge improvement in terms of com-
putational power that can be utilized to accomplish such
tasks. However, one common problem is to preform badly
on unseen data (test dataset), due to over-fitting, usually,
a large dataset is required to increase the model perfor-
mance. Another problem is that it is hard to choose the
right model for any given problem.
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Convolutional Neural Network (CNN or ConvNets) is
a sort of Neural Network mostly popular in image clas-
sification [3]] but it has a fewer number of connections,
which means, a fewer number of model parameters mak-
ing it less sensitive to over-fitting. The second reason why
CNN is powerful in computer vision tasks is the parame-
ter sharing, which means, if the filter is useful on a part
of the image it could be useful on another one. Further-
more, CNNs preserves the spatial information of the image
which makes the classifier more robust against the affine
transformations like translation and rotation.

In many cases, especially in the current times, image
data scarcity can be dealt by frequent acquisition, but there
are still some situations in which acquisition is not easy or
may not be frequent, as in agriculture, where a plant can
not be created in an hour or a day. There are also cases
where synthetic images creation is far from real world im-
ages, so training any model in this situation would create
good controlled results but would not solve real problems.

The goal of this article is to find techniques, proce-
dures or functions that can deal with the problems of using
CNNs in small and imbalanced databases. For such, two
different structures of CNN are implemented, with com-
bination of different DL techniques and procedures such
as data augmentation, transfer learning, stratified sam-
pling and model picking based on validation accuracy, also
showing the transition from a simple CNN model to a state
of art model like VGG.

This paper is organized as follow: Section [2] presents
the techniques and definitions used in the proposals of this
work, followed by Section [3] which describes the steps
for constructing the models. Section [4] shows the results
obtained and in Section [5] the conclusions that can be in-
ferred.

2 Proposed Approaches

There are many Machine Learning (ML) techniques that
could be used for general classification problems like K-
Nearest Neighbor (KNN), Logistic Regression, Support
Vector Machines (SVM) and Artificial Neural Networks
(ANN), but in term of the image classification problems
the most popular technique is the Convolution Neural Net-
works. CNN is a class of ANNs that has become dominant



in various CV tasks [4]], due to its ability to extract relevant
features from raw data [5].

2.1 CNN and VGG architectures

In general, the CNN architecture is like an ordinary Neural
Network, but it is stronger and deeper because it preserves
the spatial information of images to overcome the problem
of affine transformations. It also makes the classifier more
robust by adding a stack of convolution layers just before
the dense layers, besides it reduces the number of trained
parameters which speeds up the learning process. CNN
architecture includes several building blocks, such as con-
volution layers, pooling layers, and fully connected layers.
A typical architecture consists of repetitions of a stack of
several convolution layers and a pooling layer, followed
by one or more fully connected layers [4].

bubsamp\mu

Subsamp\mg

Input Image

Convolution

Convolution Dense Layers

Figure 1: Overview of the CNN architecture.

Figure [I] shows a general overview of the CNN archi-
tecture. Convolutions layers take the raw image as an in-
put, perform convolutions using different sized trainable
sliding windows which are typically named kernels and
produce a vector which goes as an input for the dense lay-
ers. Each kernel has its own parameters which are trained
just like the dense layer parameters, the output of convo-
lutions layer goes as input to the next layer which looks
for a higher level of input details and so on. The pooling
layers come after a stack of one or more convolution lay-
ers, the purpose of pooling is to reduce the input size and
overcome the small translations, there are multiple types
of polling like Average, Min and Max polling.

The Visual Geometry Group (VGG) network was intro-
duced by Simonyan and Zisserman [[6] and is, in general,
characterized by its simplicity since its only using 3 x 3
convolution layers on top of each other with increasing
depth. In order to reduce the volume size or resolution,
max-pooling was used in this network. After the convolu-
tion layers, there are two dense layers with 4,096 neurons
each, followed by a softmax classifier, which is a general-
ization of the logistic regression to support the multiclass
probability distribution. There are two version of VGG,
16 and 19, referring to the number of weight layers in the
network.

Simonyan and Zisserman found the convergence of
VGG16 and VGG19 on the deeper networks quite chal-
lenging so they trained smaller versions of the model as
the one shown in Table[Il The main drawbacks with VGG
network it is slow to train and weights are quite large. Due
to the depth and the number of fully connected neurons

makes it require a large amount of memory which makes
it a tedious task. However, in this paper, we suggested
methods to overcome this issue and speeding up the train-

ing process.

Table 1: VGG architecture

Convolution network configuration

11 weights layer | 16 weights layer

Input (224 x 224) RGB image

Conv3-64

Conv3-64
Conv3-64

Max p

ooling

Conv3-128

Conv3-128
Conv3-128

Max p

ooling

Conv3-256
Conv3-256

Conv3-256
Conv3-256
Conv1-256

Max p

ooling

Conv3-512
Conv3-512

Conv3-512
Conv3-512
Conv1-512

Max p

ooling

Conv3-512
Conv3-512

Conv3-512
Conv3-512

Conv1-512
Max pooling
FC-4096
FC-4096
FC-1000
SoftMax layer

2.2 Stratified Sampling

Stratified sampling is a probability sampling technique
that takes the group size into account while doing the
sampling process. The elements in target population are
divided into distinct groups or so-called ‘“‘strata”, where
within each stratum, the elements have similar characteris-
tics to each other [7]]. This technique is used widely in ML
especially when the data suffers from class imbalance is-
sue [8,19,[10,[11]. This sampling technique is implemented
in the scikit-learn library which is a free ML library for
python. Sampling technique was used while splitting the
data into train, validation and test sets using the attribute
stratify inside frain_test_split function and defining the
target variable from which the sample was required.

2.3 Data Augmentation

DL models, including CNNss, are usually trained on a large
amount of data to have a reasonable performance [12]], in
case of data shortage, like in this paper, these models tend
to over-fit training data and lose the generalization ability



which leads to bad performance on the test dataset. Af-
ter the cleaning stage, our dataset contains around 1600
images, training data was 80% of those images, while the
reaming 20% were divided equally to testing and valida-
tion datasets. Roughly, this amount of data may not be
enough to train a deep neural network and produce a good
accuracy, thus to increase the accuracy, generalization and
prevent over-fitting a data augmentation stage was added
to the architecture.

Data augmentation means to create more training im-
ages based on the existing ones by applying some simple
effects and affine transformations like shifting, flipping,
rotating, zooming and so on. This augmentation will in-
crease the number of training images and leads to more
generalization and smoother training curve, it also pro-
vides information on small deformations images may con-
tain due to acquisition processes [13]. Figure [ shows the
result of applying the data augmentation on a the first im-
age resized to 256 x 256 which produced the second and
third images by applying rotation and flipping.

Figure 2: Example of Data Augmentation after Resizing
the Original Image to 256 x 256.

As possible to see, some important shapes or features
for classification that could be discarded if the acquisition
was made only with the leaf upright, now also becomes
part of training set.

2.4 Transfer Learning

Transfer Learning is widely used in machine learning
when there is not enough data for model training and the

main idea of this technique is to use a pretrained model
which was trained on a similar problem, then apply this
model on the new problem [14]]. In most cases, the last
few layers are refined and a simple dense or a linear model
added on top of that.

ImageNet dataset was used in this paper, which is a
large visual dataset designed for object recognition tasks
which contains more than 14 million images and have
been hand-annotated to indicate what objects are pictured
in at least one million of the images, bounding boxes are
also provided [15} [T6]. ImageNet contains more than 20
thousand categories with typical categories, such as “bal-
loon” or “strawberry”, consisting of several hundred im-
ages [[17].

3 Research Methods

All strategies were implemented on Google Colab cloud
service using Tensorflow 2.0 GPU and Keras API abstrac-
tion framework. Tensorflow is one of the famous libraries
that is commonly used for image classification in DL. Ten-
sorflow is an end-to-end open source software ML plat-
form developed by the Google in 2015 for numerical pro-
cessing and computation. Keras is an open source neural-
network library written in python, with the main purpose
of simplify code complexity, it also offers a simple/effi-
cient API able to run on top of Tensorflow, Theano and
other DL frameworks.

3.1 Dataset creation

In this study, images were collected by our department
from the fields of Hungary in the summer of 2019. This
study has an industrial background in the wine produc-
tion and the purpose is to predict the type of wine pro-
duced by each vine. Around 2200 images were collected
by different people and devices which produced images
with different sizes, formats and background, so filter-
ing and preparation stage was needed. The dataset is di-
vided into five classes, each class is named in Hungar-
ian after the wine produced from the tree as “Cabernet
Franc”, “Kékfrankos”, “Sargamuskotaly”, “Sziirkebarat”,
and “Tramini”. Figure [3] shows eight random samples
from dataset with their original sizes.

The two main problems faced and discussed in this
study are data shortage and class imbalance, and both of
them can be seen from histogram presented in Figure []
which shows how many images there are in the dataset for
each class.



Figure 3: Random samples from the Dataset with their
Original Sizes.
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Figure 4: Histogram of the Raw Dataset.

Since data were collected by non experts and this is the
first time using it, the first step was to clean this dataset by
removing noisy images, as shown in Figure[3] so it would
not affect the training process in a small dataset, while Fig-
ure [0 shows the distribution of the cleaned dataset.

Figure 5: Example of a Noisy Image.

Then all the different images format were unified into
a common format (PNG), which was selected to keep as
much information as possible in the images since its uses
a lossless compression algorithm. After that, the images
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Figure 6: Histogram of the cleaned Dataset.

were resized into two resolutions 224 x 224 and 256 x 256
pixels which are practically preferred by different CNN
architectures such as VGG16 and ResNet34. In order to
speed up the training process, the raw images were con-
verted into NumPy which is a vectorized implementation.
Figure [7shows an image sample from cleaned dataset.

&

Figure 7: Example from the Prepared Dataset Resized to
256 x 256.

As it is noticeable from histogram, the dataset is rela-
tively small, especially for deep learning models and the
data suffer from the imbalance classes issue. So, in order
to tackle these issues, data was split into training, valida-
tion and testing sets using stratified sampling, which takes
samples from each class proportional to the class size [[7]).

The split used in the experiments was 80%-10%-10%
for the training, validation (which is used for hyper-
parameters tuning) and testing sets respectively. We used
this split because the data is relatively small and we in-
corporate the stratified sampling which took the samples
proportional to the class size for better generalization. Af-
ter splitting, the data was normalized using MinMax scaler
in order to speed up the training process by making the ob-
jective function more round, smooth and easy to optimize

(18].



3.2 Simple CNN Model

This architecture was built by trial and error starting from
a straightforward model inspired by LetNet-5 [19] archi-
tecture.

The first model consisted of two sets of one convolu-
tion and one pooling layers followed by two dense layers,
but it showed bad accuracy due to under-fitting. So, layers
were added, one layer per experiment, until no improve-
ment was detected.

Then, multiple experiment were made by trying differ-
ent combinations of kernel sizes, hidden layers sizes and
pooling types. The best accuracy-wise model based on the
two classes classification performance as the following:

e Three convolution blocks with 4, 8, and 16 filters.

e Each block consists of two convolutional layers fol-
lowed by a Max pooling layer.

e Stack of three dense layers of 64, 32 and 5 units each.

33 VGG

Like the simple model, some attempts have been made for
a better starting point. In the case of the VGG model, the
Transfer Learning technique using the ImageNet dataset
was the very first step and, from different experiments,
it was noticeable that training only the last few layers of
VGG model would provide the best results.

The reason for this behavior is that, in CNNs, the first
few layers capture the low-level features which in most
cases are useful in image classification issue. However, the
last few layers are capturing the high-level features which
are, in most cases, dataset (problem) specific. At the top
of the model, the 1000 classes were removed which are
related to ImageNet dataset and added the last dense 5-
classes layer. Adam optimizer with 0.001 learning rate
was also used.

The other technique used to handle the class imbalance
issue was data augmentation on the training set. For re-
producibility purposes, random seed was set while split-
ting the data into training, validation and test sets and the
model weights with the lowest validation loss was saved
using HD5 format.

4 Results

For the simple CNN model, the best result obtained among
all experiments was 90%, 90% and 90% for Accuracy,
Precision and Recall, respectively on the pair of classes
“Sziirkebarat” and “Tramini”. This method of training was
chosen to start as it is not time consuming and gives us the
ability to do more trials. Also, this way enables the di-
vision of the five classes dataset into multiple two classes
datasets and monitor the model performance among them.

Overfitting is noticeble from Figure [8] but at this point
there was no need to seek improvement since two classes
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Figure 8: Model Performance in Two Classes.

classification was not the intended classification, a robust
model was rather interesting. While verifying the model
in four classes, two problems were faced, huge over-fitting
and the largest class tend to have a large number of False
Positives which leads to bad Precision and Recall. At this
point, some steps were taken to smooth the effects of the
problems:

e Increased the number of epochs to 300.

e Every 50 epochs, the train and validation datasets
were merged and split randomly again to train and
validation datasets.

e While training, the model was saved from the epoch
with best validation accuracy. At the end, it was com-
pared with the final model based on the test accuracy.

Among all the experiments with four classes, the best
result were 88.4%, 88.4% and 88.1% for Accuracy, Preci-
sion and Recall, respectively. Figure [0 brings the perfor-
mance of the model while training with four classes, based
on training and validation accuracy and loss through the
epochs.
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Figure 9: Model Performance in Four Classes.

Finally, the model was trained with five classes and the
best results among all experiments where 83.8%, 84.4%
and 84% for Accuracy, Precision and Recall.

Figure[10]shows the same information as Figure 9] while
training the model with all five available classes using the
simple model.

While for the VGG model, some transformations (width
shift, height shift, zooming, shearing and rotation) were
used in Data Augmentation, which led the model to
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Figure 10: Model Performance in Five Classes.

achieve almost 87% accuracy on the test set, which served
as an unbiased estimator. Precision, Recall and F1-score
also reached about the same value.

Class Precision Recall fl-score

0 0.89 0.93 0.91

1 0.82 0.90 0.86

2 0.92 0.79 0.85

3 0.93 0.84 0.88

4 0.80 0.86 0.83

accuracy 0.87
macro avg 0.87 0.86 0.87
weighted avg 0.87 0.87 0.87

Table 2: Precision, Recall and F1-score of the model

Table 2] shows the Precision, Recall, and F1-score us-
ing the VGG model. The metrics used to measure the
model’s performance were chosen considering they take
into account the class imbalance issue and the general in-
tuition behind them, that precision means how much noisy
data is provided, in other words, it is more related to False
Positive rates, while recall means how much good data is
missed, and finally the fl-score is the harmonic mean of
precision and recall. The main reason that harmonic mean
used in f1-score is to punish the large difference between
precision and recall. For example, if there were 100% pre-
cision and 0% recall, the f1-score will be 0%, while the
arithmetic mean would be 50%.

5 Conclusion

In this research, we investigated different deep learning
techniques to overcome data shortage and class imbalance
issues. With experiments, we noticed that even the deep
leaning models which require a lot of data can be per-
formed very well even on a small imbalanced dataset using
techniques such as stratify sampling, data augmentation,
and transfer learning. In our first experiment, which is us-
ing a simple CNN model we got an accuracy around 83.8%
and almost the same for other metrics (Precision, Recall,
and Fl-score), while in the second experiment a VGG
model was used with a combination of different techniques
reaching very good results of about 87% for the accuracy
and other metrics.

Results indicate that even if a large amount of data is
preferable, it is possible to overcome the previously men-
tioned issues with satisfactory results. In addition, the ap-
plied techniques contributed to non-appearance of overfit-
ting, making the models not database dependent.

It is also possible to realize that, in cases where the re-
quired level of accuracy is very high, above 90% or 95%,
the techniques applied may not be recommended without
further database analysis, since these techniques may sac-
rifice accuracy to avoid other problems.

Also important to notice that one of the models is al-
ready known in literature and the other did not required
any major framework to be built, only applying system-
atic and incremental analysis while interpreting obtained
results during each step.
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