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Abstract: The first problem one encounters when trying
to apply analytical methods to text data is probably that
of how to represent it in a way that is amenable to opera-
tions such as similarity, composition, etc. Recent methods
for learning vector space representations of words have
succeeded in capturing semantic using vector arithmetic,
however, all of these methods need a lot of text data for
representation learning.

In this paper, we focus on Slovak words representation
that captures semantic information, but as the data source,
we use a dictionary, since the public corpus of the required
size is not available. The main idea is to represent infor-
mation from the dictionary as a word network and learn a
mapping of nodes to a low-dimensional space of features
that maximize the likelihood of preserving network neigh-
bourhoods of word nodes.

1 Introduction

Recently, the area of natural language processing (NLP)
passed reform. Even this area did not escape the strong
influence of the rise of neural networks. In most NLP clas-
sical tasks, such as text classification, machine translation,
sentiment analysis, good results are achieved because of
deep learning-based representation of fundamental build-
ing language components — words. Neural networks use
large corpora for word representation learning [S[][6].
However, in some languages, it is not possible to use
this approach because it does not exist large amounts of
unstructured text data in them. These issues can be well
illustrated by Google translations in some not widely spo-
ken languages (see Figure[I)). The reason for poor transla-
tions is the absence of a large public source of text data.
In this paper, we propose our approach, which aims to
obtain the semantic representation of words based on pub-
lic dictionaries instead of the corpus. The main idea is
to construct graph G = (V, E, ) where vertices are words,
which we want to get vector representation from and edges
are relationships between words. It means the words that
are closely related will be connected by an edge. The in-
tensity of this relationship is expressed by weight — the
real number from O to 1. As our source of data for build-
ing graph G, we used dictionaries. We will describe details
in the section Data processing. We use tf-idf statistics
for weighting our word network. After building graph G
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with mentioned properties, we apply well-known feature
learning algorithm Node2Vec for networks. This method
interprets nodes as vectors that are suitable for use as word
vectors with semantic properties.

We focus on the process of Slovak words to increase
the automated processing (NLP) of Slovak language, but
it can be used for any other language. The paper is orga-
nized as follows: Section [2| — Related works, we present
the basic definitions, and briefly describes methods from
related works. Section [3|— Data processing, explores our
data sources and their processing for the usage of our
method. In Section E] — Methods, We propose a novel
approach, which produces dense vector representations of
words with semantic properties. Some results are shown
in section [5] — Experiments, and key takeaway ideas are
discussed in the last section[6]— Conclusion.

2 Related works

Semantic vector space models of language represent each
word with a real-valued vector. These representations are
now commonly called word embeddings. The vectors can
be used as features in a variety of applications as stated in
the previous chapter. Distance between every two vectors
should reflect how closely relate the meaning of the words,
in ideal semantic vector space. The goal is to achieve an
approximation of this vector space.

Word embeddings are commonly ([8][9][10]) catego-
rized into two types, depending upon the strategies used
to induce them. Methods that leverage local data (e.g. a
word’s context) are called prediction-based models and are
generally reminiscent of neural language models. On the
other hand, methods that use global information, generally
corpus-wide statistics such as word counts and frequencies
are called count-based models [4].

Both types of models have their advantages and disad-
vantages. However, a significant drawback of both ap-
proaches for not widely spoken language is the need for
a large corpus. In the following sections, we show how
can be this problem solved.

Prediction-based models. The idea of this approach is to
learn word representations that aid in making predictions
within local context windows (Figure [2). For example,
Mikolov et al. [5] have introduced two models for learn-
ing embeddings, namely the continuous bag-of-words
(CBOW) and skip-gram (SG) models (Figure E]) The
main difference between CBOW and SG lies in the loss
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Figure 1: The languages that generate the strangest results — Somali, Hawaiian and Maori — have smaller bodies of
translated text than more widely spoken languages like English or Chinese. As a result, it’s possible that Google used
religious texts like the Bible, which has been translated into many languages [20].

Source Text

fox jumps over the lazy dog. ==

|The-brown‘fox|jumps over the lazy dog. ==

|Thelquick-foxljumpslover the lazy dog. ==

Thelquicklbrown.jumpslover|the lazy dog. =

Training
Samples

(the, quick)
(the, brown)

(quick, the)
(quick, brown)
(quick, fox)

(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

Figure 2: Local context windows. This figure shows some of the training samples (word pairs) we would take from the
sentence "The quick brown fox jumps over the lazy dog." It used a small window size of 2 just for the example. The word
highlighted in blue is the center word. The creation of a dataset for a neural network consists in such processing of each

sentence in the corpus [19].

function used to update the model, while CBOW trains
a model that aims to predict the center word based upon
its context, in SG the roles are reversed, and the center
word is, instead, used to predict each word appearing in
its context.

Count-based models. These models are another way
of producing word embeddings, not by training algo-
rithms that predict the next word given its context but by
leveraging word-context cooccurence counts globally in
a corpus. These are very often represented (Turney and
Pantel (2010) [15]) as word-context matrices. The earliest
relevant example of leveraging word-context matrices to
produce word embeddings is Latent Semantic Analysis
(LSA) (Deerwester et al. (1990) [11]) where Singular
value decomposition (SVD) is applied [4].

3 Data processing

As we already mentioned, we use dictionaries as our data
source instead of corpora. First at all, we find web page,
which contains dictionaries with public access for pulling
data out of HTML (it is also possible to use dictionaries in
text format). We parse two types of Dictionary:

1. Synonym dictionary [14]],

2. classic dictionary that contains a list of words
and their meaning.

First, we establish some notation. Let VOCARB be a set
of all words that we want to represent as a vector.

Let S represent the set of all synonym pairs achieved
from the Synonym dictionary [14]]. Set S contains pairs
like

(vtipny, zdbavny), (vtipny,smiesny), (rychlo, chytro) ...
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Figure 3: Skip-gram network architecture (the coded vocabulary is illustrative). As input, skip-gram expects center
word in one-hot representation. The layer in the middle has the number of neurons as the desired dimension of word
embeddings. The last layer tries to predict the probability distribution of the occurrence of words in the context of the
center word. Metrix of weights between the middle and the last layer is word vectors [[19].

It is important to remark that not every word from
VOCAB has synonym pair. Let L represent the set of
word pairs from the Dictionary [13].

We create these word pairs (w, ;) as follow:

e For word w from VOCAB, we find its definition from
the Dictionary [[13].

e Subsequently, we find the lemma of each word oc-
curring in this definition of w. Let denote these lem-
mas as 1,1, ...,I,. For each word w from VOCARB,
there are pairs (w,1;),(w,1),...,(w,l,) in set L. For
instance, word sinko has definition: “Nebeské teleso
vysielajiice do vesmiru teplo a svetlo.” Based on that,
we add to set LL these pairs: (slnko, nebesky), (slnko,
teleso), (slnko, vysielajiice), (slnko, vesmir), (sinko,
teplo), (slnko, svetlo).

We used a rule-based tool for lemitization [16][17][18]].
Let G = (V,E,¢) to be denoted by a directed graph
where V = VOCAB, edges E = SUL and ¢ is the func-
tion that for each edge e from E assign real number ¢ (e).
We will define function ¢ in section 4.1.
From now, our initial task of word representation learn-
ing is transformed into a graph-mining problem.

4 Methods

In this section, we present the tf-idf method and
Node2Vec algorithm [1]].

4.1 tf-idf

The notion tf-idf stands for term frequency-inverse doc-
ument frequency, and the tf-idf weight is a weight often
used in information retrieval and text mining. This weight
is a statistical measure used to evaluate how important a
word is to a document in a collection or corpus. The im-
portance increases proportionally to the number of times
a word appears in the document but is offset by the fre-
quency of the word in the corpus. Variations of the tf-idf
weighting scheme are often used by search engines as a
central tool in scoring and ranking a document’s relevance
given a user query. The tf-idf can be successfully used
for stop-words filtering in various subject fields, including
text summarization and classification. The tf-idf is the
product of two statistics, term frequency and inverse doc-
ument frequency [2][3].

Term frequency. Suppose we have a set of English text
documents and wish to rank which document is most rel-
evant to the query, "the brown cow". A simple way to
start out is by eliminating documents that do not contain
all three words "the"”, "brown", and "cow", but this still
leaves many documents. To further distinguish them, we
might count the number of times each term occurs in each
document; the number of times a term occurs in a docu-
ment is called its term frequency. In the case of the term
frequency t£(z,d), the simplest choice is to use the raw
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Figure 4: Node2Vec embedding process [21]

count of a term in a document, i.e., the number of times
that term ¢ occurs in document d.

Inverse document frequency. Because the term "the" is so
common, term frequency will tend to incorrectly empha-
size documents that happen to use the word "the" more
frequently, without giving enough weight to the more
meaningful terms "brown" and "cow". The term "the"
is not a good keyword to distinguish relevant and non-
relevant documents and terms, unlike the less-common
words "brown" and "cow". Hence an inverse document
frequency factor is incorporated which diminishes the
weight of terms that occur very frequently in the document
set and increases the weight of terms that occur rarely. So
the inverse document frequency is a measure of how much
information the word provides, i.e., if it’s common or rare
across all documents. It is the logarithmically scaled in-
verse fraction of the documents that contain the word (ob-
tained by dividing the total number of documents by the
number of documents containing the term, and then taking
the logarithm of that quotient):

N

{deD:ted} M

idf(¢,D) =log

with
e N: total number of documents in the corpus N = |D|

e |{d € D:t € d}| number of documents where the term
t appears.

Term frequency—Inverse document frequency. tf-idf is
calculated as

tf-idf(¢,d,D) = t£(t,d)-1df(z,D)

A high weight in tf-idf is reached by a high term fre-
quency (in the given document) and a low document fre-
quency of the term in the whole collection of documents;
the weights hence tend to filter out common terms. Since
the ratio inside the idf’s log function is always greater
than or equal to 1, the value of idf (and tf-idf) is greater
than or equal to 0. As a term appears in more documents,
the ratio inside the logarithm approaches 1, bringing the
idf and tf-idf closer to 0.

tf-idf as a weight function. Let’s consider word Zelezny
and its definition “obsahujiici Zelezo; majiici isty vzt'ah
k Zelezu”. For Slovak readers, it is obvious not every
word of the definition is related to the word Zelezny in the
same way. Some words are very important for the con-
struction of definition (obsahujiici, mat’, isty) but they are
not related to the defined word. By the definition of our
word network G, all lemmas will be joined with the word
Zelezny by an edge, but we can filter unrelated words by
assigning them low weight.

e tf(f,d) the number of times that word ¢ occurs in
definition d. For instance, tf(Zelezo, “obsahujiici
Zelezo; mat’ isty vzt'ah Zelezo”) = 2.

e idf(s,D) is inverse document frequency defined as
@), where D is set of all definitions from the Dictio-
nary,

— N is total number of definitions,

— and |{d € D : t € d}| is number of definitions
where the word ¢ appears.

The definition implies that often appearing words in def-
initions (such as "majiici" or "nejaky") have a low idf
value. So the relationship between words w and /; (lemma
of i-th word that appears in definition d,, of word w) is
given by value tf-idf (w,l;) = t£(l;,d,,) - idf(l;, D).

tf-idf is our weight function if edge e join word w
and word wy, where w, is the lemma of a word that appears
in definition d,,; of word w, in other words, if e from L. If
edge e join synonyms words (e € S), the weight of e is 1 —
a max weight value. If e belongs L but also e belongs S,

dle)=1.

L, ifecS
d(e) = p(wi,wp) = { t£-1idf(wi,wy), ifecl
1, ifeeSNL

4.2 Node2Vec

In previous sections, we have described building graph
G = (V,E, ¢) that captures the semantic relationships be-



Figure 5: Node2Vec embedding process [1]]

tween words. Finally, we need to obtain a vector repre-
sentation of each node of a graph. We use the Node2Vec
algorithm for this purpose [I]. The Node2Vec frame-
work learns low-dimensional representations for nodes in
a graph through the use of random walks. Given any
graph, it can learn continuous feature representations for
the nodes, which can then be used for various downstream
machine learning tasks. Node2Vec follows the intuition
that random walks through a graph can be treated like
sentences in a corpus (sampling strategy). Each node in
a graph is treated like an individual word, and a random
walk is treated as a sentence. When we have a sufficiently
large corpus obtained by random walks through the graph,
the next step of the algorithm is to use the traditional em-
bedding technique to obtain vector representation (see Fig-
ure [)), in the concrete, Node2Vec use mentioned skip-
gram model (Figure [3). Node2Vec algorithm works in 2
steps: sampling strategy and feeding the skip-gram model.
Since we already mention skip-gram model, we will focus
on the sampling strategy.

Node2Vec’s sampling strategy, accepts four arguments:

o Number of walks n: Number of random walks to be
generated from each node in the graph,

e walk length /: how many nodes are in each random
walk,

e p: return hyperparameter,
e ¢: in-out hyperparameter.

The first two hyperparameters are self-explanatory. The
algorithm for the random walk generation will go over
each node in the graph and will generate n random walks,
of length /.

Return parameter p controls the likelihood of immedi-
ately revisiting a node in the walk. Setting it to a high
value ensures that we are less likely to sample an already
visited node in the following two steps (unless the next
node in the walk had no other neighbor). This strategy

encourages moderate exploration and avoids 2-hop redun-
dancy in sampling. On the other hand, if p is low, it would
lead the walk to backtrack a step and this would keep the
walk "local" close to the starting node u.

In-out parameter g allows the search to differentiate be-
tween "inward" and "outward" nodes. Going back to Fig-
ure 5] if ¢ > 1, the random walk is biased towards nodes
close to node ¢. Such walks obtain a local view of the un-
derlying graph with respect to the start node in the walk
and approximate BF'S (Breadth First Search Traversal) be-
havior in the sense that our samples comprise of nodes
within a small locality. In contrast, if g < 1, the walk is
more inclined to visit nodes that are further away from the
node . Such behavior is reflective of DFS (Deph First
Search Traversal) which encourages outward exploration.
However, an essential difference here is that we achieve
DF S-like exploration within the random walk framework.
Hence, the sampled nodes are not at strictly increasing dis-
tances from a given source node u, but in turn, we benefit
from tractable preprocessing and superior sampling effi-
ciency of random walks [[1]].

For weighted graphs (our case), the weight of the edge
has an impact on the probability of node visiting (higher
weight - the higher probability of visiting).

S Experiments

The word similarity measure is one of the most frequently
used approaches to validate word vector representations.
The word similarity evaluator correlates the distance be-
tween word vectors and human perceived semantic simi-
larity. The goal is to measure how well the notion of hu-
man perceived similarity is captured by the word vector
representations.

One commonly used evaluator is the cosine similarity
defined by
Wy Wy

cos O ) = 1 T
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Figure 6: Word meanings communities of kobylka in word vector space.

where w, and wy are two word vectors and ||w|| and ||wy||
are the L norm.

This test computes the correlation between all vector di-
mensions, independent of their relevance for a given word
pair or a semantic cluster. Many datasets are created for
word similarity evaluation, unfortunately, there is no this
kind of dataset for the Slovak language. In Table 1, we
present the several words and list of their 20 nearest words,
which are the results of our proposed model. We use co-
sine similarity as our distance metric and following setting
of Node2Vec algorithm:

e Number of walks n: 20,

walk length [: 100,

p: 10,
o ¢: 1.

Several words in Table 1 have multiple meaning. For
example, kobylka has 3 meanings:

1. miniature of a mare, female horse,
2. meadow jumping insect,

3. a string-supporting component of musical instru-
ments.

Figure [f] shows that our word vector space captures the
individual meanings of words by grouping words from one
meaning into the community.

6 Conclusion

In this work, we offer a solution to the problem of a lack of
text data for building word embedding. As a data source,
we use a dictionary instead of a corpus. From the data, we
have constructed the word network in which we transform
each node into the vector space. In the section Experi-
ments, we show that word vectors capture semantic infor-
mation what is the main idea behind of word embedding.
In addition, we have presented that vector space captures
more senses for multiple meaning words.

As a possible extension of this work is to enrich our
vector space with grammatical information too (vectors of
adjectives will be closer to each other than vectors of ad-
jective and verb). As we already mentioned, our graph
contains only word lemmas, but it is also possible to add
different shapes of a word into vector space.

In addition, we have presented that vector space is an
appropriate representation for multiple meaning words.
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