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Abstract: This paper studies the application of
variational autoencoders (VAEs) to online learning
from malware detection data. To this end, it em-
ploys a large real-world dataset of anonymized high-
dimensional data collected during 375 consecutive
weeks. Several VAEs were trained on selected subsets
of this time series and subsequently tested on different
subsets. For the assessment of their performance, the
accuracy metric is complemented with the Wasser-
stein distance. In addition, the influence of different
kinds of data normalization on the VAE perfomance
has been investigated. Finally, the combinations of a
VAE with two multi-layer perceptorns (MLPs) have
been investigated, which has lead to the surprising
result that the impact of such a combination on mal-
ware detection is positive for a simple and superficially
optimized MLP, but negative for a complex and well
optimized one.

1 Introduction

Neural networks are popular due to their perfor-
mance, versatility, scalability and learning of features.
Due to feature learning, a neural network, especially
a deep one generally does not need extensive feature
engineering. On the other hand, it requires a large
amount of training data. There exist application ar-
eas where feature distribution and optimal classifica-
tion can change in time. Classification in such situa-
tions is often called online classification. One of such
areas is malware detection. The reason for changing
distribution in malware detection is data drift, which
comes from several sources. Firstly, benign programs
are using different frameworks or statically linked li-
braries based on changing popularity. Secondly, mali-
cious programs attempt to hide by copying clean pro-
gram’s code and behaviour, or using evading tech-
niques like the manipulation of code during runtime,
and those techniques are also changing in time, as a
reaction on updating the databases of malware detec-
tion software. For this reason, neural networks hardly
ever have enough training data to be promptly pre-
pared for new threats. Moreover, even if they had
enough data, their training would probably be too
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slow. This paper reports a work in progress inves-
tigating one of the possibilities to adapt neural net-
works for malware detection. We prepared a hybrid
model that consists of multiple pairs of a generator
and a classifier. Our idea is to make the generators
learn the history and later use them for data augmen-
tation because many malware evasion techniques are
shared. As the generators, we use variational autoen-
coders (VAEs), and classification is performed using
multi-layer neural networks. Firstly, we present re-
sults of our hybrid classification-autoencoder model,
which employs a kind of transient feature learning.
Secondly, we investigate how an autoencoder behaves
when it is trained with high amounts of outliers.

In Section 2, we survey techniques for online mal-
ware detection. Section 3 is devoted to the principles
of methods employed in our investigation. Section 4
present the results of performed experiments.

2 Online Malware Detection

Malware is continuously evolving by exploiting new
vulnerabilities and examining evading techniques [7].
This causes significant changes in malware behaviour
and consequently complicates the application of clas-
sification techniques for malware detection. These
techniques must be precise enough not to bother user
with false positives, as well as highly adaptive in order
to detect new threats as soon as possible.

Malware detection techniques are static and dy-
namic [8]. While static methods are focused on an
analysis of program code without actually running
a particular program, dynamic methods analyse pro-
grams behaviour. Their main benefit is a potentially
finite number of inspected behaviours. Commonly
used features for dynamic analysis are resources, priv-
ileges, calls (system or APIs) and results of tracking
sensitive data (e-mails, etc.) inside of an applica-
tion [7].

One of the successful examples of the dynamic ap-
proach to malware detection is DroidOL [7]. It anal-
yses inter-procedural control-flow sub-graphs with an
adaption of the Weisfeiler-Lehman Kernel (WL). WL
was successfully used to classify graph type with re-
markable speed thanks to its linear time complexity.
The authors of DroidOL found out that this represen-
tation is robust against hiding attempts of malicious
software. After WL prepossessing, DroidOL applies



a passive-aggressive classifier, which is a kind of on-
line learning methods suited for big data. On real
Android applications, DroidOL outperforms state-of-
the-art malware detectors.

Online Support Vector Machines with RBF kernel
were investigated in [9], and they use features based
on application behaviour, too.

A different approach to malicious software was in-
vestigated in [8]. The authors understand that al-
lowing every application access to every information
(location, contacts, pictures, . . .) is not ideal. Alter-
natively, constantly bothering users by attributions
of privileges could make them indifferent. Their sys-
tem XDroid [8] tackles this problem by online hidden
Markov model (HMM) learning users priorities.

This paper reliews on the content of [10] where the
main idea is firstly introduced, now we try to iden-
tify the problems we had and try to come up with
a solution that could be useful in similar situations.
We are especially interested in the difficulty of VAE
training since it is a model which is usually applied to
problems where pictures are involved. Pictures have
really nice property – all features have limited, sim-
ilarly important values. It could also be the reason
why VAE usually smoothes generated samples [5], it
exploits spatial dependence, but the model does not
have enough power to learn proper borders between
objects. The malware detection requires a similar ap-
proach – some features are independent, but others
are highly dependent. Nevertheless, the features are
not similarly distributed.

3 Methodology

3.1 Autoencoders

Autoencoders are artificial neural networks capable of
nonlinear space reduction. They are trained almost
like classical neural networks for regression, but their
objective is the reconstruction of their input. The re-
construction function is any loss function that could
be used for regression problems. A usual choice is
the mean squared error (MSE) or the mean absolute
error (MAE). Their main benefit comes from the in-
troduction of a bottleneck. The bottleneck can be a
narrow part of the network or some heavy regularisa-
tion. Such a bottleneck is required to have a restricted
flow of information. This restriction causes an autoen-
coder to preserve only the most important patterns in
data and drop that kind of information that can be
easily deduced or is noisy. An interesting fact is that
neural networks with identity activation function and
MSE loss converge to the same mapping as the prin-
cipal component analysis transformation [6].

There exist several kinds of autoencoders. Most
commonly, they are used as a dimensionality reduc-
tion method, or for denoising – where the input is

formed by corrupted image while a crisp image is ex-
pected as an output [1, 5].

3.2 Variational Autoencoder (VAE)

Sometimes new data is required to be produced based
on a small number of real samples. For these types
of problems, autoencoders offer a solution. Bottle-
necks significantly reduce chances for overtraining
while maintaining appropriate power due to nonlin-
ear space reduction.

One problem remains: if we would like to generate
a new sample, we need to know the distribution of
codings. For this reason, VAE adds two updates to
regular autoencoder that makes codings obey some
distribution (usually normal). The first update is to
add another term in the model’s loss. The Kullback-
Leibler (KL) divergence is a measure that relates two
distributions µ and ν and is defined by

DKL(µ ‖ ν) = H(µ,ν)−H(µ)

=−
∫
Rn

µ(x) lnν(x)dx+
∫
Rn

µ(x) ln µ(x)dx

=
∫
Rn

µ(x) ln
(

µ(x)
ν(x)

)
dx,

where H(µ,ν) is cross-entropy and H(µ) is entropy.
If µ and ν equals, the divergence is 0. Otherwise, it
is a positive value.

The model can link small changes in codings with
large changes in result, giving an opportunity to over-
training. So the second update is to add uncertainty
into codings. In practice, the coding layer of VAE
is split into two branches, one for means and one for
variances. The second part of the network – decoder
then receives samples based on these parameters of
the generating distributions. In fact, it is common to
use the logarithm of variance since it has a more suit-
able range. Then a loss based on the KL divergence
can be reduced to

LVAE = LReconstruction −
1

2N

N

∑
i=1

G

∑
l=1

(
1+ vil −m2

il − evil
)

where N is the batch size, G is the coding dimension,
vi j is the coding variance and mi j is the coding mean
[6]. A scheme of a small VAE is depicted in Figure 1.

3.3 Wasserstein distance

Let ‖·‖ be an arbitrary norm on Rn,n ∈N and µ,ν be
probability measures on Rn with finite first moments.
For each n-dimensional random vector X , denote
D(X) the distribution of X . Then the Wasserstein
distance of order 1, or simply Wasserstein distance
(aka Wasserstein measure, Kantorovich-Rubinstein
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Figure 1: Variational autoencoder. Gray nodes are
operations, µi,σi nodes have linear activation fucn-
tion.

distance, earth mover’s distance) between µ and ν

corresponding to the norm ‖ · ‖ is defined [4, 11]:

W1(µ,ν) =W (µ,ν) =

= inf{E‖X −Y‖ | D(X) = µ ∧ D(Y ) = ν} . (1)

We decided to use the Wasserstein distance as
a method for model comparison. Unlike Kullback-
Leibler divergence, it is a metric – it is symmet-
ric and fulfills the triangle inequality. Moreover, it
does not require the considered measures to share a
probability space. The Wasserstein distance is also
scale sensitive W (cµ,cν)≤ cβW (µ,ν) and sum invari-
ant W (µ +A,ν +A) ≤ W (µ,ν) for any β ,c > 0 and
A ∈ Rn [2]. Therefore, it provides us some intuition
about our results.

3.4 Considered kinds of normalization

All included attributes of the data were normal-
ized with 14 different transforming functions, denoted
T1−T14. The definitions of nearly all of them are quite
simple, therefore, they are merely listed in Table 1.
The only exception is T5, which performs a power
transformation proposed by Yeo and Johnson [12]. It
is based on the popular Box-Cox transform [3].

We use the following notations: a ∈ R denotes an
arbitrary value of a transformed attribute A, whereas
A denotes the set of values of A in the training data
a1, . . . ,ap, ‖A‖ denotes the set of absolute values of A
in ‖a1‖, . . . ,‖ap‖, Aq,q ∈ (0,1) denotes the quantile q

Table 1: Functions considered as normailizing trans-
formations of data attributes.

Function definition Mnemonic name
T1(a) = a−minA

maxA−minA min-max
T2(a) = a

max‖A‖ max-abs

T3(a) =
a−∑

p
j=1 a j√

∑
p
i=1(ai− 1

p ∑
p
j=1 a j)2

standardize

T4(a) =
a−A0.5

A0.75−A0.25
robust

T5(a) = ψ(a, λ̂ ) with ψ power
and λ̂ defined in (2)–(3)
T6(a) = q such that Aq = a perc-uniform
T7(a) = φ−1(T6(a)) perc-normal
T8(a) = T1(log(a+ e−minA)) log-min-max
T9(a) = T2(log(a+ e−minA)) log-max-abs
T10(a) = T3(log(a+ e−minA)) log-standardize
T11(a) = T4(log(a+ e−minA)) log-robust
T12(a) = T5(log(a+ e−minA)) log-power
T13(a) = T6(log(a+ e−minA)) log-perc-uniform
T14(a) = T7(log(a+ e−minA)) log-perc-normal

of a sample of A in the training data, φ is the cumula-
tive distribution function of the standard normal dis-
tribution N(0,1), and e is the Euler constant, on which
natural logarithms are based. Because T6,T7,T13,T14
are based on quantiles prediction, the final transfor-
mations are formed by substitute linear interpolations
for those quantiles. Due to performance reasons, the
quantiles are predicted based on 100000 samples of A.

This function is defined in four steps:

I. A parametrized version ψ of the intended trans-
formation is defined, which depends on a param-
eter λ ∈ R:

ψ(a,λ ) =


(a+1)λ−1

λ
if a ∈ R≥0,λ 6= 0,

ln(a+1) if a ∈ R≥0,λ = 0,

− (−x+1)2−λ−1
2−λ

if a ∈ R<0,λ 6= 2,
− ln(−x+1) if a ∈ R<0,λ = 2.

(2)

II. It is assumed that for some range of values of the
parameter λ , the value of ψ(a,λ ) is a random
variable with the distribution N(µ,σ2) for some
µ ∈ R,σ ∈ R>0. Consequently, the log-likelihood
of the parameters (λ ,µ,σ2) with respect to train-
ing data is

`(λ ,µ,σ2; a1, . . . ,ap) =

=− p
2

log(2π)− p
2

logσ
2 − 1

2σ2

p

∑
i=1

(ψ(ai,λ )−µ)2

+(λ −1)
p

∑
i=1

sign(ai) log(‖ai‖+1).



III. The parameters µ and σ2 are for each λ ∈R esti-
mated, respectively, with the following estimates
µ̂(λ ) and σ̂2(λ ):

µ̂(λ ) =
1
p

p

∑
i=1

ψ(ai,λ ),

σ̂
2(λ ) =

1
p

p

∑
i=1

(ψ(ai,λ )− µ̂(λ ))2.

IV. For the parameter λ , the maximum likelihood
estimate is used, after replacing the other two
parameters by their estimates:

λ̂ = max
λ∈R

`(λ , µ̂(λ ), σ̂2(λ ); a1, . . . ,ap) =

max
λ∈R

(λ−1)
p

∑
i=1

sign(ai) log(‖ai‖+1)− p
2

logσ
2(λ ).

(3)

We cannot measure the Wasserstein distance in
transformed space because there is no clear way of
comparing the results between transformations. It
is not a problem for most of the transformations we
use, but the perc-uniform and perc-normal are slightly
problematic. We have to use a linear interpolation
on a sequence of quantiles in order to approximate
the initial dataset. For this reason, we expect to
have some increase in the Wasserstein distance on
perc variants since it is nonzero value even if we com-
pare original dataset to its forward and then backward
transformed version.

4 Experimental Evaluation

4.1 Available Malware Data
We use real-word anonymized data, which feature
malware and clean software in several categories, but
we consider only two by merging some of them. Anti-
malware software producers must protect their know-
how by providing only data which were anonymized.
For us, the anonymization process is unknown. It
essentially hides the meaning of features in provided
datasets by stripping it in the documentation and ap-
plying unknown functions on those columns. The fea-
ture space is very complex, there are 540 features with
various distributions. This makes particularly diffi-
cult to choose the correct data scaling. In Figure 2,
several kinds of features are differentiated:

• Binary feature
• Gaussian feature: both absolute skewness and ex-

cess kurtosis are less than 2
• Highly skewed feature: skewness > 30
• Almost constant feature: more than 99.9 % val-

ues are identical
• Other unknown distributions

Highly skewed

20%

Almost constant

19%

Binary 21%

Gaussian

10%

Other

30%

Figure 2: Distribution in the feature space.

4.2 Experiments with Different
Normalizations

Our dataset has many outliers. We were interested
in how outliers effect generator. Therefore, we com-
pared two common loss functions used for regression,
both combined with the kinds of normalization con-
sidered in Subsection 3.4. The first was the mean
square error (MSE) and the second was the mean ab-
solute error (MAE). Both are tested on a rather large
network with 7 layers [541,306,173,98,56,32,18,10],
with ELU as activation function and batch normal-
isation on every layer except the coding and output
one. The results can be seen in Figure 4 It looks
like the best normalisation for our data is the power
transform, but the differences between different kinds
of normalizations are, in general, small. It transforms
data to be more normal. Both perc-uniform and perc-
normal performed excellently. It seems that small dis-
tortions created by linear interpolations of quantiles
do not deteriorate result.

It is better to use raw data than robust, min-max
and max-abs types of normalisations, especially if
MSE is employed. We observe that some of the fea-
tures consist of a small-valued majority with some
huge values. Min-max and max-abs transformations
could make this range very small, demanding high
precision on regression for the smaller ones. On the
other hand, the robust transformation could make
the range larger because quantities could be evalu-
ated only on the small values – artificially increasing
existing variance.

It does not seem that the log variants have any pos-
itive effect, but we saw a slight increase in min-max
and max-abs transformations. This is expected be-
cause logarithm reduces ranges of values. Robust
transformation has a substantial incompatibility with
logarithm transformation because log-robust transfor-
mation operates on logarithmic space. After exponen-
tiation, the errors could be much larger. However, this
explanation fails if we consider that log-perc transfor-
mations performed almost equally.



MAE is generally better. MSE is equal to MAE
in perc-uniform, perc-normal, log-perc-uniform, log-
perc-normal, power, log-power.

week 1 week 2 week 3

VAE

MLP

VAE

MLP

VAE

MLP

Figure 3: Training data paths for VAEs and MLPs for
each week. Red indicates generated data, blue adds
label classifications to features.

We also tried to investigate how an increase in cod-
ing size affect the resulting performance. It seems
there is no difference, 10 as a coding dimension (pre-
dicted normal distributions of 2 parameters) is suffi-
cient no matter which normalisation was chosen. The
results can be seen in Figure 5.

Figure 6 shows expected behaviour. The VAE has
trouble expressing features with higher variance. It is
evident, especially on the highest tertile, where differ-
ences between distributions are almost non-existent.

A next view on the data reveals something interest-
ing – there is a great difference between the data with
different signs of skew of a particular feature. Nega-
tive skew was much harder to imitate while positive
skew was easier to reproduce than in the other two
middle quartiles. This could be a property of dataset
features or under-training. It seems that max-abs and
min-max normalizations have a slightly different re-
sponse.

4.3 Experiments with Different MLPs

We were interested in the ability of generative models
to capture important information (e.g. vanishing or
strange behaviour) and ignore the noise (waiting for
user input). As the next experiment, we prepared a
balanced dataset extended by a feature reporting true
benign and malware labels. Firstly, we let the genera-
tive model learn on the first part of data without true
labels. Then, every other part of the data was aug-
mented by classified features generated by the previ-
ous generator and classified by the previous classifier.
This process is depicted in Figure 3.

We prepared two results of Bayesian optimisation
of MLPs hyperparameters. The first, MLP1 is the re-
sult of mid-optimisation and MLP2 is the final result.
The hyperparameters are in Tables ?? and ??. Even

thought the MLP1 is significantly worse than MLP2
in 94% of weeks, when VAE was added, it became
significantly better on 18% of weeks while MLP2 on
none them.

In Figure 8, unusual behaviour of the compared
methods can be seen. The VAE with the MLP1 is
significantly better than the VAE with the MLP2 for
the weeks 1-71. This is interesting because a sepa-
rate MLP1 trained on a small amount of samples is
generally worse than MLP2.

Several possibilities explain such behaviour.
Firstly, the hyperparameters of MLP2 can be sim-
ply overtrained on training samples. Instead of
learning about patterns, the model may learn small
mistakes made by VAE and try to infer based on
them. Secondly, MLP1 may lack some form of
regularization.

5 Conclusion

This paper investigated the application of variational
autoencoders to online learning from malware detec-
tion data. To this end, it employed a large real-
world dataset of anonymized high-dimensional data.
We prepared a hybrid model that consists of multiple
pairs of a generator and a classifier. The basic idea
of our approach is to make the generators learn the
history and later use it for data augmentation. In ad-
dition, the influence of different kinds of data normal-
ization on the VAE perfomance has been investigated.
For the assessment of VAE performance, accuracy has
been complemented with the Wasserstein distance.

The experiments have proven our expectation that
for highly heterogeneous data, normalization is rele-
vant. However, the most basic transformations like
min-max and max-abs were worse than using the raw
value without any transformation. The experiments
have also shown that variational autoencoders can be
used for data augmentation in MLP-based classifica-
tion. However, one should be aware of the hyperpa-
rameters determining the size of the classifying MLP.
If it is too large, generated noise produced by VAE
could be detrimental instead.
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Figure 4: The graph shows reactions of the VAE on the loss function given a dataset normalization.
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Figure 5: The graph shows reactions of the VAE on the increase in coding size given a dataset normalization.
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Table 2: Results of MLP1 and MLP2 hyperparameter optimization using GPyOpt library.

Name Possibilities Selected values
MLP1 MLP2

Learning rate 0.0001-0.01 0.0002 0.00763
Batch norm. yes/no yes yes
Dropout 0-0.7 0 0.22
Gaussian noise 0-1.0 0 0.795
Layers 1-1-1-2 up to 400-400-400-400-2 69-32-30-11-2 354-322-316-305-2
Activation ELU, SELU, softplus, softsign, ReLU,

tanh, sigmoid, leaky ReLU, PReLU
tanh ReLU

Minibatch size 10-1000 410 730
L1 regularization 0-0.1 0.00016 0.01
L2 regularization 0-0.1 0.09229 0.0998
Data scaling standard, robust min-max min-max standard
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