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Abstract: We study descriptional complexity of push
down automata (PDA) accepting regular languages
and context free languages. We have shown that the
number of states of a PDA accepting a regular lan-
guage can be smaller than that of a corresponding
finite state automaton by utilizing stack symbols. No
complexity function having desirable properties and
combining the number of states and the number of
stack symbols exists. We therefore study the num-
ber of stack symbols complexity in the family of one
state PDA and the state complexity in the family of
PDA using at most two stack symbols. We exhibit
two infinite sequences of regular languages and prove
tight bounds on their complexity using the above
families of PDA. We also prove upper and lower
bounds on the complexity of sequences of context-
free languages and analyze the impact of the mode
of acceptance.

Introduction

Although measuring complexity of problem solution
by time and space requirements is most frequently
used, the descriptional complexity is achieving more
interest in recent decades. The complexity of a prob-
lem (given by a language L) solution is measured by
a complexity of a device (e.g., an automaton) defin-
ing L. Measuring complexity of finite automata by
the number of states dates back to the early days
of automata theory. Majority of descriptional com-
plexity of automata research concerns finite automata
(see, e.g., survey papers [1], [2], [3]). The descrip-
tional complexity of PDA was addressed by Gold-
stine at al.[4] and [5] where relation of the number
of states and the number of stack symbols was stud-
ied. Later particular types of PDA were considered
(see, e.g., surveys [6], [7]) In connection to the re-
search on usefulness of information (see, e.g., Rovan
and Sadovsky [8]) measuring complexity of PDA as
a more powerful model became important (see the
deterministic PDA case in Labáth and Rovan [9]).

The number of states was a natural descriptional
complexity measure for finite state automata (FSA).
In case of PDA there are two measures at hand – the
number of states measure and the number of stack

*This research has been supported in part by the grant
1/0601/20 of the Slovak Scientific Grant Agency VEGA.

Copyright ©2020 for this paper by its authors. Use permit-
ted under Creative Commons License Attribution 4.0 International
(CC BY 4.0).

symbols measure. Both states and stack symbols
are depended on each other. Goldstine, Price and
Wotschke showed that there exists a transformation
for any PDA using n states and p stack symbols to an
equivalent PDA reducing the number of states to any
desired number n0 ≥ 1 [4] by increasing the number
of stack symbols. No complexity measure for PDA
having desirable properties and combining the num-
ber of states and the number of stack symbols exists.
Therefore, we consider two subfamilies of PDA, one
state PDA and max two stack symbols PDA. Note that
each of them defines the whole family of context-free
languages. In the one state PDA subfamily, we fix the
number of states to one and use the number of stack
symbols as the measure. In the second subfamily, we
fix the number of stack symbols to at most two and
measure the number of states.

In this paper, we study descriptional complexity of
PDA accepting regular and context-free languages.
We exhibit some infinite sequences of languages al-
lowing us to prove some lower and upper bounds on
their descriptional complexity using the above sub-
families of PDA. We also show that acceptance mode
can have impact on the descriptional complexity. The
results presented are based on the Master Thesis of
Lukáš Kiss [10].

1 Preliminaries and Notation

We shall assume basic knowledge and notation in
formal languages theory. We mention some of the
notation we shall use. The length of a word w is de-
noted by |w|. We use ε to denote the empty word.
The cardinality of a set S is denoted by |S|. A nonde-
terministic push down automaton (PDA) is a 7-tuple
A = (Q,Σ,Γ,δ ,q0,Z0,F) with the usual meaning of
its components. Note that a PDA can in one com-
putation step replace the top of the stack symbol by
a word. Moreover, the PDA cannot move with the
empty stack. The language accepted by a PDA A
accepting by empty stack is denoted by N(A) and
the language accepted by a PDA A accepting by fi-
nal state is denoted by L(A). The family of context-
free languages is denoted by LCF . We shall also use
the operation shuffle. Given an alphabet Σ, the Shuf-
fle of two languages L1,L2 ⊆ Σ∗ is Shu f (L1,L2) =
{w|∃n ∈ N,u1, . . . ,un,v1, . . . ,vn ∈ Σ∗; such that w =
u1v1u2v2 . . .unvn∧u1 . . .un ∈ L1∧ v1 . . .vn ∈ L2}.



2 Descriptional Complexity of PDA

In case of finite automata, the number of states is the
most natural and mostly used descriptional complex-
ity measure. In case of push-down automata (PDA)
the size of the stack alphabet is another important
parameter. It is known ([4], [5]) that it is possible
to reduce the number of stack symbols by increas-
ing the number of states and vice versa. It is also
known (see, e.g., [11]) that one state suffices to define
any context-free language and similarly two stack
symbols suffice to define any context-free language.
Thus it is natural to look for a descriptional complex-
ity measure for PDA that would "combine" the two
parameters – the number of states n and the number
of stack symbols (the size of the stack alphabet) p.
Just like in the case of deterministic PDA [9] it can
be shown that a function assigning natural numbers
to pairs (n, p) and having some desirable properties 1

does not exist.
Let us consider some subfamilies of push-down

automata.

Notation 1. PDA(n, p) is the family of push down
automata using at most n states and at most p stack
symbols.

Since there is no function on pairs (n, p) assigning
the same complexity to two minimal automata for the
same language, we shall concentrate on the following
two ’extreme’ subfamilies of PDA defining the whole
family of context-free languages:

• PDA(1, p) - the subfamily of one state PDA us-
ing the number of stack symbols to measure the
complexity.

• PDA(n,2) - the subfamily of all PDA using at
most two stack symbols, measuring complexity
by the number of states.

For each of these subfamilies of PDA, we define a
minimal complexity of a given context-free language
L as follows:

Definition 1. Let L be a context-free language. The
stack symbol complexity of L, denoted by Γc(L), is
the smallest number of stack symbols of any A in
PDA(1, p) that accepts L.

Definition 2. Let L be a context-free language. The
state complexity of L, denoted by Qc(L), is the small-
est number of states of any A in PDA(n,2) that ac-
cepts L.

In what follows, we shall use constructions and re-
sults on reducing the number of stack symbols by in-
creasing the number of states in [5] and on reduc-
ing the number of states by increasing the number of
stack symbols in [4].

1Preserving the natural partial order on pairs (n, p) based on
component wise comparison and assigning the same value to pairs
(n1, p1) and (n2, p2) corresponding to two minimal PDA’s for the
same language.

3 Push Down Automata on Regular
Languages

We shall first consider PDA on regular languages.
We shall consider the question whether and to what
extent the number of states of a finite state automa-
ton (FSA) can be reduced by using stack with stack
alphabet of certain size. We shall consider this ques-
tion for both acceptance modes of PDA. Next, we
shall prove some lower bounds for PDA in the two
particular subfamilies of PDA mentioned above.

3.1 Saving States by Adding Stack

Given an arbitrary finite state automaton, we shall
construct an equivalent push down automaton with
fewer states. It is easy to see that by allowing any
number of stack symbols it is possible to have a one
state PDA. Suppose, we allow a particular number of
stack symbols. How much can the number of states
of an equivalent PDA be reduced compared to the
number of states of a given finite state automaton?

Theorem 1. For any n state FSA A1 there exists a
PDA A2 with d n

pe states and p stack symbols such
that N(A2) = L(A1)

Proof. The push down automaton represents each
state of the finite state automaton A1 by a coding con-
sisting of a state and a stack symbol on the top of the
stack. The stack of A2 shall contain at most one sym-
bol. Each transition of the automaton A1 from a state
q to s is represented by a corresponding change of the
state and the top stack symbol in the automaton A2.
Each accepting state of A1 has also a corresponding
coding s and Z. For each such coding corresponding
to some accepting state of A1 can A2, in addition to
the simulation of a step of A1, nondeterministically
decide to pop this stack symbol and thus empty its
stack. If the stack is emptied before the automaton
A2 has finished processing the input word, A2 shall
halt, otherwise A2 accepts the input word if and only
if the automaton A1 accepts.

The construction in the proof of Theorem 1 can be
easily modified for acceptance by accepting state. It
suffices to replace the possibility of popping the stack
by a transition to a new accepting state. We thus have
the following lemma.

Lemma 1. For each n state FSA A1 there exists a
PDA A2 with d n

pe+1 states and p stack symbols such
that L(A2) = L(A1)

This upper bound construction introduces one
more state, the accepting state, compared to the pre-
vious upper bound construction, but not in all cases
the additional accepting state is necessary 2. The

2Consider, e.g., the languages Σ∗ or /0.



question of necessity of the new state for a language
is by itself an interesting independent problem.

It may seem that there is no significant impact of
the choice of the accepting mode. By considering
some lower bounds in the next subsection we shall
see that this is not necessarily a case.

3.2 Lower Bounds for PDA on Regular
Languages

In this subsection, we shall consider lower bounds on
the complexity of particular regular languages con-
sidering PDA in the two above mentioned subfami-
lies of PDA, namely PDA(1, p) and PDA(n,2). We
shall show that for the empty stack acceptance the
upper bound construction in the proof of Theorem 1
is optimal for one state PDA.

We shall now introduce two particular sequences
of regular languages to be used in our lower bound
proofs.

Notation 2. Let a1, . . . ,an be distinct symbols for any
n≥ 1. Let

• L1[n] = a∗1a∗2 . . .a
∗
n

• L2[n] = {akn
1 |k ≥ 0}

It is easy to see that the state complexity for both
L1[n] and L2[n] on finite state automata is n.

The complexity of L1[n]

We shall show that the stack symbols complexity of
L1[n] on one state PDA is n.

Theorem 2. Γc(L1[n]) = n,∀n ∈ N.

Proof. We shall show that Γc(L1[n]) ≤ n by con-
structing a push-down automaton An. The automa-
ton An uses the top stack symbol Zi as a "state". Its
stack will contain at most one symbol. If Zi is on the
top of the stack, the automaton knows that it already
has processed all input symbols a1, . . . ,ai−1. The au-
tomaton can pop the top stack symbol at any time and
empty its stack.

We shall prove Γc(L1[n])≥ n by contradiction.
Let An in PDA(1, p) be an automaton accepting the

language L1[n] for p < n. By the pigeon hole prin-
ciple, there exist two input symbols ai and a j such
that i < j, on which the automaton An does a com-
putation step on the same stack symbol Z during an
accepting computation on a word w = am1

1 am2
2 . . .amn

n
for m1, . . . ,mn ≥ 2p.

Suppose the automaton An during an accepting
computation on w pushes γi on the input symbol ai
and γ j on the input symbol a j, having the stack sym-
bol Z on the top of the stack in each case. The
automaton An accepts the word w by empty stack.

Therefore, there exist some sequences of symbols
ui and u j, on which An removes γi and γ j from the
stack3.

Let k,1 ≤ k ≤ m j, be such that the automaton An
has the stack symbol Z on the top of the stack after
processing am1

1 am2
2 . . .ami

i . . .ak
j. Using the accepting

computation of An on w we shall modify w and the
accepting computation so that an accepting compu-
tation on a word not in L1[n] is obtained. Following
am1

1 am2
2 . . .ami

i . . .ak
j the automaton An can read the in-

put symbol ai and replace the stack symbol Z on the
top by γi. Now, the word ui can follow on the input.
After processing this next part of the input word, ui,
the automaton can remove the γi and leave a word
γ f in

4 on the stack. Note that γ f in also appears on the
stack during the accepting computation of An on w.
Thus there exists some word v, on which the automa-
ton An removes γ f in from the stack and accepts the
word w by empty stack. Therefore An also accepts
ŵ = am1

1 am2
2 . . .ami

i . . .ak
jaiuiv /∈ L1[n].

The complexity of L2[n]

We could use the upper bound construction in the
proof of Theorem 1 on the minimal finite state au-
tomaton for the language5 L2[n]. However, this does
not result in a minimal push down automaton in our
complexity measures. Instead of using the combina-
tion of a state and a top stack symbol to represent the
state of the minimal FSA, the minimal push down
automaton uses its stack as a counter.

Before we present the construction and the proof,
we shall prove that no push down automaton with
one state and one stack symbol can accept L2[n] for 6

n≥ 2.

Lemma 2. There does not exist a PDA using one
state and one stack symbol accepting L2[n],n≥ 2.

Proof. By contradiction, let there exist a push down
automaton A using one state q and one stack symbol
Z0 accepting L2[n],n ≥ 2. We know that A must use
the empty stack acceptance mode. Therefore, A has
to pop Z0 from the stack on the input symbol a1 or ε .

If A pops Z0 on the input symbol a1 then A accepts
the word a1 /∈ L2[n] for any n≥ 2.

If A pops Z0 on ε and pushes on a1 a word
γ ∈ Z∗0 on the stack then A accepts the word a1 /∈
L2[n] for any n≥ 2.

Now, we are ready to prove matching upper and
lower bounds for the language L2[n].

3If γi = ε then ui = ε
4Where γ f inZ was the content of the stack after processing

am1
1 am2

2 . . .ami
i . . .ak

j .
5The minimal finite state automaton requires exactly n states.
6A finite state automaton using one state can accept L =

{a1}∗ = L2[n], for n = 1.



Theorem 3. Γc(L2[n]) = 2, for any n≥ 2.

Proof. We shall prove that Γc(L2[n]) ≤ 2 by con-
structing A in PDA(1,2) accepting the language
L2[n].

The automaton uses the bottom of stack symbol
Z0 to indicate the starting point of a block and Z1 as a
representation of a1 in the stack. On Z0 it can nonde-
terministically decide to start processing a next block
of n symbols a1 on the input or empty the stack. The
automaton pushes n sized block of Z1 on the stack
and for each a1 it pops Z1 from the stack until it
reaches the symbol Z0. Then the process repeats.

The fact that Γc(L2[n]) ≥ 2 has been already
shown in the Lemma 2.

Moreover, the construction in the proof of this the-
orem gives state complexity of each L2[n] when con-
sidering PDA in PDA(n,2).

Corollary 1. Qc(L2[n]) = 1, for any n≥ 1.

The previous construction results in a minimal
push down automaton that accepts L2[n] by empty
stack. The question arises, how many states are used
by a minimal push down automaton using two stack
symbols accepting the language L2[n] by final state?
Clearly, it can not be one state. Therefore, the mini-
mal PDA needs at least two states. The next theorem
shows that two states are not only necessary, but also
sufficient for two stack symbols PDA accepting L2[n]
by accepting state.

Theorem 4. Let A be a push down automaton using
two stack symbols accepting the language L2[n],n≥
2. Then two states are necessary and sufficient to
accept L2[n] by final state.

Proof. We first show that two states are sufficient to
accept the language L2[n] by final state by construct-
ing a PDA A. The construction of the minimal PDA
is similar to that in the proof of the Theorem 3. In-
stead of popping nondeterministically the symbol Z0
from the stack and then accepting by empty stack,
this automaton can move nondeterministically to the
new accepting state.

We now show (by contradiction) that two states are
necessary to accept the language L2[n] by final state
using just 2 stack symbols. Let us assume that an
automaton A using one state and two stack symbols
exists. Hence, it has just one state, then this state
has to be the accepting state. Since this automaton
accepts the word an

1, it has some transitions on a1.
Therefore, the automaton also accepts the word a1 /∈
L2[n].

3.3 The complexity on one stack symbol PDA

In the previous part, we proved that any push down
automaton in PDA(1, p) needs at least two stack sym-
bols to accept the language L2[n] for n ≥ 2. Let us

study one stack symbol PDA accepting the language
L2[n], i.e., the PDA in PDA(n,1). We shall show that
there exists a minimal PDA using one stack symbol
and two states accepting the language L2[n] by empty
stack and a minimal PDA using one stack symbol and
n states accepting the same language by final state.

We can conclude that the type of acceptance mode
does have an effect on the complexity of a minimal
PDA for a given language.

Accepting by empty stack

Let us consider push down automata using one stack
symbol and accepting by empty stack. In this setup,
we can construct a sequence of PDA A1,A2, . . . for
the sequence of languages L2[1],L2[2], . . . such that
each PDA shall use one stack symbol and two states.
We shall prove this in the next Theorem.

Theorem 5. Let n≥ 2. The minimal automaton An ∈
PDA(n,1) accepting the language L2[n] by empty
stack has two states.

Proof. The automaton An guesses the number of
blocks of length n in the initial state q0 by push-
ing blocks of the stack symbol Z0 on the stack in ε

moves. It can nondeterministically move to the sec-
ond state q1 in which it compares the number of stack
symbols in the stack to the number of symbols a1 on
the input. Note that, the automaton pushes only n−1
symbols on the top of the stack when it changes state.

By Lemma 2, the automaton accepting L2[n], n≥ 2
using one state and one stack symbol does not exists.
Therefore, the automaton An is minimal.

Accepting by state

Finally, we focus on the push down automata us-
ing one stack symbol accepting by final state. Even
though, the previous automata had just one stack
symbol, we were able to construct a sequence of au-
tomata accepting the languages L2[n] each using two
states only. Let us show that this is not the case for
automata using one stack symbol and accepting by
final state.

Theorem 6. Let n≥ 2. The minimal automaton An ∈
PDA(n,1) accepting the language L2[n] by accepting
state has n states.

Proof. To show the upper bound, i.e., that n states
are enough it suffices to consider the push down au-
tomaton which behaves in the same way as the finite
state automaton accepting L2[n], ignoring the stack
entirely.

We shall show (by contradiction) that the number
of states has to be at least n. Let A be a push down
automaton using one stack symbol and n− 1 states
accepting the language L2[n]. Thus A accepts w= am

1 ,
n divides m, for some m ≥ 2n. During the accepting



computation of the automaton A on the input word w
some state q will repeat.

Consider the part of the computation between the
two occurrences of the state q where some number j,
1 ≤ j ≤ n− 1 of symbols a1 was read. Suppose the
size of the stack was not increased during this part of
the computation. By leaving out this part of the com-
putation we clearly obtain an accepting computation
on the word w′ = am− j

1 /∈ L2[n]. Similarly, in case the
size of the stack was increased during this part of the
computation, by repeating this part of the computa-
tion we clearly obtain an accepting computation on
the word w” = am+ j

1 /∈ L2[n]. (Note that by consid-
ering the two cases we ensured that the computation
on the modified word does not block because of the
empty stack.)

4 PDA on Nonregular Context Free
Languages

In this section, we shall analyze complexity of (non-
regular) context free languages using both subfami-
lies of PDA considered. In PDA(1, p), we shall show
lower and upper bounds for a particular sequence of
languages and in PDA(n,2), we shall analyze the
relation of complexities for the two modes of ac-
ceptance. Furthermore we shall show some upper
bounds for a particular sequence of langauges.

4.1 The Number of Stack Symbols

Let us consider the following sequence of context
free languages.

Notation 3. Let a1, . . . ,ap,b1, . . . ,bp be distinct sym-
bols for any p≥ 1. Let

Σp = {a1, . . . ,ap,b1, . . . ,bp}
Lp = {w(h(w))R|w ∈ {a1,a2, . . . ,ap}∗}

where h is the homomorphism defined by h(ai) = bi,
for each i, 1≤ i≤ p.

We can easily see that any PDA using one state
has to use empty stack acceptance mode to accept
the language Lp. This shows that the empty stack
acceptance mode and the final state acceptance mode
do not have the same power in PDA(1, p).

Our intention is to prove that the number of stack
symbols complexity of the language Lp for one state
PDA is exactly p + 1. To prove the lower bound,
we shall first prove several lemmas. Each lemma ex-
hibits a property, each push down automaton accept-
ing Lp has to have.

Lemma 3. Let A in PDA(1, i) be an automaton ac-
cepting the language Lp, where p, i ∈ N. Let x ∈ Σp
be an input symbol. Then in each accepting compu-
tation on w ∈ Lp, w = ux jv, j ≥ 1,u,v ∈ Σ∗p, A has to
modify the stack while reading x.

Proof. Let x ∈ Σp be a symbol, which does not mod-
ify the stack in an accepting computation and let A
accept w = ux jv ∈ Lp, j ≥ 1,u,v ∈ Σ∗p. Then A also
accepts ŵ = ux j+1v /∈ Lp.

Lemma 4. Let A in PDA(1, p) be a minimal automa-
ton accepting the language Lp, where p ∈ N. Then
∀i,1≤ i≤ p ∃Z ∈ Γ such that (q0,ε) ∈ δ (q0,bi,Z).

Proof. Let us consider words w1 = am
1 bm

1 , . . . ,wp =
am

1 bm
1 in Lp for sufficiently large m. Note that the

size of the stack after reading the a-part of the words
cannot be bounded. (Otherwise, for sufficiently large
m some stack content would repeat. Leaving out this
part of the input and computation would lead to an
accepting computation on a word with smaller num-
ber of a’s and unchanged number of b’s.) Thus, af-
ter reading the a-part of the words w1, . . . ,wp the
stack will contain some (large) word in Γ+ which the
next part of the accepting computation has to remove
while reading the b-part of the word.7

Now, suppose that to the contrary of the statement
of lemma there exists some bk such that A does not
pop any stack symbol from the stack on bk. Formally,
∀Z ∈ Γ it holds that (q0,ε) /∈ δ (q0,bk,Z).

Let us analyze the accepting computation on the
word wk. Since A has to empty the stack while read-
ing the b-part of wk and cannot pop the stack symbols
while reading bk, the symbols on the stack have to be
removed in ε-transitions. Thus there are at least two
distinct symbols Z1 used in the bk transition and Z2
used in the ε-transition in Γ used in the b-part of the
accepting computation on wk. (Having these sym-
bols equal would enable accepting computation on a
word with fewer bk’s.) Neither of these symbols can
be popped from the stack by some bi, i 6= k since this
would allow to modify accepting computations on
the words w1, . . . ,wp to accepting computations on
words not in Lp. (A detailed analysis of the accept-
ing computations on the words the words w1, . . . ,wp
shows that p symbols are not enough when bk cannot
pop any symbol in Γ.)

Lemma 5. Let A in PDA(1, p) be an automaton ac-
cepting the language Lp, where p ∈ N. Suppose
(q0,ε) ∈ δ (qo,bi,Z) and (q0,ε) ∈ δ (qo,b j, Ẑ) for
i 6= j. Then Z 6= Ẑ.

Proof. Suppose that one state push down automaton
A accepting the language Lp pops on bi and b j the
same stack symbol Z from the stack and let A accepts
w = am

i bm
i . Then A accepts ŵ = am

i bm
j /∈ Lp.

Combining the previous lemmas 4 and 5, we can
infer that one state push down automaton needs at
least p stack symbols to accept Lp. The next theorem
shows that in fact p+ 1 stack symbols are required.

7The acceptance is by empty stack.



Before we show the proof of a lower bound and con-
struct an upper bound, we shall infer some properties
about the δ function from the previous lemmas.

Corollary 2. Let A = ({q0},{a1, . . . ,ap,b1, . . . ,bp},
{Z1,Z2, . . . ,Zp},δ ,q0,Zi, /0) in PDA(1, p) be an au-
tomaton accepting by empty stack the language Lp,
where p ∈ N. Then there exists some permutation
s on {1, . . . , p}, such that (q0,ε) ∈ δ (q0,bi,Zs(i)),
where Zi is a stack symbol used by the automaton
A.

We are now ready to present the complexity of the
languages Lp.

Theorem 7. Γc(Lp) = p+1, ∀p ∈ N

Proof. We shall show that Γc(Lp) ≤ p+ 1 by con-
structing an automaton A in PDA(1, p+1) accepting
Lp by empty stack.

The automaton pushes on each input symbol ai the
stack symbol Zi onto the stack. The automaton pops
the Zi from the stack on the input symbol bi. The ini-
tial stack symbol is Z0 and is kept on the top of the
stack while reading ai symbols. On any input symbol
ai, it can nondeterministically change the top stack
symbol to Zi instead of pushing the new Zi onto the
stack. This moves the push down automaton to the
next phase. In this phase it is comparing the reverse
order of b symbols to a symbols by popping Z sym-
bols from the stack. At the end of computation, the
push down automaton A accepts by empty stack.

We shall prove Γc(Lp)≥ p+1 by contradiction.
Let A in PDA(1, p) be an automaton accepting the

language Lp and let Zi be the initial stack symbol.
By corollary (2): there exists some permutation s on
{1, . . . , p}, such that (q0,ε) ∈ δ (q0,bi,Zs(i)). Then A
accepts w = bs(i) /∈ Lp.

note that this theorem shows that the number of
stack symbols complexity hierarchy of one state PDA
is not bounded.

4.2 The Number of States

We shall now discuss the influence of the acceptance
mode on the complexity. The family of one state
PDA was forced to use the empty stack acceptance
mode since the final state acceptance mode could
only be used for specific languages. The influence
of the acceptance mode on the complexity thus was
not an issue.

Comparison of Acceptance Modes

The family PDA(n,2) of automata allows both types
of acceptance mode, empty stack or final state. Any
one of them can be used to accept arbitrary context

free language. It is known ([11]) that at least two
stack symbols are necessary to accept all context-free
languages by empty stack or final state.

Let us consider the influence of these two accep-
tance modes on the complexity. We can not use
the standard constructions[11] to prove equivalence
of the computational power of the two acceptance
modes, because both of them introduce a new stack
symbol. The family of automata we consider allows
at most two stack symbols. The problem can be
solved by prefix encoding used by Goldstine, Price
and Wotschke in their paper On reducing the num-
ber of stack symbols[5]. The results they present
show the upper and lower bounds for the number of
states. These results cannot be directly applied in our
case, due to their approximate form. That is why we
present a lemma, which shows exact upper bound for
three to two stack symbol transformation.

The new automaton has fewer stack symbols, each
stack symbol Z is represented by a string h(Z). Nat-
urally this increases the number of states. In our con-
struction, let A in PDA(s,3) be an automaton using
stack symbols H1,H2,H3. We construct an equiv-
alent automaton B using two stack symbols Z0,Z1.
Each stack symbol Hi is represented in B by a string
h(Hi) of symbols Z0 and Z1. The states of B are pairs
of the form [q,γ], where q is a state of A and γ is a
proper prefix8 of h(Hi). The idea is that the automa-
ton B reads the encoded stack symbol from the stack
and saves it to the current state. Then the automaton
B does the same computation as A. For the mapping
h, we have chosen:

• h(H1) = Z1

• h(H2) = Z0Z0

• h(H3) = Z1Z0

PDA A PDA B
State Stack State Stack
q . . .H j [q,ε] . . .Zi1 . . .Zis︸ ︷︷ ︸

h(H j)

[q,Zis . . .Zi2 ] . . .Zi1
p . . .H j1 . . .H jk [p,ε] . . . Z f1 . . .Z fn︸ ︷︷ ︸

h(H j1 )...h(H jk )

Figure 1: Example of one computation step of
PDA A simulated on PDA B using (p,H j1 . . .H jk) ∈
δ (q,a,H j), where a is some input symbol. The fig-
ure illustrates the general case encoding an arbitrary
number of symbols Hi. In our case s can be at most
two.

Finally, the accepting states of B shall be all states
[q,ε], where q is an accepting state of A. The last item

8The string x is a proper prefix of xy if y 6= ε .



to specify is the initial stack symbol of B. Without
loss of generality, we can assume that H1 is the initial
stack symbol of A. Otherwise, we can rename the
stack symbols of A.

We shall now describe our construction.

Lemma 6. Let A in PDA(s,3) be an automaton.
Then there exists a push down automaton B using two
stack symbols and 2s states such that L(B) = L(A).

Proof. The construction uses the h function as an en-
coding function for stack symbols of the automaton
A to stack symbols of the automaton B. Then B simu-
lates the automaton A by decoding the encoded stack
symbols from the stack. If Z1 is on the top of the
stack and the automaton is in the state [q,ε] then it
can simulate the step of the automaton A in the state
q and H1 as the top stack symbol. On the other hand,
if the top stack symbol is Z0 and it is in the state [q,ε]
then the automaton B needs to read one more stack
symbol from the stack. So it saves the symbol read
in the state. Then it reads the next stack symbol in
the state [q,Z0] and simulates a computation step of
A.

Let us now present the construction from the
empty stack acceptance mode to the final state ac-
ceptance mode. We omit a formal description of the
transformation since it is straightforward.

Theorem 8. Given a push down automaton A using
two stack symbols and s states, there exists a push
down automaton B using two stack symbols and 2s+
2 states such that L(B) = N(A).

Proof. Let us use a general construction (see, e.g.,
[11]), which for a given PDA A constructs a PDA C
such that L(C) = N(A). This PDA C uses three stack
symbols and s+ 1 states. By Lemma 6, there exists
a push down automaton B using two stack symbols
and 2s+2 states such that L(B) = L(C).

In order to replace the final state acceptance by the
empty stack acceptance we need a lemma similar to
Lemma 6 dealing with the empty stack acceptance
mode.

Lemma 7. Let A in PDA(s,3) be an automaton.
Then there exists a push down automaton B using 2
stack symbols and 2s states such that N(B) = N(A).

Proof. The automaton B shall have the states: Qb =
Qa×{ε,Z0} and we shall use the same encoding9 h.
Using the reduction and mapping h, we construct the
δB transition function of B similarly as in the proof of
Lemma 6. The automaton B uses two stack symbols
and 2s states and N(B) = N(A).

Now, we are ready to present the construction from
the final state acceptance mode to the empty stack
acceptance mode.

9h(H1) = Z1,h(H2) = Z0Z0,h(H3) = Z1Z0

Theorem 9. Given a push down automaton A using
two stack symbols and s states, there exists a push
down automaton B using two stack symbols and 2s+
2 states such that N(B) = L(A).

Proof. Let us use a general construction (see, e.g.,
[11]), which constructs a new automaton C. The au-
tomaton C is using three stack symbols and s + 1
states. By the previous Lemma 7, there exists a
push down automaton B using two stack symbols and
2s+2 states such that N(B) = L(C).

Upper bounds Let us consider the following se-
quence of context free languages.

Notation 4. Let a,b,c be distinct symbols. Let Σ =
{a,b,c}. For each r ≥ 1 let

• L = {w = ambm|m≥ 1}

• L3[n] = {cm|0≤ m≤ n}

• L4[n] = Shu f (L,L3[n])

At first, let us discuss the properties of the lan-
guage L. Note that the language L coincides and thus
has the same properties as the language Lp (defined
in the Section 4.1), for p = 1. We proved that one
state automaton needs at least two stack symbols to
accept Lp, p = 1. Then using the general idea from
Theorem 7, we can construct the minimal one state
PDA accepting L.

We shall now modify the language L in order to
"force" the PDA to check some additional property.
Both stack symbols are used for keeping track of
symbols a and b. Adding another property to this
language should result in increasing the number of
states. The property we shall use is the language
L3[n], the number of c symbols should be equal or
less then n. Mixing properties of L and L3[n] lan-
guages results in the language L4[n]

Finally, we should decide, which acceptance mode
we shall use. Let us use the same acceptance mode
as in the previous Section 4.1, empty stack accep-
tance mode. This results in an easier upper bound
construction.

Our automaton has n+ 1 states. Each state repre-
sents the number of c symbols read. If the automaton
reads the (n+1)st symbol c it blocks.

Theorem 10. There exists a PDA An using two stack
symbols and n+1 states such that N(An) = L4[n].

Proof. We shall construct a PDA An =
({q0, . . . ,qn},{a,b,c},{Z1,Z2},δr,q0,Z2, /0)
The stack symbol Z1 is used as a counter. On input
symbol a, the automaton pushes Z1 on the stack
and it keeps the stack symbol Z2 on the top. The
automaton keeps Z2 on the top of the stack. This
indicates An is still reading the part of the input
containing the a symbols. The automaton An can



nondeterministically pop Z2 on ε and start to pop Z1
on each b. On symbol c, the automaton changes the
state from qi to qi+1. In case An is in the state qn and
reads the input symbol c, it blocks.

5 Conclusion

Since no function combining the number of states
and the number of stack symbols of PDA to a
descriptional complexity measure having desirable
properties exists, we studied complexity in two ’ex-
treme’ sub classes of PDA each able to define all
context-free languages. It would be natural to study
behaviour of complexity when operations on lan-
guages are performed (some upper bounds appear in
[10]) or when some transformations are performed
on PDA.
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60th Birthday, pp. 85–99, Springer, 2018.

[9] P. Labath and B. Rovan, “Simplifying dpda using
supplementary information,” in International Confer-
ence on Language and Automata Theory and Appli-
cations, pp. 342–353, Springer, 2011.

[10] L. Kiss, “Descriptional complexity of push down
automata.” Master Thesis, Comenius University in
Bratislava, 2020.

[11] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Intro-
duction to Automata Theory, Languages, and Com-
putation (3rd Edition). USA: Addison-Wesley Long-
man Publishing Co., Inc., 2006.


	Preliminaries and Notation
	Descriptional Complexity of PDA
	Push Down Automata on Regular Languages
	Saving States by Adding Stack
	Lower Bounds for PDA on Regular Languages
	The complexity on one stack symbol PDA

	PDA on Nonregular Context Free Languages
	The Number of Stack Symbols
	The Number of States

	Conclusion

