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Abstract: Recently, abstractive text summarization has
achieved success in switching from linear models via
sparse and handcrafted features to nonlinear neural net-
work models via dense inputs. This success comes from
the application of deep learning models on natural lan-
guage processing tasks where these models are capable
of modeling intricate patterns in data without handcrafted
features. In this work, the text summarization problem has
been explored using Sequence-to-sequence recurrent neu-
ral networks and Transfer Learning with a Unified Text-
to-Text Transformer approaches. Experimental results
showed that the Transfer Learning-based model achieved
considerable improvement for abstractive text summariza-
tion.

1 Introduction

Summarization is closely related to data compression and
information understanding both of which are key to in-
formation science and retrieval. The technology of text
summarization can improve information extraction sys-
tems and also allows readers to quickly view a large num-
ber of documents for important information. Indeed, auto-
matic summarization has been recently recognized as one
of the most important natural language processing (NLP)
tasks, yet one of the least solved one.

In the literature, there are two main approaches to text
summarization. While extractive methods are arguably
well suited for identifying the most relevant information,
such techniques may lack the fluency and coherency of
human-generated summaries. Abstractive text summariza-
tion is the task of generating a summary consisting of a
few sentences that capture the salient ideas of the input
text document. The adjective ‘abstractive’ is used to de-
note a summary that is not a mere selection of a few exist-
ing passages or sentences extracted from the source, but a
compressed paraphrasing of the main contents of the doc-
ument, potentially using vocabulary unseen in the source
document [9].

Abstractive summarization has shown the most promise
towards addressing issues in extracting important infor-
mation from the text documents but Abstractive gener-
ation may produce sentences not seen in the original
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input document. Motivated by neural network success
in machine translation experiments, the attention-based
encoder-decoder paradigm has recently been widely stud-
ied in abstractive summarization. By dynamically access-
ing the relevant pieces of information based on the hidden
states of the decoder during the generation of the output
sequence, the model revisits the input and attends to im-
portant information.

Recent abstractive document summarization models are
yet not able to achieve convincing performance. In this
paper, we investigate the Transfer learning for abstractive
text summarization to address a key challenge in summa-
rization, which is to optimally compress the original docu-
ment while preserving the key concepts in the original doc-
ument. The rest of this paper is organized as follows: Sec-
tion 2 provides an overview of the existing works and ap-
proaches. In Section 3, the approach to be investigated is
introduced. Section 5 presents Experimental setting ,data
sets used and results. Finally, Section 6 presents the dis-
cussion and concludes the paper and discusses prospective
plans for future work.

2 Related work

The number of summarization models introduced every
year has been increasing rapidly. Advancements in neu-
ral network architectures [1, 11], and the availability of
largescale data enabled the transition from systems based
on expert knowledge and heuristics to data-driven ap-
proaches powered by end-to-end deep neural models. Cur-
rent approaches to text summarization utilize advanced at-
tention and copying mechanisms [3, 12] multi-task and
multi-reward training techniques [7], graph-based meth-
ods that involve arranging the input text in a graph and
then using ranking or graph traversal algorithms in order
to construct the summary [5] [13], reinforcement learn-
ing strategies [4], and hybrid extractive-abstractive models
[6].

This work is based on the most recent and novel Text-
To-Text Transfer Transformer (T5) [10] and on one of the
main known Sequence to sequence (Seq2Seq) model [6].
The T5 model, pre-trained on Colossal Clean Crawled
Corpus (C4), achieved state-of-the-art results on many
NLP benchmarks while being flexible enough to be fine-
tuned to a variety of important tasks.



3 The Transformer Model

It is possible to formulate most NLP tasks in a “text-to-
text” format – that is, a task where the model is fed some
text for context or conditioning and is then asked to pro-
duce some output text. This approach provides a con-
sistent training objective both for pre-training and fine-
tuning. Specifically,the model is trained with a maximum
likelihood objective regardless of the task.

3.1 The Transformer: Model Architecture

Most competitive and successful neural sequence trans-
duction models have an encoder-decoder structure [14,
11]. Here, the encoder maps an input sequence of sym-
bol representations (x1, ...,xn) to a sequence of continuous
representations z = (z1, ...,zn) [14]. Given z, the decoder
then generates an output sequence (y1, ...,ym) of symbols
one element at a time. At each step, the model is automat-
ically regressive, with the previously generated symbols
being consumed as additional input when generating the
next step. The Transformer [14] follows this overall archi-
tecture using stacked self-attention and point-wise, fully
connected layers for both the encoder and decoder, shown
in the left and right halves of Figure 1, respectively (See
[14] for more).

Encoder: The encoder is composed of a stack of N =
6 identical layers. Each layer has a multi-head self-
attention mechanism, and a simple, position-wise fully
connected feed-forward network. A residual connection
is employed around each of the two sub-layers followed
by layer normalization. That is, the output of each sub-
layer is LayerNorm(x+Sublayer(x)) Where Sublayer(x)
is the function implemented by the sub-layer itself [14].

Decoder: The decoder also consists of a stack of N =
6 identical layers. The decoder inserts a third sub-layer
which, in addition to the two sub-layers, provides multi-
head attention to the output of the encoder stack. Similar
to the encoder, a residual connection around each of the
two sub-layers is used, followed by a layer normalization.
To prevent positions from paying attention to subsequent
positions, a modified self-attention sub-layer is used in the
decoder [14].

Attention: An attention function can be described as
mapping a query and a set of key-value pairs to an output,
where the query, the keys, the values and the output are all
vectors [14]. The output can be calculated as a weighted
sum of the values, where the weight assigned to each value
is calculated by a compatibility function of the query with
the corresponding key.

The advantage of using multi-head attention allows the
model to share information from different representation

Figure 1: The Transformer - Model Architecture [14]

subspaces at different positions. With a single attention
head this is prevented by averaging [14]. The Transformer
uses multi-head attention in the following manner:

• In “encoder-decoder attention” layers, the queries
come from the previous decoder layer and the mem-
ory keys and values come from the output of the en-
coder. This allows every position in the decoder to
attend over all positions in the input sequence [15, 2].

• The encoder contains self-attention layers. In a self-
attention layer, all keys, values and queries come
from the same location, in this case from the output
of the previous layer in the encoder. Each position in
the encoder can attend to all positions in the previous
layer of the encoder [14].

• Similarly, self-attention layers in the decoder allow
each position in the decoder to attend to all positions
in the decoder up to and including that position [14].

3.2 T5 approach

Attention Masks: A major distinguishing factor for dif-
ferent architectures is the “mask” used by different at-
tention mechanisms in the model. Recall that the self-
attention operation in a Transformer takes a sequence as
input and outputs a new sequence of the same length [10].
Each entry of the output sequence is produced by comput-
ing a weighted average of entries of the input sequence.
Specifically, let yi refer to the ith element of the output se-
quence and x j refer to the jth entry of the input sequence.



Figure 2: Multi-Head Attention [14]

In practice, we compute the attention function on a set of
queries simultaneously, packed together into a matrix Q.
The keys and values are also packed together into matri-
ces K and V. We compute the matrix of outputs as:

yi = ∑
j

wi, j x j (1)

Where wi, j is the scalar weight produced by the self-
attention mechanism as a function of xi and x j. The atten-
tion mask is then used to zero out certain weights in order
to constrain which entries of the input can be attended to
at a given output time step.

Encoder-Decoder: An encoder-decoder Transformer
consists of two layers of stacks: the encoder, which is
fed an input sequence, and the decoder, which generates
a new output sequence. The encoder uses a “fully visible”
attention mask. The “fully visible” masking allows a self-
attention mechanism to pay attention to each input of its
output. This form of masking is suitable when the atten-
tion is over a “prefix”, i.e. a context that is provided to the
model that will later be used to make predictions. The self-
attention operations in the decoder of the transformer use
a “causal” masking pattern. Within model training pro-
cess, approaching with "causal" mask let decoder prevent
the model from attending to the jth entry during handling
ith input sequence for j > i. This is used during training so
that the model cannot “see into the future” while produc-
ing its output.

4 Sequence to Sequence Model

The Recurrent Neural Network(RNN) is a natural gener-
alization of feed forward neural networks to sequences.
Given a sequence of inputs(x1, ...,xT ), a standard RNN
computes a sequence of outputs (y1, ...,yT ) by iterating the
equation 2 and 3:

ht = sigmoid(W hxxt +W hhht−1) (2)

yt =W yhht (3)

The RNN can easily map sequences to sequences
whenever the alignment between the inputs and the
outputs is known ahead of time. However, it is not clear
how to apply an RNN to problems whose input and the
output sequences have different lengths with complicated
and non-monotonic relationships.

Sequence learning consists of mapping the input
sequence with one RNN to a vector of fixed size and
then mapping the vector with another RNN to the target
sequence. Although it could work in principle, since the
RNN is supplied with all relevant information, it would be
difficult to train the RNNs due to the resulting long-term
dependencies. However, the Long Short-Term Memory
(LSTM) is known to learn problems with long-range
time dependencies, so an LSTM can be successful in this
setting.

The objective of the LSTM is to estimate the conditional
probability p(y1, ...,yM′ |x1, ...,xM) where (x1, ...,xM) is an
input sequence and (y1, ...,yM′) is its corresponding output
sequence whose length M′ may differ from M. The LSTM
computes the conditional probability by first obtaining the
fixed-dimensional representation v of the input sequence
(x1, ...,xM) given by the last hidden state of the LSTM,
and then computing the probability of (y1, ...,yM′) with a
standard LSTM language model formulation whose initial
hidden state is set to the representation v of (x1, ...,xT ):

p(y1, ...,yM′ |x1, ...,xM) =
M′

∏
m=1

p(ym|v,y1, ...,ym−1) (4)

In this equation, each p(ym|v,y1, ...,ym−1) distribution is
represented with a soft max over all the words in the vo-
cabulary. The LSTM formulation from Graves has been
used. It is require that each sentence ends with a spe-
cial end-of-sentence symbol “<EOS>”, which enables the
model to define a distribution over sequences of all possi-
ble lengths.

5 Experimental Setting and Results

5.1 Dataset Selection

The experiment was carried out on the BBC News dataset
provided by Kaggle1. The dataset consists of 2225 docu-
ments from the BBC news website corresponding to sto-
ries in five topical areas from 2004 to 2005 and includes
five class labels which are business, entertainment, poli-
tics, sport, technology.

1https://www.kaggle.com/pariza/bbc-news-summary



5.2 Data Preprocessing

In preprocessing the documnets, the following tasks were
performed: tokenization using the NLTK2 tokenizer; re-
moving punctuation marks, determiners, and prepositions;
a transformation to lower-case; stopword removal and
word stemming. In the stop word removal step, the words
that are in the english stop word list were removed. After
removing the stopwords, the words have been stemmed to
their roots.

Python was used to implement the proposed LSH-based
AEE algorithm. The Scikit-learn3 , gensim 4and the
Numpy5 and PyTorch6libraries were used.

5.3 T5 Model Hyper-Parameter Setting

The following parameters were selected by taking into
account the computation power and resources at hand.
Therefore, We selected the Hyper parameters using the
manual configuration method. The dataset is split into
80% training data and 20% testing data with sample func-
tion from pandas framework.

• TRAIN_BATCH_SIZE = 2 (default: 64)

• VALID_BATCH_SIZE = 2 (default: 1000)

• TRAIN_EPOCHS = 2 (default: 10)

• VAL_EPOCHS = 1 (default: 10)

• LEARNING_RATE = 1e−4 (default: 0.01)

• SEED = 42 (default: 42)

Initiating Fine-Tuning for the model on BBC News
dataset:

• Epoch: 0, Loss: 14.0325

• Epoch: 0, Loss: 2.9507

• Epoch: 1, Loss: 2.8506

• Epoch: 1, Loss: 2.0221

5.4 Seq2Seq Model Settings

Abstractive summarization neural network model is built
using TensorFlow and Keras machine learning and neural
networks python libraries.

First, set up the maximum cleaned text and summary
lengths based on the distribution of sequence lengths from
the chosen sample. Add “sostok” – START and “eostok”
– END tokens to the reference summary as this will help

2http://www.nltk.org
3http://scikit-learn.org/
4https://radimrehurek.com/gensim/
5http://www.numpy.org/
6https://www.pytorch.org/

the model to determine when the sequence starts and ends
respectively. The dataset is split into 80% for training
data and 20% for testing data with train_test_split
package from sklearn.model_selection.

Then, both the training and testing data are tokenized
to form the vocabulary and converted the word sequences
into equal length integer sequences by using Tokenizer and
pad sequences modules from keras.preprocessing
package.

Our Seq2Seq model has three LSTM layers for the en-
coder network and a single LSTM layer for the decoder
network with an embedding layer on both the encoder and
decoder network. The custom attention layer was also
used to remember the lengthy sequences, and the out-
put layer uses the SoftMax activation function. The hid-
den layers have a dimension of 256 units and the embed-
ding layers have a size of 200 units. Besides, a drop-out
value of 0.4 is used in each hidden layer to reduce model
overfitting and improve performance. These layers have
been implemented and the model is built using different
wrappers like Input, LSTM, Embedding, Dense from the
tensorflow.keras.layers.

Different values for each hyper-parameters was used
and the following hyper-parameters setting were selected
during training based on the their performance :

• Epochs = 25

• Optimizer = “rmsprop”

• Batch size = 64

• Latent dimension = 256

• Embedding dimension = 200

• Loss function = “sparse_categorical_crossentropy”

Hyper parameters were selected using the manual config-
uration method. In the accuracy and loss values are de-
termined and analyzed. After training phase comes the
inference phase, in which we input the testing data to our
model and get the output predicted summary.

5.5 Evaluation Metrics

In Text Summarization, summary evaluation is an essential
chore. Manual and semi-automatic evaluation of large-
scale summarization models is costly and cumbersome.
Much effort has been made to develop automatic metrics
that would allow for fast and cheap evaluation of models.
The ROUGE package introduced by Lin [8] offers a set
of automatic metrics based on the lexical overlap between
candidate and reference summaries .

We used ROUGE metrics for our evaluation process.
ROUGE refers to Recall Oriented Understudy for Gist-
ing Evaluation which is an automatic summary evaluation



ROUGE-1 ROUGE-2 ROUGE-L
F1 0.473 0.265 0.361

Precision 0.467 0.261 0.338
Recall 0.480 0.269 0.389

Table 1: Results on the BBC test set using T5 Model

bench-marking metric that is widely used by researchers to
determine the quality of the summary produced by com-
paring the machine generated summary with the refer-
ence summary (ideal or human written ones). ROUGE
scores are computed from the number of overlapping
words between the reference summary and machine gener-
ated summary. There are different types of ROUGE such
as ROUGE-N, ROUGE-L,ROUGE-S and ROUGE-W. But
the most commonly used ones are ROUGE-N (ROUGE-
1,ROUGE-2) and ROUGE-L and hence we also use the
same.

ROUGE-N : It denotes the overlapping of n-grams be-
tween the system generated summary and the ideal ref-
erence summary. For instance, unigram (ROUGE-1), bi-
gram (ROUGE-2), trigram (ROUGE-3) and so on. The
ROUGE-n is given by:

ROUGE−n =

∑
S∈RS

∑
gramn∈S

Countmatch(gramn)

∑
S∈RS

∑
gramn∈S

Count(gramn)
(5)

Where RS is a set of reference summaries, n stands for
the length of the n-gram, gramn, and Countmatch(gramn)
is the maximum number of n-grams co-occurring in a gen-
erated summary and a set of reference summaries.

ROUGE-L: It denotes the Longest Common Subse-
quence (LCS) matching between the reference summary
and system generated summary.

5.6 Results

The experimental results of Text-To-Text Transfer Trans-
former (T5) method were compared with attention based
Sequence to sequence based methods. The experimental
results are presented in Table 1 and Table 2. The Results
shown in Table 1 are from Transformer (T5) method and
the results in table 2 are the baseline method. According
to the experimental results presented, Text-To-Text Trans-
fer Transformer (T5) based abstractive text summariza-
tion outperformed the baseline attention based seq2seq ap-
proach in all of the matrices used. Sample prediction re-
sults from the test are presented in Table 3

6 Conclusion

In this paper, we have dealt with the demanding task of
abstractive document summarization. We used a newly

ROUGE-1 ROUGE-2 ROUGE-L
F1 0.313 0.193 0.262

Precision 0.388 0.275 0.289
Recall 0.324 0.132 0.199

Table 2: Results on the BBC test set using Seq2Seq Model

Results
Generated Text Actual text
Veteran Labour MP
and former Cabinet
minister Jack Cun-
ningham has said he
will stand down at
the next election Mr
Blair said He was
an...

Labour s Cunning-
ham to stand down
Veteran Labour MP
and former Cabinet
minister Jack Cun-
ningham has said he
will stand down...

Ministers would not
rule out scrapping
the Child Support
Agency if it failed to
improve Work and
Pension Secretary...

CSA could close
says minister Minis-
ters would not rule
out scrapping the
Child Support...

Table 3: Sample results using T5 model

introduced approach [10], the Transformer or T5 frame-
work, to create a multi-sentence summary. Experiments
were carried out to verify the effectiveness of the proposed
method. Experimental results on the BBC News dataset
showed that the T5 model performed well in the abstrac-
tive document summarization. The future direction is to
study the Transformer method for the task of summarizing
multiple documents and also to very the T5 approach on
other benchmark dataset.
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