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Abstract: Lindenmayer Systems can serve to deep learn-
ing not only as a generator of simulated datasets. They
could provide datasets of images generated from a very
few parameters that enable us a better study of the latent
space, which is crucial for the majority of deep neural net-
works. We process a dataset, generated by a parametric
Lindenmayer system, with the convolutional autoencoder.
We aim to recognize the values of the Lindenmayer system
parameters by its encoder part. Finally, we partially turn a
generator based on its decoder part to a neural network that
generates images from the dataset upon the Lindenmayer
system parameters.

1 Introduction

Deep neural networks for the vision we typically train
from datasets of annotated images. Their preparation is
a manual job that sometimes we can avoid if we use the
so-called simulated dataset. There are several grammar-
based systems that we can use for the simulation [S]]. One
of them is Lindenmayer systems [8]], used already for this
purpose [14]. However, this approach issues many other
questions that we would like to deal with in this paper.
Can we find the parameters of the Lindenmayer system
somewhere inside the neural network that is processing a
dataset produced by the Lindenmayer system? Can we
create a neural network that generates the same images as
the Lindenmayer system? And could it make them from
the parameters of the Lindenmayer system?

1.1 Parametric Lindenmayer Systems

We employ the parametric Lindenmayer system proposed
in [10]. It generates rose leaves upon eight parameters,
from which just two can significantly vary: the angle of
the stem of the rose leaf and the angle between the left
and right venations and the stem. It has a set of produc-
tion rules which are applied on an initial axiom iteratively
and per iteration simultaneously (Table[T). As a result, the
system generates strings in Table 2]

We turn the generated strings into images in two steps.
At first, we use turtle graphics following symbols G, + and
— (go, rotate left, rotate right) structured by []. In this way,
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Table 1: Production rules for rose-leaf images, borrowed
from [10], page 126.

w : [{A(0,0)}]{A(0,1).}]

pl : A(t,d):d=0— .G(LA,RA).
[+B(t )G (LC,RC,1).}][+B(t){ JA(t +1,d)
p2 : A(t,d):d=1— .G(LA,RA).
[-B(t)G(LC,RC,t).}][-B(t){.JA(t + 1,d)
p3 : B(t):t>0— G(LB,RB)B(t—1)

p4 : G(s,r) > G(sxrr)

p5 : G(s,nt):t>1—=G(sxnnt—1)
d = 0 means the left side and d = 1 the right side of the
leaf. ¢ is timing. G(length,growth_rate) corresponds to
venations. + and — represent rotation. | and | define a tree
structure of the generated string. Dots represent points on
the leaf that are structured to polygons by {}. LA,LB,LC
are parameters for the initial length of the main segment,
the lateral segment, and the marginal notch. RA,RB,RC
represent their growth rate. + and — have also parameter
- the angle between stem and venations. The last param-
eter is the direction of the stem, that we select when we
interpret the string and turn it into an image.

Table 2: Strings that represent rose leaves, generated by
the Lindenmayer system. From top to bottom: axiom, the
first, the second, and the third iteration.

[{A(0,0).}]{A(0,1).}]

[{.G(5,1.15).]+B(0)G(3,1.19,0).}][+B(0){ JA(1,0).}]
[{.G(5,1.15).[-B(0)G(3,1.19,0).}][-B(0){ JA(1,1).}]
[{.G(5.75,1.15).[+B(0)G(3,1.19,0).}][+B(0){..
G(5,1.15).[+B(1)G(3, 1.19,1). ] [+B(1){ JA(2,0).}]
[{.G(5.75,1.15).[-B(0)G(3,1.19,0).}] [~ B(0){].
G(5,1.15).[-B(1)G(3,1.19,1).}[-B(1){.JA(2,1).}]

)G(3,1.19,0).H[+B(0){.].
G(5.75,1.15).[+G(1.3,1.25)B (0) (3,1.19,1).}]
5

[+G(1.3,1.25)B(0){.].G(5,1.15).[+B(2)
G(3,1.19,2). H[+B(2){.]A(3,0).}][{.
G(6.6125,1.15).[-B(0)G(3,1.19,0).}][-B(0){ ].
G(5.75,1.15).[-G(1.3,1.25)B(0)G(3,1.19,1).}]
[—G(1.3,1.25)B(0){.].G(5,1.15).[-B(2)G(3,1.19,2)
N-B{IAG, .Y




Figure 1: Rose-leaf images generated by the Lindenmayer
system.
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Figure 2: Eigenvalues confirms the fact that the generated
dataset has a few amount of parameters.

we calculate the exact positions of all dot symbols that rep-
resent points. In the second step, we structure these points
into polygons following symbols { } and draw the poly-
gons. As a result, we get an image containing a rose leaf
(Figure [T). Varying the parameters of the Lindenmayer
system, we can generate the whole dataset of such images.

Having any dataset, we can get imagination about
the number of parameters, that generate it, via Principal
Component Analysis (PCA) [9]. We concern that two-
dimensional images are just one-dimensional vectors, i.e.
we put their pixels row by row to one line. Thus we turn
the dataset of 28x28 images to a set of 784-dimensional
vectors. Then we can calculate their covariation matrix
and find its eigenvectors. Following the corresponding
eigenvalues, we can find that much less than 784 eigen-
vectors is significant. In our case, it is enough to concern
from 8 to 16 eigenvectors (Figure[2). Now, we can express
each image from the dataset as a sum of the mean and mul-
tiples of the eigenvectors (Figure [3). We can also make a
generator that turns manually selected values of the eigen-
vector multipliers to images, but its quality regarding the
generation of rose leaves is low.
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Figure 3: Any image in the dataset can be expressed as a
sum of the mean and multiples of the eigenvectors.
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Figure 4: Autoencoder.

1.2 Deep learning and Autoencoders

Deep learning [4] is young but well-known and very suc-
cessful part of machine learning based on artificial neural
networks with a specific architectural design. They en-
hance the classic neural networks like the perceptron [12]
that are theoretically strong, but processing larger inputs
as images is not a tractable task form them in practice.
Deep neural networks typically employ gradual decreas-
ing of data dimension and turn the input image to a feature
vector which has a small enough dimension to be further
processed classically. This approach is reflected in their
architecture by a deep sequence of convolutional layers
(which usually implement 3x3 or 5x5 kernel-based opera-
tors) interlaced with the MaxPooling layers (which are re-
sponsible for the dimension reduction since they replace e.
g. 2x2 values by their maximum) followed by a few fully
connected layers corresponding to the classic perceptron.
The features do not need to be designed manually but they
are found automatically in the process of end-to-end train-
ing [13] that corresponds to minimalization of a suitable
loss function. The feature vector can be concerned as a
point in the so-called latent space. We wish that similar
images are mapped to close points and different images
to far points in that space. We also want that the feature
vector would contain as much information about the cor-
responding image as possible. The trick on how to push
the neural network to learn such feature extraction is the
core of the whole deep learning. It can be demonstrated
on a neural network called autoencoder (Figure [).
Autoencoder not just reduces the dimension of the input
data into the feature vector but then performs an opposite
process and expands the data to their original size, using
UpSampling layers (which replace each value with its e.g.
2x2 copies). Then we train it to provide the same output
on a given input. If we succeed, then we are sure that
the feature vector represents the input image well, because
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Figure 5: A few samples from the generated dataset. The
images are annotated by parameters of the Lindenmayer
system used for their generation.

it is possible to generate the image from the feature vec-
tor. After such training, we can cut the autoencoder into
two parts: encoder and decoder. The encoder turns images
to feature vectors and can be combined with a perceptron
to provide classification or detection tasks. The decoder
turns feature vectors to images and can be used as a gen-
erator of images, even such images which have been never
presented to the network.

Of course, typically it is difficult to understand repre-
sentation in the latent space when we are working with
real images that have many parameters. Will it be more
simple if we present to the autoencoder dataset precisely
generated from a very concrete and small number of pa-
rameters (what Lindenmayer systems can do for us)? The
organization of the latent space is crucial as it is shown by
its advanced versions like the variational autoencoder [6]].
Therefore we would like to play with this idea a bit. In the
next chapters, we prepare a suitable dataset (chapter 2),
we train an autoencoder and compare the set of the images
with the set of their feature vectors (chapter 3), try to rec-
ognize parameters of the Lindenmayer system by the en-
coder (chapter 4) and turn decoder from a generator based
on feature vectors to a generator based on the parameters
of the Lindenmayer system (chapter 5).

2 Dataset preparation

We have employed the Lindenmayer system defined in Ta-
ble 1 for generating our dataset of rose-leaf images. We
have implemented the Lindenmayer system in Python 3.6
using OpenCV 4.3.0 [1]]. Concerning simplicity, we have

been varying mainly the stem angle and the angle be-
tween stem and venations. Other parameters can vary just
slightly; the resulted image is far from a rose leaf other-
wise. We have also turned the output images to binary
form and resized them to 28x28. That enables us to use a
proven autoencoder architecture, which requires this input
size.

We have decided that the stem always starts in the top
left corner. This decision enables us to process the dataset
also with straightforward methods like eigenimages and
compare their results with the autoencoder. All together
our dataset had 1498 images. A few samples can be seen
in Figure E} Of course, we have recorded also the parame-
ters which we have used for the generation of each image.
In this way, we have created an annotated dataset free of
charge.

3 Autoencoder training

Involving deep learning, we start with the training of the
autoencoder. Thus, so far, we will not work with the im-
age annotation. We utilize a proven architecture of autoen-
coder from [3] [[L1]. On the input, the neural network re-
ceives grayscale images (pixels in range 0.0-1.0). They are
processed by a block of sixteen convolutional layers with
kernels 3x3, then the dimension is reduced by MaxPool
layers. The output is processed by the next eight convo-
lutional layers and again reduced. And this repeats until
the input data shape 28x28x1 is turned trough 28x28x16,
14x14x8, 7x7x8, 4x4x8 to which is the feature vector.
Then like in the mirror, we expand the data by convolu-
tional and UpSampling layers to the original size 28x28x1
(Figure [6)).

For non-linearity, the convolutional layers use the ReLU
activation function, besides two places. There is sigmoid
used just before the latent space to ensure that values in
the latent space are from interval <0.0,1.0>. And there
is sigmoid on the output from the network; not only to
enable us to interpret the output as an image with pixels in
range 0.0-1.0 but also to enable us to use the binary cross-
entropy loss function, which has a better performance than
the classic MSE.

We train the autoencoder with Keras 2.3.1 [3] using
Tensorflow 2.1.0 as a backend. We use the Adadelta batch
gradient descent algorithm. After 200 epochs, the accu-
racy is 98.38% on the training set and 98.60% on the test-
ing set (10% of samples) (Figure[7). The achieved quality
is good (Figure [8). Now, the autoencoder can code each
image to a vector of 128 floats 0.0-1.0 and decode the vec-
tor to a very similar image (Figure[J) and we can continue
with its splitting into two parts: encoder and decoder.

While we can employ the encoder part for generating
another dataset that contains the feature vectors, the de-
coder part can be used as a generator of rose-leaf images.
It is not a very handy generator since we have to set up
properly 128 values 0.0-1.0, but it is possible to gener-



Layer (type) Output Shape Param #
input_1 (InputLayer) (None, 28, 28, 1) 0
conv2d_1 (Conv2D) (None, 28, 28, 16) 160
max_pooling2d_1 (MaxPooling2 (None, 14, 14, 16) 0
conv2d_2 (Conv2D) (None, 14, 14, 8) 1160
max_pooling2d_2 (MaxPooling2 (None, 7, 7, 8) 0
conv2d_3 (Conv2D) (None, 7, 7, 8) 584
max_pooling2d_3 (MaxPooling2 (None, 4, 4, 8) 0
flatten_1 (Flatten) (None, 128) 0
activation_1 (Activation) (None, 128) 0
reshape_1 (Reshape) (None, 4, 4, 8) 0
conv2d_4 (Conv2D) (None, 4, 4, 8) 584
up_sampling2d_1 (UpSampling2 (None, 8, 8, 8) 0
conv2d_5 (Conv2D) (None, 8, 8, 8) 584
up_sampling2d_2 (UpSampling2 (None, 16, 16, 8) 0
conv2d_6 (Conv2D) (None, 14, 14, 16) 1168
up_sampling2d_3 (UpSampling2 (None, 28, 28, 16) 0
conv2d_7 (Conv2D) (None, 28, 28, 1) 145

Total params: 4,385

Figure 6: The architecture of the used autoencoder in de-
tails [11].
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Figure 7: Training of the autoencoder.

ate someting like a leaf just from the feature vector values
(Figure[T0} on the left).

Can we make such a generator handier? Yes, we can
- in a similar way, how we created the generator based
on eigenimages. We perform PCA on the dataset of the
feature vectors, and we set up just the main components.
We express the feature vector as a sum of mean and mul-
tiples of eigenvectors. Then we need to set up manually
just the multipliers of a few significant eigenvectors. We
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Figure 8: Sample input images from our dataset in the top
line and the corresponding output images calculated by our
autoencoder.

[0.98625815, 0.66299981, 0.99246186, 0.57722825, 0.5 s
0.90062493, 0.93622261, 0.5 , 0.5 , 0.95261234,
0.99352407, 0.5 , 0.5 , 0.98512369, 0.5 ,
0.82000422, 0.54893059, 0.98727709, 0.71470815, 0.5 s
0.5 , 0.94741422, 0.5 , 0.95114863, 0.75802684,
0.9719044 , 0.5 , 0.5 , 0.5 , 0.82802659,
0.51641005, 0.97730321, 0.9978047 , 0.80023605, 0.99893409,
0.6468786 , 0.5 , 0.94131184, 0.99782324, 0.88698453,
0.5 , 0.5 , 0.99995816, 0.50391984, 0.5 s
0.5 , 0.50378138, 0.5 , 0.5 , 0.78034681,
0.99993455, 0.53947443, 0.5 , 0.5 , 0.5 s
0.5 , 0.5 , 0.98526198, 0.91212052, 0.5 s
0.5 , 0.87080342, 0.5 , 0.66338164, 0.99515474,
0.83904874, 0.99057883, 0.5 , 0.5 , 0.95147383,
0.99873096, 0.96877152, 0.77010125, 0.5 , 0.99994564,
0.96718907, 0.5 , 0.5 , 0.99889612, 0.5 s
0.5 , 0.5 , 0.99997294, 0.88351119, 0.5 ,
0.5 , 0.86901689, 0.5 , 0.5 , 0.5 s
0.9869802 , 0.80338162, 0.5 , 0.5 , 0.5 s
0.5 , 0.91442615, 0.8813709 , 0.5 , 0.5 s
0.5 , 0.81748968, 0.93058556, 0.98220086, 0.87647492,
0.5 , 0.97868299, 0.95324636, 0.5 , 0.77138752,
0.99827719, 0.88651741, 0.5 , 0.5 , 0.99581003,
0.99394023, 0.5 , 0.5 , 0.99652219, 0.5 s
0.5 , 0.5 , 0.90829074, 0.9915418 , 0.5 s
0.5 , 0.5 , 0.5 ]

Figure 9: An example of an input image from the dataset,
its feature vector in the latent space of the autoencoder,
and the corresponding output image.
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Figure 10: On the left: An image generated from the man-
ually selected 128 values of the feature vector. Quality
is quite poor. On the right: An image generated from 8
most significant multipliers of the latent space eigenvec-
tors. Quality is better.

Eigenvalues

—— abs(eigenvalues)

a

0.3+

0.2 4

0.1+

0.0 4

5 20 25 30
order

=)
w
=
5]

Figure 11: Eigenvalues of the latent space enlighten that
encoder does not reduce the number of parameters. (Com-
pare to Figure[2)

have used only eight parameters from which we calculate
the 128 items of the feature vector and that we put into the
decoder to obtain the corresponding image. This generator
is handier, and it provides pretty rose leaves (Figure[I0[on
the right), though not only them.

4 Recognition of the Lindenmayer system
parameters

Though we can generate rose leaves from a few parameters
now, it is hopeless to look for the parameters of the Lin-
denmayer system among them. Neither parameter of the
latent space nor multiplier of its eigenvectors directly cor-
responds to a parameter of the Lindenmayer system. Even
when we perform the PCA over the set of the feature vec-
tors calculated by the encoder from images in the dataset,
we find that it has the same distribution of the main com-
ponents (Figure [TT).

However, we can easily reveal that they are not so far
from them. In the beginning, we aimed to train a percep-
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connected

|
MaxPooling
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Figure 12: The architecture of the recognizer of the Lin-
denmayer system parameters.

tron to map the feature vectors to the Lindenmayer system
parameters. Though the approach was operational, later
we found that it was over-engineered. The linear regres-
sion can provide here results as good as the perceptron.
In both cases, we can sufficiently recognize the stem an-
gle: 97% by regression and 99% by the perceptron. On
the other hand, the angle between stem and venations we
have failed to recognize. It is perhaps due to small resolu-
tion and binary form of images that is a limitation coming
from the used architecture and our hardware.

Linear regression can be added to the encoder neural
network as one fully connected layer without bias and with
the linear activation function. In this way, we have con-
structed a neural network that gets an image generated by
the Lindenmayer system and recognizes the values of the
Lindenmayer system parameters (Figure[12).

5 Neural network generating images from
the Lindenmayer system parameters

Though recognition of the Lindenmayer system parame-
ters from the feature vector is straightforward, the inverse
operation is not. It is even clear without a trial. However,
we can still train a perceptron that approximates the in-
verse relation. We put all the eight parameters from the
annotation of our dataset (two of which significantly vary
and six almost constant) to the perceptron input and expect
the corresponding feature vector (128 values) calculated
by the encoder from the dataset image. Then we search
for a suitable number of hidden layers and suitable num-
bers of neurons in those layers. We have trained each such
candidate architecture. We have followed namely valida-
tion loss since the accuracy was very low (up to 40%). For-
tunately, this does not mean that the trained network does
not work, because some items of the feature vector are less
important than others, and the error on them can be high
without a bad impact. Finally, we have used a perceptron
with two hidden layers with the hyperbolic tangent acti-
vation function, each containing 256 neurons. And when
we joined the perceptron and the decoder, we have got a
neural network (Figure that can generate images from
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Figure 13: The architecture of the generator of images
from the Lindenmayer system parameters.

Figure 14: Generating images from the Lindenmayer sys-
tem parameters.

the parameters of the Lindenmayer system, namely from
the stem angle (Figure [T4).

6 Conclusion

In this paper, we have dealt with the potential of Linden-
mayer systems to pose attractive questions related to deep
learning. We have prepared a dataset generated by the
Lindenmayer system. Thus we have got its annotation in
the form of the Lindenmayer system parameters free of
charge. Then we used the dataset for the training of the
convolutional autoencoder. Further, we have investigated
the relationship between its latent space (feature vectors)
and the Lindenmayer system parameters. We found that at
least some parameters of the Lindenmayer system we can
easily recognize from feature vectors. Finally, we have
tried to create a neural-network-based generator analog-
ical to the Lindenmayer system, i.e. a neural network
that generates the same images as the Lindenmayer sys-
tem from the Lindenmayer system parameters. This last
job was successful just partially. Our future work should
concentrate on the hyper-parameters of the autoencoder ar-
chitecture. We need an operational architecture that has a
larger input image and the latent space as small as possi-
ble, containing just parameters that directly correspond to
the Lindenmayer system.

All codes developed during the preparation of this paper
are available at GitHub: https://github.com/andylucny/On-
Lindenmayer-Systems-and-Autoencoders.git
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