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Abstract: This contribution presents the use of neural net-
works trained by an evolutionary algorithm for a selection
of visual keypoints. Visual keypoints play an important
role in many computer vision tasks but many algorithms
for keypoint detection produce many keypoints which are
not useful for the target task. We aim to filter them in a
data-driven way. Our model uses a neural network that
ranks each keypoint by a relevancy score that we use to
choose top-K keypoints with the highest rank. These key-
points are then used for the target task, which is image
classification in our case. Because we use discrete opera-
tions in our model, we can not easily obtain gradients for
weight updates. We, therefore, optimize the weights of the
network by CMA-ES algorithm, which enables efficient
optimization of continuous parameters of black-box func-
tions. In this article, we present our initial experiments
with this method.

1 Introduction

In many problems of machine learning, we deal with sets
of features that describe objects we want to process. In
some cases, these sets are ordered, like, for example, in
tabular datasets where each type of feature corresponds
to one column. In other cases, they are unordered, like,
for example, with visual keypoint descriptors that are ex-
tracted by keypoint detection algorithm. Feature selec-
tion is a well known preprocessing step for the case where
these features are ordered. In the case of tabular datasets,
we may, for example, filter out specific columns of the
table which contain redundant or unrelated information.
Feature selection is much harder for unordered sets of fea-
tures because we need to figure out which features to throw
out for each example separately based on the content of
these features. Here we present an approach for feature se-
lection of unordered sets where each feature is ranked by
a neural network whose weights are learned by a variant
of evolutionary algorithm called Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES). We showcase it for
the problem of visual keypoint selection, which could be
viewed as a preprocessing step for many computer vision
algorithms.

Copyright c©2020 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC BY
4.0).

2 The role of Keypoints in Computer Vision

Figure 1: An illustration of the keypoint selection process.
Our algorithm learns to select keypoints which are relevant
for image classification.

Keypoints, sometimes also called points of interest or
visual keypoints, are points in an image represented by co-
ordinates of pixels. They are usually used to extract local
feature descriptors that provide a representation of an im-
age that is invariant with respect to transformations such as
translation, rotation, scale, or other affine transformations.

There are many well-known algorithms for keypoint de-
tection. Many of them are based on edge detection, corner
detection, or blob detection. The best-known algorithms
are probably SIFT (Scale-invariant feature transform) [1]
or SURF (Speeded up robust features) [2]. In the SIFT al-
gorithm, the keypoint locations are defined as maxima and
minima of the result of the difference of Gaussians applied
in scale space to a series of smoothed and resampled im-
ages. SURF algorithm is based on square-shaped filters as
an approximation of Gaussian smoothing.



Keypoints are especially useful for tasks such as image
registration, where we want to transform multiple images
into one coordinate system or 3D reconstruction, where
we want to find 3D coordinates of each pixel. In both
of these tasks, we need to match keypoints from two or
more images by a matching algorithm. We assume that
the keypoints we are trying to match come from images
capturing the same scenery but from different viewpoints
or lighting conditions. Therefore all images we are trying
to match should contain similar keypoint descriptors. In
other tasks, such as image classification, this assumption
may no longer hold. In image classification, we may try to
classify each image by matching its keypoint descriptors
to keypoint descriptors of prototype images of different
classes. We would assign the image to a class of the proto-
type image with the best match. The problem arises when
images of objects in the same class contain, for example,
different backgrounds, which will be the case most of the
time. Keypoints detected outside of the object may not be
correlated with the class, and this may decrease the accu-
racy of the classification. For this reason, keypoints are
not very often used for tasks such as image classification.
This could be changed if we can filter out keypoints that
are not relevant for the task at hand, which is a problem
we address in this contribution.

3 Optimization of non-differentiable
objective functions with continuous
parameters

Deep Neural Networks, which are currently the most pop-
ular approach in Machine Learning and Computer Vision,
are most of the time trained by variants of gradient de-
scent algorithm that require differentiable objective func-
tion. The objective function itself is a proxy for the metric
we really care about. For example, in classification, we
mostly care about classification accuracy, but we use an
objective function such as cross-entropy for training be-
cause accuracy is not differentiable, but cross-entropy is.
For optimization problems in which the model makes dis-
crete choices during processing, the objective function will
not be differentiable, and therefore such problems are of-
ten approached with Reinforcement Learning where gra-
dients are estimated by various gradient estimation tech-
niques or by Evolutionary Algorithms which do not use
gradients but perform a kind of random search. In our
case, we need to optimize the parameters of a neural net-
work, which will rank each keypoint by a relevancy score.
We choose top-K keypoints with the highest relevancy
score, and this discrete choice makes our objective func-
tion non-differentiable. Our choice of the optimization al-
gorithm is CMA-ES, which is described in the next sec-
tion.

4 CMA-ES

Evolutionary Strategies represent a subclass of optimiza-
tion algorithms inspired by natural selection. They are
stochastic, derivative-free methods aimed for numerical
optimization of non-linear or non-convex continuous op-
timization problems. They search through the space of
continuous parameters by using a mutation and selection
operators, which are interleaved in an iterative process.
One iteration (mutation and selection) of this process cor-
responds to one generation. In Evolution Strategies, the
mutation operator produces each individual by sampling
from a multivariate gaussian distribution with mean µ and
covariance matrix Σ. The Selection operator selects n best
individuals from the current generation using the function
f we are trying to optimize. We treat this function as a
black box. Therefore we can evaluate it for an individ-
ual x to get its fitness f (x), but otherwise, we have no as-
sumptions about it. The next generation is sampled from a
multivariate gaussian distribution with parameters depend-
ing on selected individuals from the previous generation.
Here are the steps of the algorithm for generic distribution
parametrized by θ :

1. Generate population of individuals Λ = {x1, . . . ,xn}
where xi ∼ pθ (x).

2. Compute a fitness score f (x) for all individuals in Λ.

3. Select subset of individuals with the best score.
Based on this subset, update the value of parameter
θ .

4. Repeat.

In all types of Evolution Strategies, we adapt the mean
µ for the gaussian distribution. In CMA-ES we also adapt
the covariance matrix Σ. This allows the algorithm to
adapt the step size for each dimension of the parameter
vector x separately. Adaptation of the covariance matrix
can be seen as an estimation of a second-order model of
the underlying function f . It is similar to the approxi-
mation of the inverse Hessian matrix in the quasi-Newton
method. For the concrete form of the update equations for
µ and Σ see the tutorial in [3].

5 Model and task description

Our task was inspired by [4] where a Reinforcement
Learning agent is trained to play a game from a screen
of pixels. The agent uses an attention module which se-
lects positions in the screen where the agent should pay
its attention and filters out the rest of the screen. Authors
of this method showed that the agent learned to pay atten-
tion to objects/positions, which are essential for the game.
We adapt attention module described in [4] together with
the learning algorithm (CMA-ES) and apply it to the task



of keypoint selection, which we believe could have a high
practical impact.

We assume that we are given a set of N keypoints in an
image extracted from some keypoint detection algorithm
and we want to choose a subset of K keypoints (with K�
N) that will contain a useful information for the task at
hand.

The task we consider here is image classification. For
each class, we assume R prototype images1 which are rep-
resentative examples of the class. Each image is repre-
sented by a set of keypoints. For a new image, we can
match its keypoints to keypoints of prototype image p and
obtain a matching score. To match the keypoints, we solve
a linear assignment problem where the cost for every pair
of keypoints is computed by a distance between their key-
point descriptors. The matching score is computed by
summing the distances between matched keypoints. Af-
ter averaging the matching score over R prototype images
in each class, we can assign the new image to the class
with the highest average score.

Given the type of distance function used for each match-
ing pair of keypoints2, the average matching score depends
only on the sets of keypoints used for matching. Therefore,
if we have a training dataset X =((x1,y1), . . . ,(xM,yM)) of
images xi ∈RW×H with labels yi ∈ 1, . . . ,P, where W , H, P
are width and height of an image and a number of classes
respectively, we can optimize a function fφ which selects
a subset of K keypoints from the set of J keypoints, based
on a criterion c which measures how many images were
assigned to the correct class. We describe the optimization
criterion c later in this section.

The function fφ :RN×D → RK×D gets as an input a set
of N real-valued vectors (keypoint descriptors) of dimen-
sion D and returns a subset of K elements from it. It is
the attention module which we adapted from [4]. Here
we provide a pseudo-code implementation of this function
with an informal description below.

1: function GET-TOP-K(A,φ )
2: F1,F2← INIT(φ)
3: Q← A ·F1
4: S← A ·F2
5: P← ST ·Q
6: V ← COLUMN-WISE-SOFTMAX(P)
7: z1← ∑ j Vi j
8: z2← ARGSORT(z1)
9: ixs← z2[0:K]

10: S← A[ixs]
11: return S
12: end function

The input to the function is a matrix A∈RN×D with one
keypoint descriptor per row and a vector of learnable pa-
rameters φ . On line 2 we initialize matrices F1,F2 ∈RD×Ξ

where Ξ is a hyperparameter3. These matrices can be seen

1In our case R ∈ {5,10}.
2In our experiments, we use cosine and euclidean distance.
3In our case it is 10.

as weights of two 1-layer linear neural networks. The
parameter vector φ has a dimension D ·Ξ+D ·Ξ and the
function INIT only splits this vector in half and reshapes
the two parts to a matrix. On lines 3 and 4 we create 2
low-dimensional representations of each keypoint descrip-
tor and store them to matrices Q and S. On line 5 we com-
pute inner products between these two low-dimensional
representations for each pair of keypoints. For a better
intuition, the inner product between Q-representation of
keypoint k1 and W -representation of keypoint k2 can be
seen as a vote that k1 is giving to k2. On line 6 we normal-
ize these inner products for each column of matrix P by a
softmax function so that the whole column sums to 1. This
can be seen as a restriction for the keypoint k1 to distribute
its one vote to all other keypoints. On line 7 we compute
the score of each keypoint ki by summing the votes from
every other keypoint k j. On line 8 we sort the indices of
keypoints by their score. On lines 9 and 10 we choose
top-K indices and select keypoint descriptors that belong
to these indices from a matrix A. These are then returned
from the function.

We optimize the parameters φ with respect to the fol-
lowing criterion c:

c(φ) =
M

∑
i=1

1(class( fφ (xi)),yi),

where 1 is an indicator function and class:RK×D → N is
the function which assigns the class to an image based on
the selected keypoints as described above. Therefore we
have an optimization problem in the form of:

φ = argmax
φ

c(φ).

As in [4], we approach it with CMA-ES algorithm.

6 Experiments

We conduct two types of experiments that test the viability
of our method. The first experiment was conducted on a
synthetically generated dataset, where the hardness of the
problem could have been controlled manually. The second
set of experiments was conducted with a realistic dataset
called Willow-Objects [5].

6.1 Synthetic dataset with gaussian feature
descriptors

This experiment enabled us to start from an easy case
where we expected the algorithm to work and then in-
crementally make it harder by either making feature de-
scriptors noisier or adding distracting keypoints. Here we
describe the final form of the dataset for which we show
results in the Table 1.

The dataset contains 10 classes with 1500 examples
per class, where each example is represented by 20 fea-
ture descriptors. Each feature descriptor is in turn a 200-
dimensional vector. Therefore the dataset has a form X =



{(x1,y1), . . . ,(xM,yM)} where M = 15000, xi ∈ R20×200

and yi ∈ {0, . . . ,9}.
We wanted to model the fact that some classes could

share the same types of feature descriptors. Each type
of feature descriptor is represented by a mean µj and co-
variance matrix Σ j. Particular feature descriptors are then
sampled from Gaussians with these parameters. The type
of feature descriptor could be viewed as an abstract object,
such as "eye," and the particular sample can be viewed as a
particular image of an eye. We want some types of feature
descriptors to be unique to a class and others to be shared
by more classes. For example, an eye could be a useful
type of feature descriptor, which is shared by classes such
as "DOG" or "CAT," but it is not present in classes such as
"CAR" or "APPLE." To model this, we represent classes
as leaves in a binary tree where classes that share more
common ancestors will share more common types of fea-
ture descriptors. Every class/leaf is assigned six unique
feature descriptors, and every common ancestor adds one
shared type of feature descriptor. To get ten classes, we
sample ten random paths in a binary tree, which is five
levels deep. This will produce ten types of feature de-
scriptors (or ten indices j indexing the parameters µj and
Σ j) per class. These types of feature descriptors contain
information that is relevant for classification. Every exam-
ple xj from the same class c will contain samples from 10
Gaussians, which correspond to the class c.

We also want to model distracting feature descriptors
that would correspond to background clutter. For these,
we reserve 60 unique types of feature descriptors repre-
sented by 60 new values for the index j. For each exam-
ple xi, we first sample 10 indices from these 60 reserved
and then sample random vectors from distributions cor-
responding to these indices. Together, each example in
the class c is represented by 20 200-dimensional vectors.
Ten vectors are always sampled from the same distribu-
tions corresponding to class c, and ten vectors are sampled
from ten randomly chosen distributions from the pool of
60, for each new example separately.

The parameters of each gaussian corresponding to one
type of feature descriptor are sampled randomly, but in
such a way that the gaussian ellipsoids corresponding to
different types of feature descriptors are well separable in
the 200-dimensional space. To achieve this, we set the
means of these Gaussians to coordinates of corners of the
unit 200-simplex. Concretely, the mean µj will have 1 on
position j and zeros everywhere else. The covariance ma-
trix is sampled from ranges that guarantee that the sam-
ples are well separable. In order to make the task more
difficult, we process each sample with a randomly initial-
ized 2-layer neural network, which preserves the dimen-
sion. This will nonlinearly deform the space, and also, the
resulting clusters will not be axis-aligned.

Our model is trained to select 10 out of 20 feature de-
scriptors that are relevant for classification. Because we
knew exactly which feature descriptors contain the rele-
vant information, this dataset allowed us to develop the al-

gorithm with more confidence, without worrying whether
problems arise due to the algorithm or due to the dataset.
We split the whole dataset to 10000 training examples and
4900 testing examples. The remaining 100 examples are
used as prototypes to which we match the selected feature
descriptors (10 prototypes per class). After we achieved
85% accuracy on the test set, we moved to experiments
with realistic examples.

6.2 Experiments on Willow-Object dataset

Our next set of experiments was conducted with the
dataset called Willow-Object [5]. We choose this dataset
because it contains annotated keypoints, which we could
use for the debugging of the algorithm. The dataset con-
tains 5 classes, each with 40 example images. To obtain
feature descriptors for an image, we use a keypoint de-
tector in the SIFT algorithm to obtain 400 keypionts per
image. For each keypoint in the image, we extract a vector
of activation values from two layers of a pre-trained neu-
ral network in the spatial position corresponding to that
keypoint. Concretely, we use VGG-11 pre-trained on Im-
ageNet and layers named relu4_2 and relu5_1 . For each
keypoint we obtain a 1024-dimensional vector. Therefore,
each example xi ∈ R400×1024 is represented by 400 1024-
dimensional vectors from which we wanted to select 10
vectors used for matching.

In this experiment, we found that cosine distance pro-
duces much better matches than the euclidean one. We
figured this out, with the help of manually annotated key-
points in this dataset. Each image contains 10 annotated
keypoints which correspond to parts of the object. For
example, each image in the class "FACE" will contain
keypoints for eyes, nose, mouth, etc. Together, there
are 5× 10 = 50 types of different keypoints. We can,
therefore, measure an average distance between each pair
of keypoint types, by computing distances of all possi-
ble pairs from two types of keypoints, e.g., "EYE" and
"WHEEL", and averaging them. Naturally, we would like
the average distance to be smallest between keypoints of
the same type so that the matcher is encouraged to match
keypoints of the same type together. We found that this
property holds for cosine distance, but not for euclidean
distance, as shown in Figure 3. We speculate that this may
be due to the fact that the keypoint descriptors extracted
from a pre-trained network may be rather sparse because
they are activation values of the ReLU function and for
such descriptors, cosine distance may work better.

We split the dataset in such a way that for each class,
we have 30 training examples, five prototype examples,
and five test examples. As shown in Table 1, we achieved
perfect accuracy on the train and the test set. The selected
keypoints are shown in Figure 2.



Figure 2: Examples of selected keypoints. Top row: keypoints from SIFT keypoint detector, Bottom row: 10 keypoints
selected by our algorithm.

Figure 3: A visualization of a distance matrix for all
pairs of keypoint types. An element on row i and col-
umn j corresponds to an average distance between all key-
points of type i and all keypoints of type j. Cosine dis-
tance (RIGHT) works much better than euclidean distance
(LEFT) for matching keypoints of the same type together.

7 Related work

The approach described in this work is based on tech-
niques used in [4], which uses parallel selective attention
to identify essential parts of the environment. This kind of
parallel attention mechanism was popularized by [6]. Pre-
viously approaches modeling attention [7] were sequential
in nature, in Computer Vision, for example, mimicking

distance Train acc. Test acc.

Synthetic dataset euclidean 0.86 0.85
Willow-Object-SIFT cosine - 0.74
Willow-Object-SIFT euclidean - 0.34

Willow-Object-filtered cosine 1.0 1.0

Table 1: Training and testing accuracy for our experi-
ments. Willow-Object-SIFT uses all keypoints extracted
by SIFT. Willow-Object-filtered uses keypoints selected
by our algorithm.

saccadic eye movements. In most cases, the attention is
differentiable and modeled by a softmax distribution over
possible positions [8]. This kind of attention is called soft
attention as opposed to hard attention [9–11], where dis-
crete choices are made, usually with a maximum operator.
Whereas soft attention modules can be trained with gra-
dient descent, hard attention modules were usually trained
with Reinforcement Learning. As far as we know, [4] were
the first one to use CMA-ES to train a parallel hard atten-
tion module. We tried to adapt their method to keypoint
filtering, which we believe can have a more immediate
practical impact. Our contribution is also related to other
articles about keypoint selection and discovery. In [12] he
authors described a method named Iterative Keypoint Se-



lection, where the main idea is to select representative key-
points in the first step and then filter them using a distance-
based rule. Keypoints for which the distance is higher than
a predefined threshold are removed in an iterative fashion.

The Transporter [13] is a neural network architecture for
unsupervised keypoint discovery from video frames. The
discovered method enables two notable results in control
domains. Using the keypoint co-ordinates and correspond-
ing image features as input enables highly sample-efficient
reinforcement learning, and learning to explore by con-
trolling keypoint locations drastically reduces the search
space. Another architecture named KeypointNet [14] is
used for the detection and discovery of 3D keypoints from
2D images. Their model discovers geometrically and se-
mantically consistent keypoints across viewing angles and
instances of an object category.

8 Discussion

In our experiments, we worked with datasets that con-
tained annotated keypoints in order to test our hypothesis
that the algorithm will be able to recover the relevant key-
points that we knew were present. These datasets enabled
easier debugging and development of the algorithm. In
the future, we will continue our work with more realistic
datasets, which contain more training and testing exam-
ples and also more classes of objects. Also, we would like
to test our approach with manually specified keypoints for
the prototype images where the user would be able to spec-
ify which parts of the object are useful for classification.
Lastly, we will try to incorporate spatial constraints be-
tween keypoints for the matching algorithm, which should
make the classification more robust.

9 Conclusion

In this article, we described and evaluated a method for
keypoint selection, which is based on the attention module
from [4]. We evaluated the method in proof-of-concept
experiments and showed that it could select a small sub-
set of relevant keypoints from a large set of generic key-
points. We also showed the importance of the right dis-
tance function when matching individual keypoints. We
hope that such developments will enable the use of key-
points in tasks where they are not standardly used.
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