
Modelling of Grey Wolf Optimization Algorithm Using 2D P Colonies

Daniel Valenta1, Lucie Ciencialová1,2, Miroslav Langer1,2, and Luděk Cienciala1,2

1 Institute of Computer Science, Silesian University in Opava, Czech Republic
2 Research Institute of the IT4Innovations Centre of Excellence, Silesian University in Opava, Czech Republic
{daniel.valenta, lucie.ciencialova, miroslav.langer, ludek.cienciala }@fpf.slu.cz

Abstract: The P colonies are a well-established version of
the P systems, the computational device based on mem-
brane computing. One branch of the research of the P
colonies focuses on the possibility to consider the two-
dimensional environment, in which the agents act, and the
2D P colonies were introduced. 2D P colonies showed
to be suitable for the simulations of various (not only)
multi-agent systems, and natural phenomena, like the flash
floods.
However, the agents of the 2D P colony are able to com-
municate via the environment, by leaving some special
symbols in it, this may not be sufficient for simulating
some more complex communities of the agents, for ex-
ample the hunting pack of the grey wolves.
In this paper, we introduce a formal model of the 2D P
colonies with the blackboard as an extension of the 2D P
colonies. We also allow the agents to use simple relational
operations to compare real numbers that can be stored in-
side special symbols. We use this model to simulate the
Grey wolf algorithm.
Keywords: pack algorithm, P system, 2D P colony, opti-
mization, multi-agent system, blackboard.

1 Introduction

2D P colony (see [1]) is a variant of P colonies (see [2]),
a community of agents set in the two dimensional envi-
ronment. It is a very simple membrane system originally
derived from the P systems (see [3]).
2D P colony consists of a finite number of agents living in
a shared environment. The environment of 2D P colony is
represented by a 2D grid of square cells. In each cell, there
is a multiset of objects. Each agent is represented by a fi-
nite collection of objects enclosed with a membrane. The
agent has programs consisting of rules. These rules are of
three types: they may change the objects of the agents and
they can be used for interacting with the joint shared envi-
ronment of the agents and movement rule. The direction
of the movement of the agent is determined by the contents
of cells surrounding the cell in which the agent is placed.
The program can contain at most one motion rule. There
is one more condition set to achieve the greatest simplicity
in agent’s behaviour. If the agent moves, it cannot commu-
nicate with the environment. So, if the program contains a

Copyright c©2020 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC BY
4.0).

motion rule, then the other rule is an evolution rule. The
number of objects inside each agent is set by definition and
it is usually a very small; one, two or three.
The agent itself has information neither about its position
nor about the position of the other agents in the environ-
ment. The communication between the agents is also pos-
sible only via the environment by leaving special symbols
in it. These factors are limiting the 2D P colonies in sim-
ulating more advanced communities of agents. For the re-
mote information exchange, we add the agents the possi-
bility to store and read the information from a blackboard.
The blackboard is a read/write device with an unchange-
able structure given by definition. The agents can change
only defined parts of the blackboard.

2 Grey Wolf Optimization Algorithm

Grey wolf optimization algorithm (GWO) (see [4]) is al-
ready well–established meta-heuristic optimization tech-
nology. It is inspired by social dynamics found in packs
of grey wolves and by their ability to dynamically create
hierarchies in which every member has a clearly defined
role. Each wolf can fulfil one of the following role:

• Alfa is the dominant pair and the pack follows their
lead for example during hunts or while locating a
place to sleep.

• Beta wolves support and respect the Alpha pair dur-
ing its decisions.

• Delta wolves are subservient to Alpha and Beta
wolves, follow their orders, and control Omega
wolves. We divide them into scouts – they observe
the surrounding area and warn the pack, sentinels –
they protect the pack when endangered and caretak-
ers – they provide aid to old and sick wolves.

• Omega wolves help to filter the aggression of the
pack and frustrations by serving as scapegoats.

The primary goal of the wolves is to find and hunt down
prey in their environment. The prey equals the optimal
solution to the given problem. The environment is repre-
sented by a mathematical fitness function characterizing
the problem. The value of the function at the current po-
sition of the particular wolf represents the highest-quality
prey. The wolf with the best value is ranked as Alpha, the
second one as Beta, third as Delta, and all the other are

Omegas.
The hunting technique of a wolf pack can be divided into
5 steps:

• Search for the prey – wolves are attempting to find the
most valuable prey with respect to the effort required
to hunt it successfully.

• Exploitation of the prey – wolves are attempting to
draw attention to themselves and to separate the prey
from its herd.

• Encircling prey – the attempt to push the prey into a
situation from which it cannot escape.

• The prey is surrounded – it can no longer escape.

• The attack – wolves attack the weak spots of the prey
(belly, legs, snout) until it succumbs to fatigue. Af-
terwards, they bring it down and crush its windpipe.

The algorithm is inspired by this process and smoothly
transitions between scouting and hunting phases. In the
scouting phase, the pack extensively scouts its environ-
ment through many random movements so that the al-
gorithm does not get stuck in a local extreme, while in
the hunting phase, the influence of random movements
is slowly reduced and pack members draw progressively
closer to the discovered extreme. To maintain the diver-
gence between those phases, each wolf is assigned vectors
~A and ~C.

~A is a vector with components rand (−1,1)∗a,
where rand(−1,1), generates a random number between
−1 and 1 and where

a = 2−
(

2i
imax

)
,

while i is the algorithm’s current iteration, and imax is the
maximum number of iterations.

Vector ~A is random value between −2 and 2. We can
see its impact in the Fig. 1. With growing iterations, it is
more likely that its value will be between -1 and 1. That
makes it more likely for a wolf to be hunting. Another

Figure 1: Vector ~A and its impact in 1D

component supporting the scouting phase is vector
~C = rand(0,2),

where rand(0,2), generates a random number between
0 and 2. Vector ~C is like vector ~A, but iterations don’t
influence it. It helps the wolves behave more naturally.
Analogously, in nature, wolves encounter various obsta-
cles which prevent them from approaching prey comfort-
ably. Vectors ~A and ~C encourages wolves to prefer scout-
ing, or hunting, and so to avoid local optima regardless of
the algorithm’s current iteration.

Wolves’ positions within the environment are updated
based upon the estimated location of the prey using Alpha,
Beta, and Delta wolves as guides.

Let ~X j(i) be a position vector of wolf j in i-th iteration.
The position vector of wolf j is updated as follows:

~X j (i+1) =
~X1 + ~X2 + ~X3

3
,

where i is the current iteration of the algorithms, and ~X1,
~X2, ~X3 are new potential position vectors of Alpha, Beta,
and Delta wolves obtained from following formulas:

~X1 = ~Xα (i)− ~A1 ∗ ~Dα

~X2 = ~Xβ (i)− ~A2 ∗ ~Dβ

~X3 = ~Xδ (i)− ~A3 ∗ ~Dδ

where ~Xα(i), ~Xβ (i), ~Xδ (i) are the position vectors of Al-
pha, Beta, and Delta wolves, they are representing the po-
sitions in the environment that are closest to the optimum
in i-th iteration. The vectors ~A1, ~A2, ~A3 are calculated in
the same way as vector ~A. The vectors ~Dα , ~Dβ , ~Dδ are
defining the distance of the wolf j position from the prey
as follows:

~Dα =
∣∣∣~C1 ∗ ~Xα (i)− ~X j (i)

∣∣∣
~Dβ =

∣∣∣~C2 ∗ ~Xβ (i)− ~X j (i)
∣∣∣

~Dδ =
∣∣∣~C3 ∗ ~Xδ (i)− ~X j (i)

∣∣∣
where |~X | is the vector whose components are the absolute
values of the components of ~X .

The vectors ~C1, ~C2, ~C3 are computed in the same way as
vector ~C, and they influence the weight of the estimated
position of the prey ~Xα , ~Xβ , ~Xδ , increasing or decreasing
it.

We can see in Fig. 2 that thanks to this principle wolves
have the tendency to move closer towards prey and encir-
cle it (wolves approach from different directions).

Figure 2: Positional updates of Omega wolves as it is de-
scribed by the mathematical formula [4]

2.1 Algorithm pseudocode

In this subsection we describe the algorithm in pseudo-
code. The inputs of the algorithm are dimensions of the

environment of the problem, boundaries of the environ-
ment of the problem, fitness function characterizing the
problem, size of the pack (number of wolves/agents), num-
ber of iterations of the algorithm, termination criteria and
criteria of the fitness function.

Figure 3: Algorithm steps

The algorithms pseudocode follows:

• In the first step, agents (wolves) are randomly spread
out across the environment.

• In each iteration i:

– calculate the fitness value of each agent and de-
termine the social hierarchy – Fig. 3. part 1.
The agent with the best value (closest to the op-
timum) is Alpha, second best is Beta, third best
is Delta, and all others are Omega.

– calculate the best solution found thus far by Al-
pha, Beta and Delta (~Xα(i), ~Xβ (i), ~Xδ (i)) and
average it – Fig. 3. part 2,

– update positions of all the wolves X j(i + 1),
while random vectors ~A and ~C are updated for
each one – Fig. 3. part 3,

– check the termination criterion – Fig. 3. part 4.
Iterations terminate when fitness function value
reaches a preset value.

3 2D P Colonies

In this section, we recall the definition of 2D P colonies
and other terms related to them.

Definition 1. A 2D P colony is a construct
Π = (A,e,Env,B1, . . . ,Bk, f),k ≥ 1,

where

• A is an alphabet of the colony, its elements are called
objects,

• e ∈ A is the basic environmental object of the 2D P
colony,

• Env is a pair (m× n,wE), where m× n,m,n ∈ N is
the size of the environment and wE is the initial con-
tents of the environment, it is a matrix of size m×n of
multisets of objects over A−{e}.

• Bi, 1 ≤ i ≤ k, are agents, each agent is a construct
Bi = (oi,Pi, [o, p]) , 0≤ o < m, 0≤ p < n, where

– oi is a multiset over A, it determines the initial
state (contents) of the agent, |oi|= 2,

– Pi =
{

pi,1, . . . , pi,li

}
, l ≥ 1,1 ≤ i ≤ k is a finite

set of programs, where each program contains
exactly 2 rules, which are in one of the following
forms each:

∗ a→ b, called the evolution rule, a,b ∈ A,
∗ c ↔ d, called the communication rule,

c,d ∈ A,
∗ [aq,r] → s,0 ≤ q,r ≤ 2,s ∈ {⇐,⇒,⇑,⇓},

called the motion rule,

• f ∈ A is the final object of the colony.

A configuration of the 2D P colony is given by the state
of the environment - matrix of type m× n with multisets
of objects over A−{e} as its elements, and by the state
of all agents - pairs of objects from alphabet A and the
coordinates of the agents. An initial configuration is given
by the definition of the 2D P colony.

A computational step consists of three parts. The first
part lies in determining the set of applicable programs ac-
cording to the current configuration of the 2D P colony.
In the second part, we have to select from this set one pro-
gram for each agent, in such a way that there is no collision
between the communication rules belonging to different
programs. The third part is the execution of the chosen
programs.

A change of the configuration is triggered by the execu-
tion of programs and it involves changing the state of the
environment, contents and placement of the agents.

A computation is non-deterministic and maximally par-
allel. The computation ends by halting when there is at
least one agent that has no applicable program.

The result of the computation is the number of copies of
the final object placed in the environment at the end of the
computation.

The aim of introducing 2D P colonies is not studying
their computational power but monitoring their behaviour
during the computation.

4 Modelling of Grey wolf optimization
algorithm using 2D P colonies

As for the modelling of GWO, some similarities as well as
a few differences have been found. Both are inspired by

the nature, usable for solving optimization problems, and
both are multi-agent system models. For comparison see
the differences / problems:

• Environmental problem,

• Communication problem,

• Randomness problem.

These problems are described in the Table 1.

Table 1: Differences between Grey wolf algorithm and P
colony

Difference /
System

Grey wolf algo-
rithm

2D P colony

Environmental
problem

The environment
is represented by
a mathematical
fitness function.

The environment
is represented by
a multiset of sym-
bols in each cell
of 2D grid.

Communication
problem

The agents have
the knowledge of
their global posi-
tion in the envi-
ronment.

They are commu-
nities of simple
reactive agents
independently
living and acting
in a joint shared
environment.

Randomness
problem

Random vectors
~A and ~C influence
the movement of
wolves in the en-
vironment.

Each rule is
deterministic,
the only way
to implement
randomness is
to randomize
the choosing
rule for identical
configurations.

The definition of the 2D P colony needs to be adjusted
to meet described requirements. Proposed solutions for
those problems are described in the following subsections.

4.1 Environmental problem solution

The environment will be a pair of matrix m × n and
fitness function fE , where m× n, m,n ∈ N is the size
of the environment and fE is a mathematical function
with the initial contents of environment. Alphabet V will
contains objects that can store real numbers and common
objects, V =

{
x , x ′, x ′′, . . .

}⋃
{a,b,c,d,e, f ,g, . . .},

The rules of the programs, which guide the agents,
will compare the number values of the objects using
operators greater than ” > ” and greater or equal to
” ≥ ”. The agent Ai will be defined as Ai = (oi,Pi, [o, p]),
|oi| = 2. For example, environment can be defined as
Env = (4× 4,wE , fE), with object a in each cell, and
fitness function fE is the Ackermann function

fE(x,y)=

 y+1 for x = 0
fE(x−1,1) for m > 0 and n = 0
fE(x−1, fE(x,y−1)) otherwise

1 a 2 a 3 a 4 a
2 a 3 a 4 a 5 a
3 a 5 a 7 a 9 a
5 a 13 a 29 a 61 a

Figure 4: Graphical representation of the environment

4.2 Communication problem solution

We extend the 2D P colony by adding the blackboard that
saves the agents’ best fitness values and is always acces-
sible to read and write by all agents. To simulate GWO
agents cannot decide how to continue with hunting without
knowledge of their position in the environment, because
the fitness value is not enough for calculating the prey’s
estimated position. That is why the approximate position
is stored in the blackboard. The position of each agent is
computed by a function using moving receivers (see Sec-
tion 6. for more details) We will use the blackboard as a

Figure 5: Simple Blackboard example

means of giving feedback to agents. Agents do not need
to know their position in the environment, all agents who
can contribute to the search will send their solution to the
blackboard points called receivers, and estimation of prey
position is calculated as an average of distances collected
by blackboard points from wolves Alpha, Beta and Delta.
Omega wolves can ping the blackboard if changing po-
sition and get their distance from the prey. If the distance
would decrease compared to the original distance, then the
wolf will move.

Figure 6: Blackboard structure

4.3 Randomness problem solution

The omega wolves movement is based not only on posi-
tion of the prey but also on random vectors ~A and ~C. In
2D P Colony model the randomness is replaced by non-
deterministic choice between several applicable rules.

5 Model of numerical 2D P colony with the
blackboard

Let us consider that there is not only multiset of objects in
each environmental cell, but there is also one (natural or
real) number computed by a function (called an environ-
mental function) depending on the position of the cell and
time. This number can be read by the agent, but it can be
changed only by the environmental function.

The number can be stored inside the agent inside special
kind of objects (box-objects). To read an environmental
number the agent needs a special reading rule. Using this
rule agent rewrites an object inside of it into the special
object that contains the number that equals the environ-
mental number. This rule is in the form: a � x , where
a ∈ V is an object and x is the environmental number in
the cell, where the agent executing the rule is placed. The
environmental number can be read by more than one agent
at the same time, and each agent can use the reading rule
multiple times in one program. For example, let ab is the
content of agent with program p :

〈
a � x ; b � x

〉
, and

5 is the number stored in the environmental cell where the
agent is placed. After execution of the program p the con-
tent of agent is 5 5 .

If there are two objects with numbers inside the agent,
an execution of particular program can be restricted by
these numbers. Agent can compare the numbers, and
distinguish which rule will be applied to which object.
The programs with such condition look like follows:
〈x > y : r1,r2〉 or 〈x≥ y : r1,r2〉 , where x,y ∈ R and
r1,r2 are rules that work with objects with numbers. These
box-objects can be of different kind but both must store a
number.

The memory of 2D P colony is extended by a black-
board. It is a pair BB = (~fBB,BM), where ~fBB is a vector
of i functions fi, and BM is a matrix of size i× j, i, j ∈ N.
fi is a function that fills the members of corresponding row
of matrix BM with values. The function can update only
such members that are not updated by agents.

To access and affect the blackboard, the agents have the
rules for reading and writing a value placed in a spec-
ified part of the blackboard. These rules use functions
Get(BB[ad],b) and Update(b,BB[ad]), where BB[ad] is
an address of value on the blackboard which have to
read or written, and b ∈ V is the box-object. The get
rule is in a form a→ Get(BB[ad],b) and the update rule
consist only from the function Update(b,BB[ad]), where
a,b ∈ V . When the rule a → Get(BB[2,1], x) is exe-
cuted, the object a inside the agent is evolved into the ob-
ject x , and this object is filled in with the number stored

on the blackboard at position [2,1]. By execution of rule
Update(15

′′
,BB[0,4]), the agent with object 15

′′ places
number 15 into the fifth member in the first row of the
blackboard. Only one agent can read or update value in
one position at the same time. If two agents have ap-
plicable programs that affect the same position in black-
board, then only one of them can execute its program.
The other agent must use another applicable program, or
be inactive if another applicable program does not exist.
The agent able to write on the blackboard is chosen non-
deterministically.

All newly introduced rules can be combined in the pro-
grams with any kind of rules, except the movement rule,
that can be paired only with the rewriting rule.

Definition 2. A numerical 2D P colony with blackboard
is a construct

Π = (V,e,Env,A1, . . . ,Ak,BB, f),k ≥ 1, where

• V is an alphabet of the colony, its elements are called
objects, there are special objects b that can contain
an arbitrary number,

• e ∈ V is the basic environmental object of the 2D P
colony,

• Env is a triplet (m×n,wE , fE), where m×n,m,n∈N
is the size of the environment, and wE is the initial
contents of the environment. It is a matrix of size m×
n of multisets of objects over V −{e}, and fE is an
environmental function.

• Ai, 1 ≤ i ≤ k, are agents. Each agent is a construct
Ai = (oi,Pi, [o, p]) , 0≤ o≤ m, 0≤ p≤ n, where

– oi is a multiset over V , it determines the initial
state (contents) of the agent, |oi|= 2,

– Pi =
{

pi,1, . . . , pi,li

}
, l ≥ 1,1 ≤ i ≤ k is a finite

set of programs, where each program contains
exactly 2 rules. Each rule is in the following
form:

∗ a→ b, the evolution rule, a,b ∈V ,
∗ c↔ d, the communication rule, c,d ∈V ,
∗ [aq,r]→ s,aq,r ∈V,0≤ q,r ≤ 2,s ∈ {⇐,⇒
,⇑,⇓}, the motion rule,
∗ a � x , x ∈ R,a, x ∈V, the reading rule

If the program contains evolution or communi-
cation rule r1, r2 that each works with objects
with numbers, it can be extended by a condition:
〈x > y : r1,r2〉 , 〈x≥ y : r1,r2〉 ,

– [o, p], 1≤ o≤ m, 1≤ p≤ n, is an initial posi-
tion of agent Ai in the 2D environment,

• f ∈V is the final object of the colony.

A configuration of the 2D P colony is given by the state
of the environment - matrix of type m×n with pairs - mul-
tiset of objects over V −{e}, and a number - as its ele-
ments, and by the states of all agents - pairs of objects

from the alphabet V , and the coordinates of the agents. An
initial configuration is given by the definition of the 2D P
colony.

A computational step consists of three phases. In the
first step, the set of the applicable programs is determined
according to the current configuration of the 2D P colony.
In the second step, one program from the set is chosen for
each agent, in such a way that there is no collision between
the communication rules belonging to different programs.
In the third step, chosen programs are executed, the values
of the environment and on the blackboard are updated.

A change of the configuration is triggered by the exe-
cution of programs, and updating values by functions. It
involves changing the state of the environment, contents
and placement of the agents.

A computation is non-deterministic and maximally par-
allel. The computation ends by halting when there is no
agent that has an applicable program.

The result of the computation is the number of copies of
the final object placed in the environment at the end of the
computation.

5.1 Numerical 2D P Colony with the Blackboard for
GWO

Because of a restricted number of pages of this contribu-
tion we show an idea of the construction of a numerical 2D
P colony with the blackboard that models GWO in finding
extreme of a function with two variables in this section.

Pgw = (V,e,Env,A1,A2, . . . ,Ak,BB, f), k ≥ 1, where:

• V =
{

b , b
′
, b

′′
, b

′′′
, b

iv
, b

v
, b

vi}
∪

∪
{

e, f ,a′,b,c,d,h,h′,h′′,mOK ,mKO,m′KO,m
′′
KO

}
∪

∪{n,A,B,D}∪
{

l, l′, l′′, l′′′, liv | Y ∈ {⇐,⇒,⇑,⇓}
}
∪

∪
{

kz1z2z3z4 | zi ∈ {⇐,⇒,⇑,⇓}∧ k, i ∈ {1,2,3,4}
}

• e ∈V is the basic environmental object,

• Env is a triplet (i× j,we, f (x,y)), where i, j ∈ N,
wE = |ar,s|,ar,s = ε,1≥ r ≥ i,1≥ s≥ j,

• A1,A2, . . . ,Ak are the agents, Ai = (Oi,Pi, [rx,ry]),
where:

– |oi|= 2,

– P1 = P2 = · · ·= Pk, Pi rules are defined below,

– [r,s] are the initial coordinates,

• BB is the blackboard, to the definition of the black-
board is devoted a separate subsection of this chapter,

• f is the final object, f ∈V .

The initial agent’s configuration is: ee and its position
is [r,s].

Programs Pi associated with i-th agent are:

1.
〈
e � x ′; e→ Get(BB[alpha, x],

)
〉 x ∈ R is num-

ber placed in the environmental cell [r,s], alpha is ad-
dress of current value y of alpha wolf in blackboard;
This program is to read the number from the envi-
ronmental cell and the value of current alpha wolf in
blackboard.

2. The following set of programs Compare is to com-
pare two numbers stored inside the agent:

(a)
〈

x > y : x → x , y ′→ A
〉

– I am new Al-
pha,

(b)
〈
x≥ y : x ′→ b, x → x

〉
(c)

〈
x → x ,b← Get(BB[beta], x ′′)

〉
,

(d)
〈

x > y : x → x , y ′′→ B
〉

– I am new Beta,

(e)
〈
x≥ y : x ′′→ c, x → x

〉
(f)
〈

x → x ,c← Get(BB[BB[gamma], x ′′′],
)
〉,

(g)
〈

x > y : x → x , y ′′′→C
〉

– I am new
Delta,

(h)
〈
x≥ y : x ′′′→ d, x → x iv〉 – I am Omega,

3. If there is A,B or C inside the agent, the agent updates
the blackboard using programs:

(a)
〈
Update(x ,BB[alpha]),A→ a′

〉
,

(b)
〈
Update(x ,BB[beta]),B→ a′

〉
,

(c)
〈
Update(x ,BB[gamma]),C→ a′

〉
,

(d)
〈

x → e,a′→ e
〉
,

4. If the agent is an omega wolf, the agent is supposed
to move so as to approach the prey. The agent reads
its distance from the prey computed by the function
and placed on the blackboard, and it moves in a ran-
dom direction. The direction is generated in such a
way, that the agent creates the object 1 with a low in-
dex formed from four directions in random order. 1
means that the agent will move in the first direction.

(a)
〈
d→ 1w, x iv→ Get(BB[dist. from prey], x v

)
〉
,

w = z1z2z3z4, zi ∈ {⇒,⇐,⇑,⇓},
z1 6= z2 6= z3 6= z4

(b)
〈
1w↔ e, x v→ x v〉,

(c)

〈 e e e
e Xz1z2z3z4 e
e e e

→ zX ,e→ zX

〉
,

X ∈ {1,2,3,4}, zX ∈ {⇒,⇐,⇑,⇓}

Then the agent puts the object with movement se-
quence into environmental cell and reads its distance
from the prey from new location.

(a)
〈
zX → z′X , x v↔ e

〉
,

(b) 〈z′X → z′′X ,e→ h〉,

(c)
〈

z′′X ↔ x v,h→ Get(BB[dist. from prey], x vi
)
〉

,

5. If the new value is smaller then value from previ-
ous location, the agent consumes object correspond-
ing to direction and object with movement sequence
and rewrite its content to ee.

(a)
〈

x≥ y : x v→ mOK , y vi→ h′
〉

,

(b)
〈

x > y : x vi→ mKO, y v→ h′
〉

,

(c) 〈mOK → mOK ,h′↔ z′′X 〉,

(d)

〈 e e e
e e e
e e e

→ zX ,z′′X → z′′′X

〉
, zX is oppo-

site movement to zX ,

(e)
〈
mOK ↔ Xw,z′′′X → ziv

X
〉
,

(f)

〈 e e e
e e e
e e e

→ zX ,ziv
X → h′′

〉
(g) 〈Xw→ e,h′′→ e〉,

6. If the new distance is greater then old one, the agent
consumes object corresponding to the direction and
moves to original location and rewrite the object 1
with movement sequence into object 2 with the same
movement sequence, and the agent continues with
investigation. If the agent moves back and there is
object 4 with movement sequence, it did not find a
smaller distance to the prey and it stops working.

(a) 〈mKO→ mKO,h′↔ z′′X 〉,
(b)

〈
mKO→ m′KO,z

′′′
X → e

〉
,

(c)
〈
m′KO→ m′KO,e↔ Xw

〉
,

(d)
〈
m′KO→ m′′KO,Xw→ (X +1)w

〉
, X ∈ {1,2,3}

(e)
〈
m′′KO→ Get(BB[dist. from prey], x v

),Xw↔ e
〉
,

X ∈ {2,3,4},
(f)
〈
m′KO→ f ,e↔ 4w

〉
,

The computation is possibly non-halting because of the
three agents (alpha, beta and gamma) can always find
applicable program. The positions of these three agents
are important to estimate prey position by the Blackboard
(more in Section 5.2).

5.2 Blackboard

The blackboard for GWO is a structure defined as follows:

BBGWO = (~f nc, [~v1, ~v2]), where:

• dimension of both vectors ~v1, ~v2 is j =max(7,k), k≥
1 is the number of agents, in this case, a matrix of
type i× j, i, j ∈N, is represented by a vector of these
vectors.

• ~v1 is a vector with elements that can be named
AlphaValue, BetaValue, DeltaValue, AlphaPosition,
BetaPosition, DeltaPosition, preyPosition.
If j > 7, then elements with index greater than 7 are
without a name, they are addressed by its position.
The first three elements are serviced by the agents, so
blackboard function for the first row only copy their
values, if they are not updated by agents in current
step of computation.

– initial content of ~v1 is 0 in each element.

• ~v2 is a vector with elements named
A′0sDistanceFromPrey, A′1sDistanceFromPrey,
. . . , A′ksDistanceFromPrey, k is number of agents
(wolves), the elements without name can be
addressed only by its position in blackboard matrix.

– initial content of ~v2 is 0 in each element.

• f cn is a vector of functions (f nc1(i), f nc2(i)) for
manipulating the vectors ~v1 and ~v2, where f nc1(i)
updates i− th element of vector ~v1 and f nc2(i) up-
dates i− th element of vector ~v2, 0 ≤ i ≤ j, j is a
dimension of vectors ~v1 and ~v2:

i f nc1(i)=


identity i = {0,1,2},
BPosition i = {3,4,5},
f nc1(3)+ f nc1(4)+ f nc1(5)

3 i = 6.

ii f nc2(i) = | f nc1(preyPosition)− BPosition|, for
i = index of agent Ai.

Auxiliary function BPosition is described in the section
Receivers.

6 Receivers - from theoretical model into
real life

A communication between agents and blackboard is real-
ized by receivers. We equip our model with two receivers
that are listening signals coming from the agents. The abil-
ities of receivers are crucial for functioning of the func-
tions of the blackboard, because they are providers of val-
ues of Bposition function. We can assume, that receivers
can "see" position of each agent but for wide areas it is not
very realistic. For our model we choose another approach.
We introduce time into our model - it takes some time to
signal from agents to reach receivers.

• rcv - the blackboard has two receivers. Both receivers
are located in the environment. Their initial position
are on the opposite sides of the boundary points of the
environment Env (positions [0,0] and [m− 1,n− 1],
where m×n,m, n∈N, is the size of the environment).
Receivers’ positions are updated in each derivation
step and receivers circulate around the environment
as follows:

– x < 1,y < n : x = x,y = y+1,

Figure 7: Blackboard in use

– x < m,y > n−1 : x = x+1,y = y,

– x > m−1,y > 0 : x = x,y = y−1,

– x > 0,y < n+1 : x = x−1,y = y.

Primary task of the rcv is to collect data (messages)
from agents.

– Messages have a given structure: msg :
(contents, agent’s index, timestamp). contents
is request of an agent - function Get, Update
or it is an empty string, timestamp corresponds
to the time, when request was sent.

Receivers are listening to agents’ signal. If both re-
ceivers receive the same message from the agent, re-
ceived message is being processed in the following
sequence: computation of auxiliary function BPosition,
execution of contents part of message.

– BPosition = x ∈ R1 ∩ R2, where R1, R2 are cir-
cles with centre at receivers’ position and radius
r = now− sent, where now is time of receiving
the message, and sent equals to timestamp, x is
chosen randomly in the intersect area. The in-
tersection shapes are changed over time due to
the movements of the receivers.

At this point, it is important to focus on the use of the
blackboard by the agents. Agents can use blackboard’s
functions above.

If the agent concludes that it is Alpha, it rewrites field
~v1[0] using communication program 3 in Fig. 7 on the left
side. In the same way, Beta and Delta wolves can rewrite
field ~v1[1] using the same function. On the right side of
Fig. 7, the agent concludes that it is Omega, and it will
try to move with blackboard’s assistance using communi-
cation program 1.

7 Conclusion

The 2D P colonies as defined are not able to simulate the
behaviour of the complex multi-agent systems. The agents
of the 2D P colony are not able to communicate in other

way than via the environment. They also have no informa-
tion about their own position and position of others in the
environment. These deficiencies can be solved by adding
the universal communication device, the blackboard, into
the definition of the 2D P colony.
The Grey wolf optimization algorithm is meta-heuristic
optimization technology inspired by the social dynamics
of the packs of grey wolves. The looking for the extreme
of a function is inspired by hunting the prey by the pack of
the wolves.
We introduced the formal definition of the 2D P colony
equipped with a blackboard and presented the ability of
this formal model to simulate the Grey wolf algorithm.
The blackboard serves not only as a communication de-
vice, but also as a device capable to set the particular roles
of the agents simulating the wolves, and successfully find
the extreme of the function represented by the discrete en-
vironment of the 2D P colony.

Acknowledgements. This work was supported by The
Ministry of Education, Youth and Sports from the Na-
tional Programme of Sustainability (NPU II) project
„IT4Innovations excellence in science - LQ1602“.
Research was also supported by the SGS/11/2019 Project
of the Silesian University in Opava.

References

[1] Cienciala, L., Ciencialová, L., Perdek, M.: 2D P colonies.
In: Csuhaj-Varjú E., Gheorghe M., Rozenberg G., Salomaa
A., Vaszil Gy. (eds) Membrane Computing. CMC 2012.
Lecture Notes in Computer Science, vol 7762. Springer,
Berlin, Heidelberg, pp. 161–172 (2012)

[2] Kelemen, J., Kelemenová, A., Păun, Gh.: Preview of P
colonies: A biochemically inspired computing model. In:
Workshop and Tutorial Proceedings. Ninth International
Conference on the Simulation and Synthesis of Living Sys-
tems (Alife IX). pp. 82–86. Boston, Massachusetts, USA
(September 12-15 2004)

[3] Păun, Gh.: Computing with membranes. J. Comput. Syst.
Sci. 61(1), 108–143 (2000)

[4] Mirjalilia, S., Mirjalilib, S.M., Lewisa, A.: Grey Wolf
Optimizer. Advances in Engineering Software 69, 46—
61(2014)

	Introduction
	Grey Wolf Optimization Algorithm
	Algorithm pseudocode

	2D P Colonies
	Modelling of Grey wolf optimization algorithm using 2D P colonies
	Environmental problem solution
	Communication problem solution
	Randomness problem solution

	Model of numerical 2D P colony with the blackboard
	Numerical 2D P Colony with the Blackboard for GWO
	Blackboard

	Receivers - from theoretical model into real life
	Conclusion

