
Policy-Driven Middleware for Manageable and
Adaptive Web Services Compositions

Abdelkarim Erradi1, Piyush Maheshwari2, Vladimir Tosic3
1 School of Computer Science and Eng., University of New South Wales, Sydney, Australia

2 IBM India Research Lab, New Delhi, India
3* National ICT of Australia (NICTA), Sydney, Australia

aerradi@cse.unsw.edu.au, pimahesh@in.ibm.com, vladat@computer.org

Abstract. MASC (Manageable and Adaptive Service Compositions)1* is a pol-
icy-based middleware for monitoring of Web service compositions and their
dynamic adaptation to various runtime changes. The monitorable requirements
and the adaptation actions are specified in the WS-Policy4MASC language
which extends WS-Policy by defining new types of policy assertions. In this
paper, we present an overview of MASC architecture and implementation.
Compared with recent related works, MASC has several distinctive characteris-
tics: (1) support for synchronous and asynchronous monitoring and coordina-
tion of adaptation both at the SOAP messaging layer and the process orchestra-
tion layer, (2) greater diversity of monitoring and control constructs, for exam-
ple, a sub-process (or an activity) can be added, removed, replaced, skipped, or
retried, (3) the externalization of monitoring and adaptation actions from defini-
tions of business processes, (4) use of both technical and business metrics for
adaptation decisions, and (5) extend the power and flexibility of the new Micro-
soft .NET 3.0 platform. We have implemented a MASC proof-of-concept pro-
totype and evaluated it on monitoring and adaptation scenarios from a stock
trading case study.

1. Introduction and Motivation

Organizations2are increasingly using composite Web services to automate business
processes, via dynamically selecting and assembling a set of autonomous and loosely-
coupled Web services, possibly from different service providers. However, Web ser-
vices based integration builds a web of interdependencies between collaborating sys-
tems and introduces various challenging interoperability and management issues as
participating services may change or behave in unpredictable ways. Hence, composite
Web services execution has to be continuously monitored to check compliance to
runtime policies in order to detect and adapt to business exceptions and faults.

However, monitoring and runtime adaptability is not yet adequately supported by
dominant Web service composition languages, such as WS-BPEL. Additionally the
exception handling mechanisms offered by the process orchestration engines do not
provide sufficient support for monitoring to detect and handle the broad range of

1* MASC project (http://masc.web.cse.unsw.edu.au/) is sponsored by the Australian Research Council

(ARC) and Microsoft Australia. We also thank A/Prof. Boualem Benatallah for his comments.
3* NICTA is funded through the Australian Government’s Backing Australia’s Ability initiative, in part

through the Australian Research Council (ARC).

mailto:aerradi@cse.unsw.edu.au
mailto:pimahesh@in.ibm.com
mailto:vladat@computer.org
http://masc.web.cse.unsw.edu.au/

business exceptions or faults that may occur during the process execution. Moreover,
the monitoring and adaptation logic is often scattered across different modules and
tangled with the functional specification and implementation of the normal process
flow. This negatively impacts maintainability and increases design complexity and
development costs. To address the requirements for manageable and adaptive compo-
site Web services, we propose a policy-based approach to runtime monitoring and
adaptation to detect and handle business exceptions and faults. The central part of the
approach is our lightweight Web service management middleware MASC (Managea-
ble and Adaptive Service Compositions) that performs runtime monitoring and adap-
tation. For formal specification of policies MASC uses WS-Policy4MASC [3], which
is our novel extension of the Web Services Policy (WS-Policy) Framework [5]. This
externalization of monitoring and adaptation aspects yields higher degree of flexibili-
ty promotes reusability and contributes to keep the specification of the base process
simpler and easier to maintain. Another distinctive characteristic of MASC is that it
leverages and extends Microsoft .NET 3.0 [4]. The details of MASC approach have
been reported in a number of publications, such as [1-3]. This paper presents a sum-
mary of MASC architecture and its implementation. It also summarizes our motivat-
ing scenarios used to evaluate and demo MASC middleware capabilities.

2. MASC Middleware Architecture and Implementation

The conceptual architecture of MASC, capturing key components and their rela-
tionships, is shown in Figure 1.

Figure 1- Architecture of MASC middleware and its key Components

We have been implementing its prototype using the newly released .Net 3.0.
MASC extends a SOAP messaging engine (the WCF in .NET 3.0) and a process or-

chestration engine (the WF in .NET 3.0). Monitoring and adaptation policy assertions
are stored in an in-memory policy repository, which is a collection of instances of
policy classes. Dynamic adaptation is started when the MASCMonitoringService
module raises an event that for a particular process instance it detected adaptation pre-
conditions specified in monitoring policies. The raised events are handled by
MASCPolicyDecisionPoint, which determines adaptation policy assertions to be ap-
plied to the process instance and sends an event to MASCAdaptationCoordinator,
which calls modules that execute particular adaptation actions. Most often, adaptation
is performed by the MASCAdaptationService that is responsible for executing adapta-
tion at the process layer and supports various adaptation actions, such as add activity
block, remove activity block, replace activity block, skip, and retry. We have been
evaluating the MASC support for policy-based monitoring and adaptation on Stock
Trading scenarios implemented with MASC, .NET 3.0, and C#. These evaluations
indicate improved reliability of Web service compositions; at the cost of relatively
low overheads (e.g., increase in response time).

3. Monitoring and adaptation scenarios

In this demo, the monitoring and dynamic adaptation capabilities of MASC will be
illustrated using parts of the Stock Trading case study that we have used to determine
requirements for our work in this area and evaluate our solutions.

Figure 2: Example Web services interactions in the Stock Trading case study

The base Trading Process, shown in Figure 2, is initiated when a human investor
places an investment or redemption order with their FundManagerService. The latter,
after verifying the order, invokes the FinancialAnalysisService to get a recommenda-
tion to enable an informed investment/redemption decision. The FinancialAnalysis-
Service gets periodic notifications from the Stock-NotificationService about the cur-
rent stock values and real-time market surveillance, announcements, quotes, and other
information. Based on this information, historical records, and predictive models built
into the service (for our prototype, we used very simple models), the FinancialAnaly-
sisService informs the FundManager-Service about how well certain stocks are per-
forming. The FundManagerService makes a decision which stock to buy/sell for the
monetary amount requested by the investor. Then, the FundManagerService sends the
buying/selling request to the StockMarketService. The latter performs a simple trade

matching between the buy orders and the sell orders. When a trade match is formed,
the StockMarketService invokes in parallel the StockRegistryService to transfer the
stock share ownership and the PaymentService to transfer funds.

Several scenarios will be used to illustrate the mechanisms used by MASC for
monitoring of composite Web services to trigger timely dynamic adaptation to handle
business exceptions and faults. Examples of such scenarios are:
• Monitoring the GetAccountBalance process to examine incoming AccountBalance
messages and in case of a foreign portfolio an adaptation trigger can be raised to dy-
namically add a CurrencyConversion Web service to convert prices of foreign stocks
to a local currency.
• Monitoring the invocation of the PaymentService to check the payment amount
against the trade amount. When underpayment is detected (i.e., the payment received
is less than the trade amount) then a process adaptation could be triggered to calculate
the amount still owing and issue a residue invoice to the customer. Whereas in case
overpayment the process adaptation could dynamically add a sub-process to notify the
customer, calculate the over-paid amount and refund it.
• Monitoring missing events such as the Trade Payment not received within a par-
ticular timeframe (e.g., NoPaymentAfter30Days event).
• Monitoring that the response time of the GetStockPrice operation is less than 10
seconds otherwise the returned price should not be considered. In case of service un-
availability or timeout, an example reaction could be to cancel the request and to
submit a new one to an equivalent service.

4. Conclusions

In this paper, we presented MASC – a policy-based middleware for monitoring and
adaptation of Web services compositions. The underlying design principle of our ap-
proach is the separation of concerns between the functional process definition and the
monitoring and control. The benefits of our approach are of twofold:
(1) A novel language, WS-Policy4MASC, is used to declaratively specify monitoring
and adaptation policies for composite Web services (2) The new MASC middleware
architecture has been designed and implemented to autonomously make and coordi-
nate enforcement of runtime adaptation decisions across both the business process
orchestration layer and the SOAP messaging layer.

References
[1] Erradi, A., Maheshwari, P. and Tosic, V. 2006, 'Policy-Driven Middleware for Self-
Adaptive Web Services Composition', in Middleware'06, Melbourne, Australia.
[2] Erradi, A., Maheshwari, P. and Tosic, V. 2006, 'Recovery Policies for Enhancing Web
Services Reliability', in IEEE Int. Conference on Web Services 2006 (ICWS'06), Chicago, USA.
[3] Erradi, A., Tosic, V. and Maheshwari, P. 2007, 'MASC – .NET-Based Middleware for
Adaptive Composite Web Services', in IEEE International Conference on Web Services 2007
(ICWS'07), Utah, USA.
[4] Microsoft 2007, .NET Framework 3.0. http://www.netfx3.com/.
[5] W3C Web Services Policy Working Group 2006, Web Services Policy (WS-Policy) 1.5,
November 2006. http://www.w3.org/TR/ws-policy/.

http://www.netfx3.com/
http://www.w3.org/TR/ws-policy/

