
Verifying Algorithm Traces and Fault Reason
Determining Using Ontology Reasoning ?

Oleg Sychev1[0000−0002−7296−2538], Mikhail Denisov1[0000−0002−1216−610X], and
Anton Anikin1[0000−0003−0661−4284]

Volgograd State Technical University, Lenin Ave, 28, Volgograd, 400005, Russia
oasychev@gmail.com

Abstract. Domain ontologies that can solve various tasks using its
concepts and determine fault reason for students’ answers may serve as
a good basis for creating for a testing system with extensive explanatory
abilities. But capabilities of modern ontological reasoners may not be
enough for this kind of task. In this study, we developed and tested an
ontology able to build execution trace for the given algorithm containing
sequences and alternatives and find fault reasons for incorrect traces.
The study also showed problems with the used reasoner that hinder the
developed ontology from becoming fully effective.

Keywords: Ontology · Reasoning · Error detection · Algorithm · Exe-
cution trace.

1 Introduction and Related Work

Ontology-based models and formal reasoning are used for knowledge represen-
tation in different domains for a wide range of applications. Ontology Driven
Software Engineering (ODSE) approach [5] implies using ontology models for
various aspects of the software engineering, (e.g. for modeling different parts of
systems, software products, modules, algorithms).

The interesting and relevant topic within this aspect is algorithms’ and pro-
grams’ analysis and synthesis using ontology-based models [7]. Ontologies al-
low capturing program components and their relations as a formal model. The
reasoning rules defined within ontologies using inference engines (or reasoners)
allow solving a wide range of tasks from system modeling to software generation.
These tasks include algorithmic structures analysis (e.g., canonical loop analysis
to recognize whether a loop in the program code is in a canonical form), data
access pattern analysis; alias, dependence, and static code analysis; program
synthesis using an ontology-based algorithm description and formal reasoning
rules defined for the specific programming language. For example, in [1] software
requirement specifications (SRS) are defined using an ontology that becomes the

? The reported study was funded by RFBR, project number 20-07-00764.
Copyright c©2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).



conceptual model of the developed software and is mapped to the entities in the
program code. This allows automating SRS detection and updating. The article
[3] describes an ontology combining control-flow graph representation with the
static trace of the program for source code analysis, showing a trend in supple-
menting the knowledge about the program structure with the knowledge about
the program execution.

So ontology-based reasoning is a relevant approach for many tasks both in
software engineering as a professional activity and in software engineering learn-
ing (e.g., to detect and explain the issues in the program code, to check the
conformity of the task and conceptual model with the program implementation,
etc). Ontologies are used in the learning process for different domains to generate
and grade questions [2,6].

According to [2], the simplicity of the questions is one of the main limitations
of existing works in question generation that must be addressed in further re-
search. However, while for simple questions checking factual knowledge question
generation and reasoning the correct answer are practically the same, for more
complex questions, (e.g. building a program trace) question generation and ques-
tion solving become different problems. Using automatically-generated questions
is not practical without automating finding the correct answers, and reasoning
on an ontology, capturing domain-related knowledge, is a relevant approach to
this task.

Using complex questions targeting high cognitive levels also allows generating
non-trivial feedback that is also an important problem in question generation.
Explicitly defining logical constraints for a correct answer to the given question
allows detecting the broken constraints if a student’s answer is incorrect, making
possible showing explanations of the domain laws that the student violated in
their answer.

In our research, we aim at creating a system for generating questions, rea-
soning the correct answers to them using domain-dependent formal models like
ontologies, determine fault reasons in students’ answers and explaining them to
correct misunderstandings of important domain concepts. One of the first steps
requires studying whether modern ontological reasoners are capable of perform-
ing the necessary tasks. When teaching introductory programming courses, one
of the complex tasks involving learning concepts of control structures is building
program trace [4]. In this study, we attempted to develop an ontology for build-
ing algorithm traces and finding fault reasons for mistakes in students’ traces to
improve students understanding of how the algorithm is executed.

2 Method

An algorithm is represented as a tree of algorithmic structures: sequences, al-
ternatives, and loops. Its trace is a sequence of acts of their execution in time;
simple actions are represented as acts of their executions while complex algo-
rithmic structures containing nested actions have different acts for the beginning
and finishing of their execution. The trace also must contain the values of control



conditions for alternatives and loops.
The input of the developed ontology includes:
– An algorithm tree consisting of algorithmic structures and simple state-

ments.
– The set of unordered execution acts to be connected by the next_act to

embody the correct trace. Acts executing expressions have expr_value datatype
property holding the result.

– The student’s trace as student_next relations. Student’s trace and correct
trace share as many acts as possible.

The developed SWRL rules perform the following steps. First, the correct
trace is built. The rules doing that are called positive. These rules look for a
correct act in the partially built trace to connect the next act to. The connected
act gets one of the subclasses of correct_act class, showing the reason why the
act should be there (e.g., AltBranchBegin, SequenceEnd).

Second, the additional properties parent_of and corresponding_end are
computed to easier navigating the correct trace (see fig. 1). Similar properties
are calculated for the student’s trace. Indices for acts in both traces are calculated
too.

Fig. 1. Trace structure for two ac-
tions (1, 2) nested to a sequence
(seq)

Third, the negative rules determine stu-
dent’s mistakes and fault reasons. Fault rea-
son detection is performed by rules that infer
subclasses of Erroneous class showing the
fault reason like
CorrespondingEndMismatch, ExtraAct,
DuplicateOfAct, MissingAct,
DisplacedAct, BranchOfFalseCondition,
NoBranchWhenConditionIsTrue, etc.

After the reasoning, the ontology is sup-
plemented with the correct trace and facts
about the types of student mistakes. This
information can be extracted and shown to
the students in a human-readable way us-
ing message templates for each fault-reason
class, for example, ”Act A can’t be executed
after the end of Act B because sequence B
contains act A and each act of a sequence execution include executing each its
element once” or ”Branch A can’t be executed at this place because the con-
dition B is false” or ”Act A must be executed at this place because a do-while
loop body must be executed at least once.”

3 Results

The current revision of the ontology1 includes: 74 SWRL rules (28 positive, 28
negative, 18 helper rules), 66 classes (24 representing algorithm elements, 7 -

1 https://github.com/den1s0v/c owl



trace acts, 18 - mistakes, 27 - explanations for correct acts), and 30 properties.
The ontology supports sequences, alternatives, and loops of different types.

It guarantees that at least one student’s act is marked incorrect if there are any
mistakes, even if all mistakes are omissions of correct acts: that makes providing
detailed information about the mistakes’ positions possible. Simultaneous rea-
soning over multiple traces injected into the same ontology is supported and can
be used to improve the overall performance when processing multiple answers
to the same question.

The developed SWRL rules require using SWRL built-ins like swrlb:add(),
swrlb:notEqual(). Suitable reasoners include Pellet 2.3 and Pellet 3. Other
popular reasoners like HermiT do not support these built-ins.

The ontology passed 33 tests consisting of short traces with annotated mis-
takes. A single run of the ontology with one trace takes about 1 second in
Stanford Protégé Editor invoking Pellet 2.3 plugin and about 5 seconds while
running Pellet 2.3 as a standalone process. The same ontology using Stardog
with Pellet 3 cannot complete the inference in minutes.

A few issues of SWRL implementation in Pellet 2 and 3 were found.
– The problems with DifferentFrom: when no facts related to individuals

distinction was provided a rule that uses DifferentFrom never fires; in Pellet 2 it
sometimes causes ”Inconsistent Ontology” error or silently truncates some of the
inference results. This problem effectively stops the ontology from working. So
it’s better to avoid using DifferentFrom or SameAs unless you explicitly specify
the information about the differences of individuals.

– In Stardog, using SameAs in the SWRL rule causes a parsing exception.
– In Stardog, the unification of ”scalar” variables works only for binding;

when matching with an already bound variable, it allows any values. With rule
(1), Stardog will connect all possible pairs of Product instances, regardless of
whether their prices are equal, instead of selecting only instances that match at a
price. This behavior was only observed when has_price is a DatatypeProperty.

Product(?a), P roduct(?b), has price(?a, ?p), has price(?b, ?p) →
→ has same price(?a, ?b) (1)

– Including transitive properties has a significant impact on the reason-
ing time if they are inferred. Two of the determined mistakes - ExtraAct and
MissingAct - require looking up any number of acts ahead that is impossible
without using transitive properties. As a workaround, we created several dupli-
cates of the rules, each with a fixed length of the lookup (up to 6 acts).

The developed ontology differs from the ontology-based program analysis
system [3] in that it performs dynamic analysis building the program trace and
uses SWRL rules instead of Jena. The kinds of mistakes detected by analysis are
different because our ontology is aimed at supporting teaching and it compares
student-built trace with the ontology-built one instead of seeking errors in the
given code.

Our work differs from other ontologies used for question generation and solv-
ing in that it can be used in developing a question-generating system aimed at



more complex questions targeting higher cognitive levels that makes reasoning
the correct answer for the generated questions non-trivial as a question-solver
and grading block. It also allows for generating explanatory feedback.

The proposed approach is limited to closed-ended questions because it re-
quires that every possible mistake in the answer can be a result of violating
a specific domain law. The developed ontology solves and finds mistakes for
questions requiring ordering of a given set of program-trace strings. Open-ended
questions are limited to the lower-lever feedback for now [6].

4 Conclusion and Future Work

During our research, we developed an ontology able to build correct traces for
the given algorithm consisting of sequences, alternatives, and loops and find
mistakes in the given traces with enough information to generate explanatory
feedback. This shows that developing an ontology-based system for generating
and solving questions and providing explanatory feedback to students about
their mistakes is possible. However, some problems of Pellet reasoner prevent
efficient implementation of the rules and limit the number of mistakes that can
be detected.

Future work will concern adding support for procedure calls, including re-
cursive calls, and developing the tutor system using the created ontology and
logical rules.

References

1. Bhatia, M.P.S., Kumar, A., Beniwal, R., Malik, T.: Ontology driven software devel-
opment for automatic detection and updation of software requirement specifications.
Journal of Discrete Mathematical Sciences and Cryptography 23(1), 197–208 (Jan
2020)

2. Kurdi, G., Leo, J., Parsia, B., Sattler, U., Al-Emari, S.: A systematic review of
automatic question generation for educational purposes. International Journal of
Artificial Intelligence in Education 30(1), 121–204 (Nov 2019)

3. Pattipati, D.K., Nasre, R., Puligundla, S.K.: OPAL: An extensible framework for
ontology-based program analysis. Software: Practice and Experience 50(8), 1425–
1462 (Mar 2020)

4. Risha, Z., Brusilovsky, P.: Making it smart: Converting static code into an interac-
tive trace table. Sixth SPLICE Workshop “Building an Infrastructure for Computer
Science Education Research and Practice at Scale” at ACM Learning at Scale 2020
(Aug 2020)

5. Strmečki, D., Magdalenić, I., Kermek, D.: An overview on the use of ontologies in
software engineering. Journal of Computer Science 12(12), 597–610 (Dec 2016)

6. Sychev, O., Anikin, A., Prokudin, A.: Automatic grading and hinting in open-ended
text questions. Cognitive Systems Research 59, 264–272 (Jan 2020)

7. Zhao, Y., Chen, G., Liao, C., Shen, X.: Towards Ontology-Based Program Analysis.
In: ECOOP 2016. Leibniz International Proceedings in Informatics, vol. 56, pp.
26:1–26:25 (Jul 2016)


