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Abstract. Knowledge graphs (KGs) proliferating on the Web are known
to be incomplete. Much research has been proposed for automatic com-
pletion, sometimes by rule learning, that scales well. All existing methods
learn closed rules. Here we introduce open path (OP) rules and present a
novel algorithm, oprl, for learning them. While closed rules are used to
complete a KG by answering given queries, OP rules identify the incom-
pleteness of a KG by inducing such queries to ask. We use adaptations of
Freebase, YAGO2, and a synthetic but complete Poker KG to evaluate
oprl. We find that oprl mines hundreds of accurate rules from massive
KGs with up to 1M facts. The learnt OP rules induce queries with preci-
sion up to 98% and recall of 62% on a complete KG, demonstrating the
first solution for active knowledge graph completion.
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1 Introduction

Knowledge Graphs (KGs) are a convenient technology to model and store mas-
sive quantities of weakly-structured data. However, their intended scope is usu-
ally poorly defined and they fail to record relevant entities, as well as relevant
relationships for the entities they do record. Techniques have been developed for
knowledge graph completion and rule learning to curate KGs automatically [5].
In these approaches, models, often expressed as logical rules or vector embed-
dings, are learnt from a given KG. The models are then used for curating tasks
including link prediction that predicts missing facts for extant entities.

Rule learning methods for KGs [7] consider closed path (CP) rules which are
used to predict a ground fact that fully instantiates the triple at the head of the
rule. Closed rules enable inference of specific facts that, if true, are missing from
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the KG. They draw attention to a potential missing fact only if the fully specified
fact is able to be inferred by the rule. Thus KG completion is driven by the
assumption that the KG knows what it does not know. In this paper we consider,
for the first time, the problem of rules-based knowledge graph completion in the
situation that the KG does not know what it does not know. This problem requires
the KG, as it does for people, to look outside its own environment.

We propose learning open path rules (OP) from which we infer less con-
strained, open-ended queries to complete a knowledge graph. The proposed OP
rule formalism is a fragment of existential rule [1] which is expressive enough
to infer the queries yet they are suitable for our embedding-based scalable rule
mining system. Our OP rules provide evidence that information is missing even
when there is no evidence for a specific missing fact. The queries inferred from
OP rules identify that a new fact is needed when the answer is not known, but
also not obvious. Such queries could be posed to an active user engaged in a cu-
rating task or to a Web question-answering engine, where the answer might be
found outside the KG. In particular, an answer to the query may well introduce
previously unknown entities to the KG, and thus address a previously unstudied
direction in knowledge graph completion, that is missing entities.

As a beneficial side-effect, our work addresses a long-standing gap in tradi-
tional link prediction systems (e.g. [2]), that use a KG to propose new links,
but need to be seeded with queries about potential missing links. Such a query
takes the form of a triple with one free variable. Conventionally, for evaluation
purposes, these queries are generated from test facts that are held-back from the
KG in the hope that a high-performing predictor will rediscover the held-back
facts. However, once a link predictor is deployed over a working KG, test facts
cannot be held back. Why would we want to remove a fact from the KG so that
we can construct a query from it so that we might rediscover the same fact? And
how should we choose which facts to remove to ensure that we are generating
queries that are the most important to ask of our link predictor? Since generat-
ing queries this conventional way is problematic, whence does the query arise?
We propose that the queries we infer from our OP rules can be widely used to
generate the queries that link predictors need to repair KGs.

The contributions of this paper are as follows. We present a novel method for
learning open path rules from a KG. These are Horn rules with a different form
to the usual closed path rules that are used for knowledge graph completion
tasks. We propose an algorithm to learn these rules based on the embedding
presentations of the predicates and entities. As such, we introduce a first solution
to the problem of active knowledge graph completion (AKGC), where we aim,
instead of suggesting missing facts, to ask the best questions to complete a KG.

2 Learning Rules with Free Variables

Unlike earlier work in rule mining for KG completion, for our active knowledge
graph completion task we mine open path (OP) rules of the following form:

Pt(x, z0)← P1(z0, z1) ∧ P2(z1, z2) ∧ ... ∧ Pn(zn−1, y) (1)
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Here, Pi is a predicate in the KG and each of {x, zi, y} are variables (x and y are
free while the zis are bound). Unlike CP rules, OP rules do not necessarily form
a looped path of variable connections, but every instantiation of a CP rule is also
an instantiation of an OP rule. From an instantiation of the body of an OP rule,
we can not infer a fact, but only a query. For example, the following OP rule,
citizenOf(x, t) ← livesIn(x, z). states that if an entity, x, lives in z, then that
entity is citizen of somewhere (t). By instantiating the body of this rule as follows,
livesIn(bronte, canberra), we could infer the query, citizenOf(bronte, ?).

To assess the quality of our mined open path rules, we introduce open path
standard confidence (OPSC) and open path head coverage (OPHC) derived from
the closed path forms.

Let r be an OP rule of the form (1). Then a pair of entities (e, e′) satisfies
the body of r, denoted bodyr(e, e′), if there exist entities e1, ..., en−1 in the KG
such that P1(e, e1), P2(e1, e2), ..., Pn(en−1, e

′) are facts in the KG. A pair (e′, e)
satisfies the head of r, denoted Pt(e

′, e), if Pt(e
′, e) is a fact in the KG. The open

path support, open path standard confidence, and open path head coverage of r
are given respectively by

OPsupp(r) = |{e : ∃e′, e′′ s.t. bodyr(e, e′) and Pt(e
′′, e)}|

OPSC(r) =
OPsupp(r)

|{e : ∃e′ s.t. bodyr(e, e′)}| , OPHC(r) =
OPsupp(r)

|{e : ∃e′ s.t. Pt(e′, e)}|
OP Rule Learning: Our objective is to mine a KG for high-quality OP

rules about a specific target predicate Pt. While we adhere to the architecture of
RLvLR [7] that learns CP rules, we propose the following novelties for mining
OP rules: (i) a novel fitness function which can estimate the quality of an OP rule
based on the embedding representations of its predicates (based on the learnt
embeddings from RESCAL [6]); and (ii) a novel vector computation which allows
the system to evaluate the OP rules against a massive KG to compute quality
measures, OPSC and OPHC.

3 Experiments

We have conducted two sets of experiments to evaluate oprl6, demonstrating:
(i) Oprl can mine quality OP rules from a range of KGs. Oprl can mine
massive KGs in reasonable time. (ii) Queries generated from oprl’s rules are
relevant with good recall and precision in multiple KGs. They far outperform a
distribution-based baseline. The four benchmark datasets are given in Table 1.
All experiments were conducted on an Intel Xeon CPU E5-4620v2 @ 2.60GHz,
66GB RAM and running CentOS 7.

OP Rule Learning: First, we assess how well oprl finds high quality rules.
We are not aware of other OP rule learners with which to compare, but we do
compare the performance of fitness functions. The quality of rules are reported
based on their OPSC/OPHC scores calculated against the full benchmark KGs,

6 The datasets used in the experiments and detailed results can be found at
www.dropbox.com/sh/y1f7zut09dheius/AADofv9c18Rzm-CFc64dw2yVa?dl=0
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not the samples. Later we will use the mined rules for generating queries, so we
need some holdout facts for query evaluation. For FB15KSE, test and training
sets are available [7]. For Poker and YAGO2 core we can find no previously
prepared data, so we randomly partition 90% for training and 10% for testing.

Table 1: Benchmark KG specifications
KG # Facts # Entities # Predicates

FB15KSE [7] 272K 15K 237
YAGO2core [4] 948K 470K 32
Poker [3] 1M 95k 27

Table 2: Performance of oprl on bench-
mark KGs

Benchmark #Rules #Arules Time (hours)

FB15KSE 1029 261 0.17
YAGO2 core 84 9 0.20
Poker 603 509 0.52

Table 2 shows the average numbers of quality rules mined for all predicates
and the running times (in hours, averaged over the targets). Similarly to [4],
only rules with quality OPSC≥ 0.1 and OPHC≥ 0.01 are included. The average
number of accurate rules, i.e. the rules with OPSC≥ 0.8, are given as #Arules.

Query Generation: Our second set of experiments evaluates the predic-
tive power of the mined rules satisfying quality thresholds OPSC≥ 0.8 and
OPHC≥ 0.01 on the training data by posing the inferred queries to the test
data. In the absence of any comparative system for query generation, we devel-
oped three baseline query sets (Prand) which contain random queries according
to the frequency distribution of predicates and entities in the respective KG.
Table 3 shows average precision, recall and F1 where a query is considered true
if it can be answered from the test data, and false otherwise. We see that oprl’s
performance exceeds Prand on FB15KSE, YAGO2 core and Poker by factors of
approximately 6, 2 and 9 respectively.

4 Conclusion

In this paper, we proposed a method for learning rules with free variables from
Knowledge Graphs (KGs). Such rules can be used to generate queries soliciting
missing facts. Notably, the queries could be fed to link predictors, so obtaining
a fully automated framework for KG completion. Our experiments show that
oprl can learn rules for KGs with varying sizes and degrees of incompleteness.
We show the usefulness of the mined rules by applying them to three different
KGs to infer relevant queries.

Table 3: Accuracy of query generation
Benchmark #Q OPRL Prand

P R F1 P R F1

FB15KSE 15k 0.13 0.3 0.18 0.02 0.05 0.03
YAGO2 core 9k 0.14 0.01 0.03 0.06 0.005 0.01
Poker 41k 0.98 0.62 0.76 0.17 0.07 0.1
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