
RDF Stream Processing Prototyping with Streaming
MASSIF

Pieter Bonte[0000−0002−8931−8343] Femke Ongenae[0000−0003−2529−5477]

IDLab, Ghent University – imec
Pieter.Bonte@UGent.be

Abstract. Stream Reasoning (SR) is the research field that aims to solve the het-
erogeneity, noisiness, and incompleteness problems that comewith the processing
of continuously produced data. The use of Semantic Web technologies allows to
mitigate many of these problems. RDF Stream Processing (RSP), a subfield of
SR, specifically deals with the processing of RDF data streams. Many RSP en-
gines and solutions exist, however, none provide the flexibility to rapidly create
a prototype for new RSP applications or aid in the design of new components.
In this demonstration paper, we showcase Streaming MASSIF Prototypes, a RSP
prototyping platform that provides the necessary tooling to effortlessly create new
RSP applications. Furthermore, the available tooling and the inherent flexibility
of the platform allow researchers and developers to fully focus on the design of
new RSP components, hiding superfluous complexities and configurations.

Keywords: Stream Reasoning · Prototyping · RDF Stream Processing

1 Introduction

Data is being produced at a volume and velocity that out limits the ability to consume
the data as a whole [8]. Therefore, data intensive applications consume data continu-
ously as it is being produced. However, data (streams) typically cope with challenges
of heterogeneity, noisiness, and incompleteness, which the Stream Reasoning (SR) re-
search field aims to solve [4]. The use of Semantic Web technologies allows to mitigate
many of these problems. RDF Stream Processing (RSP), a subfield of SR, focusses on
processing RDF data streams in particular. Many RSP engines and solutions exist [1, 6,
2], however, lacking the tooling for easy prototyping of RSP applications and limiting
the development and evaluation of new RSP components. RSP applications are typically
composed of multiple parts, e.g. a windowing function to chop the continuous stream
in processable chunks, a SPARQL engine for selecting elements from the streams, (ex-
pressive) reasoning for inferring implicit and missing facts, and optionally temporal
reasoning for detecting time-related dependencies [3]. In this paper, we demonstrate
Streaming MASSIF Prototypes, an easy-to-use RSP prototyping platform, built upon
the Streaming MASSIF platform [3]. Our prototyping platform offers the tooling to
easily compose new RSP applications and provides the flexibility to focus on building

Copyright ©2020 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC by 4.0).



2 P. Bonte et al.

new RSP components. We have decomposed various RSP applications and engines in
various abstract building blocks. These building blocks can be composed in any arbitrary
order, allowing the creation of a flexible RSP processing graph. With Streaming MAS-
SIF Prototypes, RSP applications can easily be created because we offer the necessary
tooling to get started and focus on the definition of the business logic. New components
can easily be integrated as we provide abstractions, flexible interface, and monitoring
functionality out of the box.

2 State of the art

Looking at most RSP engines and applications we can see that they can be decomposed
into some abstract building blocks:

C-SPARQL [1] first windows the data stream into processable chunks, optionally
allows performing RDFS reasoning to infer missing facts while selecting data from the
window using a SPARQL engine.

CQELS [6] integrates the windowing directly into the evaluation of the queries.
CityPulse [7] uses CQELS to select data from the data streams, ASP to reasoning

upon the selection, and CEP to enable temporal reasoning.
StreamingMASSIF [3] uses C-SPARQL to select data from the stream, aDescription

Logic (DL) reasoner to perform expressive reasoning and abstract events and CEP on
top of the abstractions.

Many more engines exist, most can be abstracted to the following building blocks:

– Windowing: a function to divide the continuous stream into processable chunks.
– Selection: a selection function a select and filter data according to a registered query.
– Abstraction: a reasoning component to infer implicit and missing facts.
– Temporal: a temporal reasoning component to infer temporal dependencies.

However, none of the existing engines or platforms provide any tools to easily load
different data sources, handle the results, monitor the different building blocks, add
some flexibility to reorder the building blocks, or add new components. We provide the
needed tooling for easy prototyping new RSP applications and components.

3 Stream Reasoning Prototyping

Fig. 1. Visualization of the pipeline architecture.



Streaming MASSIF Prototypes 3

To enable easy prototyping and integration of new RSP components, Streaming
MASSIF Prototypes has been built on top of the following principles:

1. Flexible interfaces: in order to integrate new components, or compose building
blocks in any order, interfacing between components should be flexible and trans-
parent. Inspired on the flexibility of the Unix pipelines, we chose the use text as
interface. This allows to easily plugin new components. Throughout the platform,
we support semantic data using the Turtle serialization (or column separated tabular
data if data has not been mapped to a semantic model yet).

2. Abstract components: all components are being abstracted on the highest level
to PipeLineComponents, this allows that upstream or downstream components can
be decoupled and are not depending on any specific implementation. To make
prototyping easier, we support the following components:
(a) Sources: the data ingestion points that load the data streams into the platform.

Support for Kafka, HTTP Post and get (with configurable timeouts), websockets
and reading from file (with configurable timeouts).

(b) Windows: function to window the data stream in processable chunks. Support
for sliding and tumbling windows. Current implementation: Esper1.

(c) Filters: allow to select and filter certain parts from the data stream through
SPARQL-queries. Current implementation: Apache Jena2.

(d) Abstractors: reasoning step that allows to infer implicit facts and abstract events
to high-level concepts. Current implementations: HermiT [5] for expressive
ontology reasoning and C-Sprite [2] for RDFS-reasoning.

(e) CEP: Complex Event Processing (CEP) module that allows detecting temporal
patterns. Currently through Esper.

(f) Mappers: Mapping raw data to semantic data.
(g) Enrichment: allows to enrich the data stream with static data.
(h) Sinks: functions as the end-point of the data stream. Support for Kafka, HTTP,

WebSockets, writing to file, and print sinks (to terminal or web interface).
The benefit of these abstractions is that multiple implementations are possible. Note
that additional components can easily be integrated. Figure 1 depicts an example
pipeline configuration using the abstract components.

3. Monitoring: Asdepicted in Figure 1, each component iswrapped in aPipeLineCom-
ponent that has its own queue for asynchronous processing of the components, and
a monitoring layer to allow easy evaluation of the component’s metrics. The metrics
can be accessed through an HTTP endpoint and contain the processing times, the
number of events in the queue, and the throughput.

4. Processing Graphs: Each component has the flexibility to have multiple inputs and
outputs, allowing the creation of a processing graph for RSP applications.

5. Graphical Interface: To simplify the creation of the processing graph, we provide
a drag and drop web interface that allows to compose RSP workflows. Figure 2
visualizes an example composition on the right pane. The left pane shows the
registered query of the filter component and its monitoring details. Alternatively,
the configuration can be loaded in JSON-LD format.

1 http://www.espertech.com/
2 https://jena.apache.org/



4 P. Bonte et al.

Fig. 2. Example of the RSP workflow composer (right) and the information pane (left) detailing
the configuration and monitoring details of the filter component.

4 Demonstrator

In this demonstrator, we show how RSP applications, consisting of various components,
can be built using the workflow composer. The demonstrator shows how complex appli-
cations can be built through drag and drop interaction and declarative definitions of the
components. It shows how we can be debug RSP applications by investigating interme-
diate results of each of the components in the user interface and how each component
can be monitored in order to detect bottlenecks. A video of the demonstrator can be
found here3.
Acknowledgments: Pieter Bonte is funded by a postdoctoral fellowship of FondsWeten-
schappelijk Onderzoek Vlaanderen (FWO) (1266521N).

References
1. Barbieri, D.F., Braga, D., Ceri, S., VALLE, E.D., Grossniklaus, M.: C-sparql: a continuous

query language for rdf data streams. International Journal of Semantic Computing 4(01), 3–25
(2010)

2. Bonte, P., Tommasini, R., De Turck, F., Ongenae, F., Valle, E.D.: C-sprite: Efficient hierarchical
reasoning for rapid rdf stream processing. In: Proceedings of the 13th ACM International
Conference on Distributed and Event-based Systems. pp. 103–114 (2019)

3. Bonte, P., Tommasini, R., Della Valle, E., De Turck, F., Ongenae, F.: Streaming massif:
cascading reasoning for efficient processing of iot data streams. Sensors 18(11), 3832 (2018)

4. Dell’Aglio, D., Della Valle, E., van Harmelen, F., Bernstein, A.: Stream reasoning: A survey
and outlook. Data Science 1(1-2), 59–83 (2017)

5. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: an owl 2 reasoner. Journal
of Automated Reasoning 53(3), 245–269 (2014)

6. Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive approach
for unified processing of linked streams and linked data. In: International Semantic Web
Conference. pp. 370–388. Springer (2011)

7. Puiu, D., Barnaghi, P., Tönjes, R., Kümper, D., Ali, M.I., Mileo, A., Parreira, J.X., Fischer,
M., Kolozali, S., Farajidavar, N., et al.: Citypulse: Large scale data analytics framework for
smart cities. IEEE Access 4, 1086–1108 (2016)

8. Tommasini, R., Calvaresi, D., Calbimonte, J.P.: Stream reasoning agents: Blue sky ideas track.
In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent
Systems. pp. 1664–1680 (2019)

3 https://github.com/IBCNServices/StreamingMASSIF/wiki/Streaming-MASSIF-Prototypes


