CEUR-WS.org/Vol-2721/paper548.pdf

A Knowledge-Spatial Architecture for Processing
Dynamic Maps in Automated Driving

Haonan Qiu'2, Adel Ayara', and Birte Glimm?

! BMW Car IT GmbH, Ulm, Germany,
{haonan.qiu,adel.ayara}@bmw.de
2 Institute of Artificial Intelligence, University of Ulm, Germany,
birte.glimm@uni-ulm.de

Abstract. An autonomous car needs a detailed, high-definition (HD)
map to understand its surroundings. An HD map acts as a powerful vir-
tual “sensor”. Compared to traditional digital maps, high-definition maps
require significantly more storage space, and a complete map cannot be
stored in a navigation system. Furthermore, map data is provided in
numerous heterogeneous formats. Hence, interoperability and scalability
have become the main challenges of existing map processing solutions.
We demonstrate how these challenges can be addressed using an inter-
operable knowledge-spatial architecture layer based on ontologies.

Demo Submission

1 Introduction

Motivation: Autonomous vehicles need to adhere to extremely high safety stan-
dards as failures can impact human lives. A high-definition (HD) map acts as a
powerful virtual “sensor” [1]. However, as of now, there is no single, authorita-
tive format or standard for HD maps [2]. As a result, map model development,
maintenance, and integration, as well as map data exchange and sharing pose
major challenges in practise. Furthermore, HD maps are extremely detailed and,
therefore, require significantly more processing power and computation resources
compared to standard-definition (SD) maps. The navigation system constantly
requests map data streams while the car is progressing along a route and care has
to be taken to provide any relevant information in time [3]. The heterogeneity
and big volume characteristics of HD maps require a novel approach that al-
lows for a generic representation of the road environment and a dynamic update
mechanism. Ontologies have been used for representing road intersections for
autonomous vehicles [8, 6], however, their work is neither generalized to different
map formats nor is the spatial topology of lanes considered.
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Fig. 1: The overview of knowledge-spatial architecture

Demo: We present the SmartMapApp prototype based on a knowledge-spatial
architecture to deal with both knowledge abstraction and spatial reasoning on
highly dynamic map data streams. We illustrate how the application works
with a use-case of dynamic map updates in a highway scenario, but the ap-
proach generalizes to other scenarios. A demonstration video of the applica-
tion is available at https://www.uni-ulm.de/fileadmin/website_uni_ulm/
iui.inst.090/video/ISWCDemo . mp4.

2 A Knowledge-Spatial Architecture

We present the knowledge-spatial architecture that enables autonomous vehicles
to perceive their environment with a dynamic map in Figure 1.

The knowledge dimension addresses a knowledge abstraction process from
the format-specific and detailed low-level ontologies to the generic high-level on-
tology (see the vertical axis of Fig. 1). The horizontal (time) axis represents
road knowledge acquisition events, which trigger the knowledge abstraction pro-
cess via spatial reasoning. Spatial reasoning considers updated vehicle motion
events determined in the knowledge abstraction process and searches for spatial
patterns to derive the relevant consequences of what is happening on the road.
Different low-level ontologies for the different map formats can be used to feed
the high-level ontology, which makes the proposed architecture very flexible as
application-oriented queries, such as advanced driver assistance system (ADAS)
functions, are posed over the generic high-level ontology.
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(a) the high-level ontology;
LM stands for lane markings, M stands for markings

(b) toplogical relationships between lanes and the road part
Fig.2: The high-level ontology and an example of Lane and RoadPart spatial
relations; hasDirectL/RLane stands for hasDirectLeft /RightLane.

The spatial dimension is orthogonal to the knowledge dimension and corre-
lates facts that are true within a certain space. It describes the continues spatial
reasoning process with respect to the updated vehicle position and dynamic road
environmental knowledge. We adopt the notion of a spatial window with a fixed
width or region in terms of geographic elements shift (slide) over a path line.
Inspired by Mokbel et al. [4], we use the notion of spatial expiration depend-
ing on the spatial location of a moving object, e.g. a vehicle, and stored data
expires only when the object leaves the spatial window. The spatial window is
determined by the vehicle location and a forward and backward parameter.

Two levels of datastores are used to deal with the highly dynamic, location-
aware environment, where the size of spatial streams is potentially infinite. Cer-
tain spacial events (e.g., the available map foresight of the vehicle reaches a
threshold) trigger the initialisation of a new datastore for a low-level ontology.
The next map data region is loaded (as defined by the specific map data format)
and used to generate more abstract, high-level knowledge. While the high-level
datastore uses spatial expiration for deletions, a low-level datastore is discarded
once the high-level datatstore is populated.

Ontologies and rules are essential for road environmental knowledge repre-
sentation and spatial reasoning. Figure 2(a) shows some of the concepts and
spatial relations of the high-level ontology. One of the the low-level ontologies
is presented in [7]. At the high level, a exmaple of the spatial relations among
Lane and RoadPart are shown in Fig. 2(b). The following rules are used to infer
lateral relationships between lanes. The longitude relationships such as successor
relationships are modeled in similar fashion.

hasRLane(z,y) < hasDirectRLane(z, y)

hasRLane(z, z) < hasDirectRLane(x, y), hasRLane(y, 2).

RightMostLane(z) < Lane(z), Lane(y), NOT hasRLane(z, y).
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Fig.3: An example of a route path over map tiles

3 Demo Application

To demonstrate the ontology-based approach for processing dynamic map data,
we have implemented a prototype called SmartMapApp for the knowledge-spatial
architecture described above and it is implemented using RDFox 3.0.1 with the
provided Java APIs [5].

Dynamic map update scenario: We illustrate the demo scenario of a car
progressing along a route on a highway using three snapshots (see Figure 3).
In each snapshot, the vehicle’s external and internal worlds are presented. In
snapshot 1, the vehicle initialises its world view with some low-level map data,
which results in a high-level road view. As soon as the car starts to move, it
triggers a continuous pre-fetching query with a spatial window with the forward
parameter set to 3 km. In snapshot 2, the system pre-loads data for a new
map tile and extends the high-level road view. In snapshot 3, while the system
incrementally updates the road environmental knowledge, it also continuously
checks if any road parts are “out of window" based on the backward parameter
(e.g., 3 km) of the spatial window and deletes them. In addition, the system
also provides a lane change notification containing maneuver steps to the car for
reaching the targeted lane based on the route.

SmartMapApp: Figure 4 shows a screenshot of the SmartMapApp GUI. The
simulation is initialized with three types of input files: a JSON file contain-
ing a sequence of positions encoded in the World Geodetic System 1984, map
data triples extracted from a map database, and a route represented as triples
containing road parts and lanes. After the initialization, the system starts to
simulate the progressing of the car by using the periodically updated position
and the given route. The Position Received section shows the received position.
The Current Car Info section shows the current car situation in the lane and
the road (e.g the travel distance). Pre-loading and deletion information is also
displayed whenever the spatial reasoning triggers the pre-loading and deletion
processes, respectively. The Maneuver Steps shows the steps for changing lanes
and the Maneuver Ezplanation displays the reasons for lane change notification.
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Fig.4: SmartMapApp GUI

The Map Loading Explanation section is used to output the reasons for pre-
loading decisions. The prototype shows that handling such highly dynamic data
using semantic technologies (ontologies, rules, SPARQL queries) is feasible. The
approach allows for integrating different map data formats, provides a generic
interface to access the road environmental knowledge, is flexible enough to easily
add new features, and robust enough to ensure explainable autonomous cars.
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